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Abstract: Immune function and sleep are two normal physiological processes to protect the living
organism from falling sick. There is hardly any disease in which they remain unaffected, though the
quantum of effect may differ. Therefore, we propose the existence of a strong correlation between
sleep (quality or quantity) and immune response. This may be supported by the fact that sleep loss
modulates many of the immunological molecules, which includes interferons; however, not much is
known about their mechanism of action. Sleep is divided into rapid eye movement sleep (REMS) and
non-REMS. For practical reasons, experimental studies have been conducted mostly by inducing loss
of REMS. It has been shown that withdrawal of noradrenaline (NA) is a necessity for generation of
REMS. Moreover, NA level increases in the brain upon REMS loss and the elevated NA is responsible
for many of the sleep loss-associated symptoms. In this review, we describe how sleep (and its
disturbance/loss) modulates the immune system by modulating the NA level in the brain or vice
versa to maintain immune functions, physiological homeostasis, and normal healthy living. The
increased levels of NA during REMS loss may cause neuroinflammation possibly by glial activation
(as NA is a key modulator of microglia). Therefore, maintaining sleep hygiene plays a crucial role for
a normal healthy living.
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1. Introduction

Living organisms are continuously challenged by environmental factors. In the process,
the output or products of many physiological processes contribute to maintaining these
physiological processes at equilibrium resulting in normal healthy living. However, if
these processes get disturbed, the state of equilibrium is altered, and one may become
sick or diseased. For survival, our physiological processes withstand or negotiate with
the harmful molecules by restricting their entry into the body or by neutralizing them as
such or the byproducts produced upon their reaction with other systems [1,2]. However,
if they entered, the body may eliminate the molecule(s) through excretion or by releasing
some byproduct(s). Nevertheless, some may multiply within the body and affect the
physiological process(es). Many such toxic substances may challenge the immune system
of the body, which in turn uses a wide array of mechanisms to control, normalize, and
eliminate the causative factors. While doing this, the immune system must possess the
ability to discriminate between the pathogen (or the unwanted molecule) and that of the
host cells to avoid self-destruction [1]. Loss of such discrimination and failure of self-
tolerance may result in autoimmune disease. The activation of immune system shifts the
equilibrium of the physiological processes by enhancing one or more such factors, including
interferons (IFN), cytokines, macrophages, and monocytes, which work together to restore
the body’s normal condition [3]. Classically, these are the innate and adaptive immune
responses raised by the immune system against pathogenic invasion in our body [4].

The immune system functions in close association with the nervous system. Several
studies have shown production of immune factors by the brain and neuroendocrine me-
diators by the immune system [5,6]. These immune factors include chemokines, growth
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factors, enkephalins, endorphins, neurotrophic peptides, etc. There is evidence for the
presence and expression of cytokines, Toll-like receptors, the molecules of complement
family, the major histocompatibility complex, and receptors of antibodies in the lymphatic
vessels and the brain. Interestingly, these have been shown to play crucial role in brain
development. Lymphocytes along with microglia are known to play a pivotal role in the
formation of neuronal circuits and regulate cognition [7]. Besedovsky et al. [8] inferred
the communication between immune system and brain by demonstrating activation of the
hypothalamic–pituitary–adrenal axis and the sympathetic nervous system during the peak
antibody response in mice vaccinated with a T-cell antigen. The immune cells regulate the
functioning of the central nervous system by regulating synaptic plasticity, both during
development as well as at adulthood [9]. A long-range interaction between the two permits
the nervous system to modulate the immune response(s) in its fight against infection from
pathogenic microorganisms or foreign molecule. Immunogenic challenge(s) may damage
living cells and cause release of prostaglandins, an inflammatory response [4], which may
modulate thermoregulatory system [10] inducing changes in body temperature. In the
process, locally, the brain cells may produce cytokines, which in turn may be responsible
for the interactions between endothelial cells, glia, and neurons [11]. Microglia, the resident
immune cells in the central nervous system, are known to monitor the brain for tissue
damage and respond by modulating tissue homeostasis [12].

Thus, immune response is an inherent, instinct property of the brain to perform optimally
for maintenance of an equilibrium state necessary for leading normal healthy living [1].
Disturbance or a shift in this equilibrium might result into a dysfunction, an altered state,
or a disease. If protection is not possible, a recovery from such disturbances is crucial to
avoid irreversible damage. Sleep is one such fundamental, instinctive, and natural remedial
phenomenon which has evolved to maintain homeostasis to restore normal physiological
processes and healthy living. Sleep is affected by many internal factors, environment as
well as lifestyle changes. The modern lifestyle threatens the sleep behavior and its pattern,
which affects the health negatively. Therefore, it has been proposed that a disciplined sleep
habit is essential for healthy living [13]. A disciplined sleep habit includes sleep hygiene,
sleep routine e.g., following time going to bed and waking time, sleeping environment e.g.,
bedroom lighting, bedding conditions, quality, and quantity of food, etc. Sleep has been
broadly divided into rapid eye movement sleep (REMS) and non-REMS (NREMS). One
spends the least time in REMS, which repeats a few times in a normal human being [14].
REMS is characterized by rapid movement of the eyes, increased brain activity, and loss of
muscle tone; one often dreams during this stage. Some amount of NREMS is necessary for the
appearance of REMS. Therefore, in the absence of NREMS, REMS does not appear. Hence,
loss of NREMS is practically comparable to total sleep (NREMS + REMS) loss; thus, often one
studies the effect and functions of REMS and its loss [15,16].

REMS is postulated to perform the housekeeping functions of the brain and thus,
maintains brain excitability, the fundamental property of the brain [17]. It is highest in
newborn babies and gradually reduces with aging which signifies its importance in brain
development and maturation. The quantity of REMS reduces with age, however, it is never
absent in life [14,18]. Noradrenaline (NA) is one of the key bio-molecules whose level is
lowest during REMS [19] and increases upon sleep loss, particularly during REMS loss, and
it induces several REMS loss associated acute and chronic effects [19,20]. The release of NA
from locus coeruleus (LC) neurons is modulated by gamma-amino butyric acid (GABA) for
the regulation of REMS.

It has been proposed that in evolution, neuronal circuitry in the brain and the REMS
came into existence possibly to maintain brain NA at optimum level and to protect the
antioxidant compromised organ, the brain, from constant oxidative onslaught [21,22]. NA
is known to increase arousal and alertness and promote vigilance in higher vertebrates;
however, at elevated levels, it is known to induce multiple abnormalities at behavior and
cellular levels including restlessness, anxiety, abnormal neuronal morphology, oxidative
stress, and apoptosis [23–25]. The selective deprivation of REMS causes a significantly
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increased level of NA, which has been consistently studied and reported [19,24,26]. It
has been shown that at a relatively lower level, NA exerts neuroprotection, while it is
destructive at a higher concentration [25]. Combining this knowledge, it has been proposed
that in evolution, REMS evolved to maintain the optimum level of NA in the brain as a
normal physiological protective phenomenon [20].

As a signaling molecule, NA originated as octopamine in groups of neurons in ganglia of
invertebrates, e.g., in Echinodermata, Mollusca, and Crustacea [27,28] and it is found to perform
comparable functions as it does in vertebrates, although effects of its elevated levels in inverte-
brates are yet to be studied. Additionally, resembling REMS in vertebrates [29,30], REMS-like
state has also been reported in several invertebrates [31,32]. Thus, the diversity and com-
plexity of REMS has functional and evolutionary significance relating to species-specific
patterns and emergence across development including the regulation of neurotransmitter
(particularly NA) levels to maintain health and survival. In addition to NA-ergic neurons,
cholinergic, GABA-ergic neurons are also involved in REMS regulation, while dopamin-
ergic, orexinergic, and other neurons play a modulatory role [15]. The ventral portion of
the sublaterodorsal nucleus of pons contains spinally projecting neurons whose activation
induces motor atonia associated with REMS. Activation of the orexin-ergic neurons in the
perifornical area has been reported to facilitate waking and reduce REMS. These neurons
send dense projections to LC and activate the LC neurons to increase and decrease waking
and REMS, respectively [33].

Sleep (including REMS) is considered an important modulator of immune response
and its loss increases the susceptibility of an organism to infectious diseases [34,35]. NA
is also reported to modulate the immune system [36,37] and plays a significant role in
controlling the vulnerability to different types of infections [36]. Inflammatory responses
can also be expressed due to disruptions of homeostatic processes as well as that of sleep [8].
Inflammation is often amongst the first physiological response of the body exposed to a
challenge; the response may be acute or chronic. The former includes thermoregulatory,
circulatory, cardio-vascular changes, while the latter includes sustained humoral changes.
Both the acute as well as the chronic changes may be modulated by NA, which in turn is
physiologically maintained by REMS. In recent days, COVID has affected humans across
the globe and we are yet to understand its mechanism of action. Notwithstanding, it
has been observed that COVID induces neuroinflammation [38] and many acute phase
responses, e.g., increase in C-reactive protein (CRP), an acute phase response protein [39],
IL6 [40], ferritin [41], ceruloplasmin [42], high fever [43], etc. In addition, isolated studies
have reported that most of these factors might be modulated by NA [44–51]. Many patients
have reported suffering from post-COVID symptoms much later after the classical COVID
symptoms have subsided, e.g., cognitive and memory deficiencies [52], disturbed sleep [53],
etc. We propose that it may be worthwhile to systematically correlate the sleep patterns
and NA level in the COVID patients and their symptomatic treatment might bring much
desirable results, at least in some cases.

In this review, we elaborate how sleep loss/disturbances, particularly REMS and its
loss modulates immune system. Further, as REMS and its loss significantly modulates
NA and it is responsible for many of the associated disorders and symptoms, we will
emphasize how REMS loss-associated elevated NA modulates the immune responses.

2. Relationship between Sleep and Immune Function

Sleep is an essential physiological phenomenon present in species higher in the evo-
lution. Although we are yet to completely unravel why we sleep, it is known that sleep
conserves energy and adjusts the physiological processes to the challenges of the environ-
ment to maintain homeostasis in a living system [54]. Directly or indirectly, sleep affects or
gets affected by most of the physiological processes controlled by the brain. In addition to
this, sleep modulates several other physiological processes such as neuroplasticity, memory
formation, energy maintenance, neuroprotection, etc. Studies over the past two decades
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have made a strong argument in favor of a bidirectional relationship between sleep and the
immune system [35].

Sleep deprivation studies have reported a compromised immune functions and under-
or over-secretion of cytokines [55]. Additionally, immune system regulators modulate
different stages of sleep. The amount of time spent in NREMS increases, while REMS is
reduced in cases of infections [56]. Shift workers and students studying overnight com-
promising sleep time have been seen to have increased propensity to suffer from common
cold or flu, which suggests that sleep loss possibly enhances susceptibility to infections [13].
REMS loss affects several interleukins (ILs), neuronal structural proteins, and apoptosis
in the brain [23,57], and initiates acute phase response proteins [58]. During normal sleep,
circulating levels of IL-6 become more pronounced with an increase during REMS and
decrease during NREMS [59]. Sleep deprivation experiments have shown that early-night
sleep loss leaves IL-6 levels relatively unchanged, while late-night sleep deprivation is
associated with under-secretion of IL-6; total sleep deprivation also diminishes the night-
time IL-6 release by about half [60]. These suggest that IL-6 levels remain low during the
early night, a period dominated by NREMS, while its levels increase during late night
mostly during the REMS dominated period. Over-secretion of IL-6 levels has been observed
in extremely long duration of sleep [61]. Daytime sleepiness and fatigue have also been
associated with higher levels of IL-6. Therefore, it may be inferred that optimum sleep is
necessary to maintain the IL-6 levels in plasma.

Tumor necrosis factor-α (TNF-α), which is released by microglia in the brain, has been
shown to modulate sleep [62]. Administration of TNF-α inhibitors leads to an upsurge in
REMS duration and reduces NREMS time [62]. The amount of sleep was seen to be closely
related to number of white blood cells across 26 mammalian species. It was seen that those
with more sleep had more white blood cell count favoring better immuno-competency [35].
The decreased number and activity of phagocytes, natural killer cells, and the white blood
cells in the REMS-deprived animals suggest severely compromised or a weakened immune
system [63]. Another immunogenic factor, IL-1β, possesses the capacity to enhance NREMS
and reduces REMS. IL-1β acts directly on at least NA-ergic and serotonin-ergic neurons to
regulate sleep [56]. It inhibits wake-promoting neurons in the preoptic area of the brain,
an area known to regulate NREMS [64]. Inhibition of IL-1β by intracerebro-ventricular
injection of IL-1β antagonist induces waking and reduces NREMS substantially. The level
of CRP is known to increase during sleep disturbances [61]. However, although CRP is not
a known mediator of sleep, it is a major indicator of sleep disturbances.

IFNs primarily act as endogenous antiviral agents in our body and are secreted by
activation of interferon regulating factors. Both IFN-regulating factors and NF-κB are
stimulated by macrophages [65]. IFNs are also potent somnogenic substances like IL-
1 and TNF-α. Levels of IFNs increase upon sleep deprivation, like other cytokines as
discussed above. IFNs promote sleep by stimulating IL-1 production [66], intracerebral and
intravenous injection of IFN-α and IFN-β increase slow wave sleep without a reduction in
REMS duration [67]. Thus, as discussed above, levels of various cytokines (IL-1β, TNF-α,
etc.) get modified during sleep (which includes REMS) or its loss and their over-expression
is usually considered as a sign of sleep disturbances. Therefore, there is enough convincing
evidence to support that sleep and immune response have interdependencies. However,
the mechanisms by which they influence each other are not completely understood.

3. Modulatory Role of Neurotransmitters on Immune Response

Neurotransmitters play a crucial role in maintaining sleep–wake cycles as well as
immunity. It has been found that acetylcholine can improve cellular immunity and elevates
early processes necessary for T-cell proliferation. In the central nervous system, acetyl-
choline has an immunoinhibitory function, while NA acts as an immunostimulatory [68].
GABA and acetylcholine have been shown to be effective anti-inflammatory regulators. For
instance, it has been shown that GABA blocks NF-κB and p38 MAPK signaling pathways,
thereby reducing the release of inflammatory cytokines [69]. GABA suppresses the reactive
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response of both astrocytes and microglia to the inflammatory stimulants, lipopolysac-
charide, and interferon-γ, by inhibiting induction of inflammatory pathways mediated
by NFκB and P38 MAP kinase. This causes decreased release of inflammatory cytokines
TNFα and IL-6 and an attenuation of conditioned medium neurotoxicity. Acetylcholine
inhibits cytokine production in the peripheral nervous system through the “cholinergic anti-
inflammatory reflex” by binding to muscarinic receptors in the brain [70,71]. A potential
reduction in GABA and acetylcholine release in the brain might encourage inflamma-
tory responses [72]. Thus, GABA-ergic and cholinergic neurons which are active during
REMS [15,19] contribute to maintenance of anti-inflammatory response during sleep.

The effects of cytokines and their signaling pathways on neurotransmitter systems
such as serotonin, NA, dopamine, and glutamate have gained attention. The acute and
sub-chronic effects of cytokines on the brain’s neurotransmitter systems are well docu-
mented [73]. Cytokines can affect neurotransmitter metabolism and potentially impair
neurotransmitter function through a variety of ways, particularly, affecting their synthesis.
For instance, IFN-α initiates a reaction that turns tryptophan into kynurenine, potentially
reducing the amount of serotonin available in the brain [74]. Tetrahydrobiopterin dis-
ruption is another way by which inflammatory cytokines might affect the production of
monoamine neurotransmitters. Tryptophan hydroxylase and tyrosine hydroxylase, the
rate-limiting enzymes for the synthesis of serotonin, dopamine, and NA, respectively,
require tetrahydrobiopterin as an important enzyme co-factor [72].

Inflammatory cytokines interact with serotonin and NA [56,75], and such interactions
hint at the possible link between inflammation and sleep. Cytokines known to affect sleep
include IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-13, IL-15, IL-18, TNFα, TNFβ, IFNα,
IFN-β, INF-γ, and macrophage inhibitory protein 1β [76,77]. IL-1 has been reported to
release serotonin and NA in the hypothalamus [78]. This serotonin then inhibits cholinergic
neurons and stimulates synthesis of IL-1, which inhibits wake-promoting neurons by en-
hancing the inhibitory effects of GABA and activating sleep promoting neurons in preoptic
area [64,78,79]. IL-lβ may directly affect the neurons in anterior hypothalamus, which is
supported by the presence of IL-lβ receptors on the neurons in the rat hypothalamus [80].
The possibility of IL-lβ activating neurons in other regions resulting into monoamine
release cannot be ruled out. IL-lβ elicits synthesis and release of corticotropin releasing
hormone in the median eminence near hypothalamus [81]. Direct infusion of corticotropin-
releasing hormone into LC increases central and peripheral levels of catecholamines and
their metabolites [82], possibly IL-l β enhances levels of NA in anterior hypothalamus by
mediating the activation of LC neurons.

Sleep loss may trigger or worsen the prognosis of many diseases. Unsurprisingly,
sleep disorders such as insomnia, or associated diseases e.g., narcolepsy, sleep-disordered
breathing, etc., exacerbate existing ailments by compromising the immune system [83,84].
Improper or sub-optimal functioning of the immune system leaves the body vulnerable
to many diseases. For instance, the role of cytokines has been strongly suggested in the
development of narcolepsy [83]. A recent meta-analysis shows that serum levels of IL-6 and
TNF-α were higher in all narcoleptic patients than in control patients [83,85]. As discussed
earlier, intracerebral administration of TNF-α induces NREMS in rats. Higher cytokine
levels may account for longer sleep hours in narcoleptic patients; however, the neuronal
mechanisms causing these changes are unknown. Increased inflammatory response during
infection with influenza virus has been linked to a variety of sleep dysfunctions. Daytime
sleepiness may be a typical symptom of many types of illness. It may be induced by or
associated with production of pro-inflammatory cytokines such as IL-1 and TNF-α [86].
The pathophysiology of the bilateral thalamic necrosis observed in Japanese infants with
influenza infection may also be influenced by an excessive cytokine release, or “cytokine
storm” [87]. According to a recent study, the H1N1 influenza virus affects sleep–wake
cycles in mice and causes narcolepsy-like abrupt sleep episodes. The brain of the infected
rats in this experiment had noticeably higher quantities of transcripts for TNF-α, IL-1, and
IFN- α, which are important for slow wave sleep recovery following sleep deprivation.
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Sleep loss can attenuate the immune response and a compromised immune system
can lead to fragmented sleep [85]. A crucial crosstalk exists between NA and inflammatory
cytokines during sleep disturbances. During sleep loss, the sympathetic nervous system
releases NA into primary and secondary lymphoid organs. The NA stimulates adrenergic
receptors in leukocytes and activates nuclear factor-κB (NF-κB) in the basal forebrain,
lateral hypothalamus, and cerebral cortex [85]. The activation of NF-κB stimulates the
secretion of IL-6 and TNF-α. As the circulating levels of cytokines increase, it can cause
neuro-inflammation and increases the risk of damaging neural tissue. Thus, as optimum
REMS is expected to maintain the brain level of NA, we propose that by maintaining
optimum levels of NA, REMS also maintains the optimum immune response. The crucial
interplay of microglia (immune cells of the brain), sleep (including REMS), and NA will be
elaborated in the next sections.

4. Microglia Activation and Noradrenergic System

The nervous system requires immune cells to fight foreign body invasion including
the pathogenic infection. This function is accomplished by microglia, which also play many
other roles in the central nervous system including elimination of apoptotic cells, synaptic
pruning, supporting neuronal survival, clearing debris, etc. [12]. Under healthy conditions,
cyto-morphologically, microglia possess long thin processes and a small cell body, useful
for debris clearance. However, upon exposure to inflammation, it becomes “activated” to
function as immune cells of the central nervous system and develop short, thick processes
and a larger cell body. They phagocytose the pathogens, release inflammatory mediators,
and regulate T-cell activity. A variety of neurotransmitter receptors are expressed on the
microglia which facilitate bidirectional communication between neurons and microglia. In
the following subsections, we review evidence supporting the neuromodulatory role of
NA in microglia activation and facilitating immune functions.

4.1. Role of NA in Microglial Activation

Recent reports suggest the role of NA as a key modulator of microglial activities.
Various types of adrenergic receptors (ARs) are present on microglia. However, interestingly,
it has been reported that although resting microglia primarily expresses β2 ARs, under
proinflammatory conditions they can express α2A ARs as well [88]. Activation of microglial
β2 ARs by NA downregulates the expression of proinflammatory genes [89], whereas α2A
activation upregulates proinflammatory cytokines. Therefore, depending on subtypes
of ARs, NA can activate or inhibit the microglia [90]. Microglial activation is inhibited
by pretreatment with β-AR blockers such as propranolol. Propranolol also increases
microglial process surveillance activity [91]. Moreover, NA inhibits nitric oxide production
from microglia and thus, attenuates free radical production. Thus, NA may modulate
sensitivity of microglia to respond to tissue damage, which holds therapeutic potential
against neurodegeneration (Figure 1).

Microglia under resting conditions may have constructive roles in surveillance, such
as debris clearance, pruning, remodeling, and functioning of synapse. However, activated
microglia may disturb the homeostasis and may appear to be self-destructive. Using
pharmacological and chemogenetic approaches, it has been shown that NA signaling
in awake mice suppresses microglial surveillance activity [92]. Thus, upon sleep loss
(including REMS loss), increased levels of NA can cause neuroinflammation by glial
activation, leading to neurotoxicity, loss of tissue integrity, and aggravated tissue damage
leading to impairment of brain functions [93]. The severity of loss of function depends on
quantity and quality of loss, chronicity of the condition(s), and effects of recovery.
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Figure 1. REMS maintains optimum NA levels in brain. During sleep (which also includes REMS)
loss, there is an increased NA release in the brain (Mehta et al., 2017) which mediates macrophages
and NK-cell activity. Increased macrophage activity leads to increased cytokine levels (IL-6, TNF-α,
IL-1β) via NF-κB signaling resulting in inflammation (Sugama & Kakinuma, 2021; Sugama et al.,
2019). Both increased cytokine levels and noradrenaline provide favorable conditions for microglial
activation (Liu et al., 2019). Activated microglia leads to attenuated glymphatic activity (Benveniste
et al., 2019; Leng et al., 2021), which elevates neuroinflammation and causes neurodegeneration.
Neuroinflammation-induced cytokines further inhibit sleep (Okun et al., 2004; Kheirandish-Gozal &
Gozal, 2019).

The role of microglia in neurodegenerative diseases viz. Alzheimer’s disease (AD)
and Parkinson’s disease is of late gaining global attention. Microglia are activated by
amyloid beta (Aβ) accumulated in AD, and that produces IL-1 and TNF-α. Normally,
this mechanism helps clear the Aβ and τ-protein aggregates by microglial phagocytosis
and cytokine activity which maintains homeostasis. However, if the formation of plaques
and tangles increases, significantly overwhelming the microglial response, AD sets in.
Furthermore, if there is overproduction of cytokines, it leads to neurotoxicity and (neuronal
and glial) cell death [94]. Thus, NA plays a key role on one hand by facilitating microglial
activation and clearance of Aβ peptide by phagocytosis, and on the other hand, it prevents
Aβ-induced increase in proinflammatory cytokine release [95]. As the degeneration causes
loss of NA-ergic neurons, the protective care of NA is withdrawn, resulting in the loss of
neuron–neuron and neuron–glia communication, microgliosis, and defective Aβ clearance
leading to neurodegenerative diseases, e.g., AD [96]. This view may be supported by
the fact that a low dose of NA favors neuronal survival and growth, while its high dose
facilitates neuronal degeneration [23].
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As NA levels tend to increase, REMS appears to bring the level of NA to protective
levels and homeostasis is maintained [20]. In case of loss of sleep (including REMS loss), an
initial small increase in NA activates microglia to exert protection. However, extended loss
of REMS causes significant increase in NA, which is likely to affect many other systems
causing damage to the brain. We propose that such significant increase in NA level in
the brain might be responsible for behavioral changes particularly under chronic sleep
disturbed conditions (Figure 2). Thus, dose dependent effect of NA on neuronal surviv-
ability supports our contention; the molecular action of NA on microglia in evolution
needs further study. Based on such study, it has been proposed that REMS has evolved to
maintain the brain level of NA [21].
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Figure 2. REMS loss-induced elevated brain NA causes many associated symptoms, such as immune
dysfunctions, reduced waste clearance, etc., which can be ameliorated by preventing NA action
(Sugama & Kakinuma, 2021; Sugama et al., 2019; Liu et al., 2019). We propose that maintaining opti-
mum brain NA level is necessary for healthy living. We coined and introduced the term Hypnoclean
to explain the overall functioning.

4.2. Possible Effect of NA on the Glymphatic System through Microglia

The glymphatic system is a recently identified glia-dependent waste clearance pathway
in the brain and constitutes the brain’s “front end” waste drainage system [97]. It is a
transportation system that plays a significant role in the clearance of debris produced in the
brain, including Aβ. Impaired glymphatic clearance has been linked to neurodegenerative
diseases (Figure 1). The process of debris clearance occurs when the rapidly entering
cerebrospinal fluid in the peri-arterial space exchanges with the interstitial fluid in the
surrounding parenchyma. This interstitial fluid flows towards the peri-venous space,
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and the final exchange of debris-filled fluid occurs before drainage into the lymphatic
vessels [90]. The glymphatic system has been closely linked to the sleep–wake cycle. As
waste generation is a continuous process, its disposal is executed by a normal physiological
process. Normal sleep is one such process that helps maintain the brain waste drainage
across the lifespan of an individual [98]. As such, lifestyle and factors affecting sleep
cycle such as diet, alcohol intake, exercise, meditation, temperature, light, sleep posture,
intermittent fasting, and chronic stress modulate glymphatic clearance. Its functioning has
been found to differ not just in sleep and wakefulness, but also during specific stages of
sleep [97]. During sleep, the interstitial fluid volume fraction increases to 23% as compared
to 14% during wakefulness [99]. This was closely related to the faster glymphatic transport
and waste clearance during sleep in rodents [100]. It has also been observed that glymphatic
activity varies with body positions. A supine or lateral decubitus position has positive
effects on debris clearance by higher glymphatic activity, whereas a prone position seems
to be negatively associated with debris clearance [98].

Recent studies suggest that during sleep, the glymphatic system operates through
microglial activation. Aquaporin-4 (AQP-4) is a major water channel in the central nervous
system and AQP-4 is essential in exchanging cerebrospinal fluid and interstitial fluids in
the perivascular space. AQP-4 is significantly expressed in astrocytes and microglia; hence,
their actions may be instrumental for adequate functioning of the glymphatic system during
sleep. During dementia-associated sleep loss, an age-related decline in AQP-4 polarization
has been shown. Mice with a dysfunctional AQP-4 channel were not able to clear Aβ

efficiently [90,97]. The basis for sleep-induced enhancement of glymphatic transport
appears to be closely twined with NA-ergic [101] neuronal activity. NA release during
wakefulness suppresses glymphatic clearance by decreasing the amount of interstitial
space. Blocking NA release expands the interstitial volume, enhances glymphatic clearance
that boosts removal of metabolic waste products from the brain, and protects the brain.
Another study has shown that mice treated with a combination of dexmedetomidine (NA
antagonist) and isoflurane is more effective in increasing glymphatic activity than treating
them with only isoflurane. Under normal condition, as NA level is lowest in the brain
during REMS, it is likely that glymphatic system would be maximally effective during this
stage. Such correlations underline the importance of REMS in maintaining normal brain
functioning, primarily by clearing debris (waste). Because of this, we introduce a term for
function of sleep as “Hypnoclean”, i.e., to clean the brain fluid during sleep.

5. Conclusions and Future Direction

Sleep, particularly REMS, has evolved as a fundamental, protective mechanism crucial
for maintenance of normal brain and immune functions, at least in species higher in evolution,
including humans. During sleep, the fluid in the brain is filtered to remove the waste. We
coined and introduced this function of sleep as “Hypnoclean”. REMS is likely to mediate
its action by maintaining the level of NA in the brain. Low level of NA exerts a beneficial
effect on the antioxidant compromised organ, the brain, while high dose is damaging. The
NA acts both on neurons and glia, and microglia as well, and mediates its action in a dynamic
manner. Therefore, maintaining sleep hygiene and sleep discipline is important to enjoy
normal healthy living. As a corollary, we propose that in diseased condition, caregivers need
to pay additional attention to record the sleep profile of the patient and attempt to bring them
to normal level in addition to prescribing disease-specific medicines.
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CRP C-reactive protein
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