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Abstract: Depression and alcohol misuse, frequently comorbid, are associated with altered reward
processing. However, no study has examined whether and how the neural markers of reward process-
ing are shared between depression and alcohol misuse. We studied 43 otherwise-healthy drinking
adults in a monetary incentive delay task (MIDT) during fMRI. All participants were evaluated with
the Alcohol Use Disorders Identification Test (AUDIT) and Beck’s Depression Inventory (BDI-II)
to assess the severity of drinking and depression. We performed whole brain regressions against
each AUDIT and BDI-II score to investigate the neural correlates and evaluated the findings at a
corrected threshold. We performed mediation analyses to examine the inter-relationships between
win/loss responses, alcohol misuse, and depression. AUDIT and BDI-II scores were positively
correlated across subjects. Alcohol misuse and depression shared win-related activations in fron-
toparietal regions and parahippocampal gyri (PHG), and right superior temporal gyri (STG), as
well as loss-related activations in the right PHG and STG, and midline cerebellum. These regional
activities (β’s) completely mediated the correlations between BDI-II and AUDIT scores. The findings
suggest shared neural correlates interlinking depression and problem drinking both during win and
loss processing and provide evidence for co-morbid etiological processes of depressive and alcohol
use disorders.

Keywords: alcohol misuse; depression; comorbidity; reward processing; neural markers; monetary
incentive delay task; fMRI; AUDIT; BDI-II; mediation analysis

1. Introduction

Depression and alcohol misuse are two leading, comorbid, causes of disability [1–5].
Individuals with depression are more likely to drink to cope with negative mood, elevating
the risks in developing an alcohol-use disorder (AUD) [3,6]. Drinkers, especially those with
AUDs, often experience depression [7], which in turn leads to more drinking [8,9]. Indeed,
co-occurring depression and alcohol misuse are known to dispose individuals to greater
severity and more frequent relapse of both conditions [10]. In particular, investigators
have suggested a causal pathway whereby alcohol dependence increases the risk of major
depression rather than vice versa [1]. Specifically, with alcohol use and depression symptom
severity quantified at baseline and 1-year follow-up, the structural equation model with
AUD leading to major depression showed the best fit [11]. However, it remains unclear
whether this is also true of drinkers with mild to moderate alcohol use severity.

Reward delivers pleasure and drives motivated behaviors. Investigators have em-
ployed the monetary incentive delay task (MIDT) or card-guessing task to identify the
neural responses to win and loss [12,13]. Individuals with depression relative to controls
demonstrated altered reward-related activations [14–16]. For instance, blunted striatal
activity in response to monetary reward and loss has been reported in patients with depres-
sion [17–19] and anhedonia [20]. Ventral striatal hypoactivity during anticipation of win
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and loss was associated with the severity of depression [21]. However, the findings seemed
less consistent for the orbitofrontal cortex (OFC), anterior cingulate cortex, and middle
frontal gyrus, with greater activation reported for depressed vs. non-depressed individuals
in some studies [22,23] but the opposite in others [24–28]. A meta-analysis suggested that
individuals with depression may be characterized by less ventral striatum (VS) and higher
OFC responses to reward and higher amygdala response to punishment [14].

Altered neural activities during reward and punishment processing have also been
reported for AUD, although the findings likewise varied. Patients with AUD vs. controls
showed reduced VS activation during anticipation of both win and loss in the MIDT [29–31]
and lower activations in the VS, lateral OFC, medial prefrontal cortex (mPFC), and dor-
solateral PFC during win vs. loss in a card-guessing task [32]. In addition, patients with
AUD relative to controls showed higher activations in the VS, anterior insula, and mPFC
during win outcome and in the insula and lateral frontal cortex during loss outcome in
the MIDT [32–34], higher VS response to loss outcome in a reward-guessing task [35],
and lower superior/middle frontal cortical responses to loss outcome in a risk-taking
task [36]. Other studies showed higher activations in the VS, anterior cingulate cortex, and
paracentral and postcentral gyri during anticipation of reward in patients with AUD as
compared to controls [37] and no differences in activation to reward outcome between
patients with AUD and controls [32,37], or between those with and without a family history
of alcoholism [38].

In summary, many studies have reported altered regional brain activities during
reward/punishment processing in both depression and AUD. However, the findings
varied substantially across studies, even for the VS, a hub of the reward circuit. Differences
in MIDT paradigms [39] and clinical heterogeneity may account for the discrepancy in
findings. Further, it is far from clear, based on these findings, whether alcohol misuse
and depression shared neural correlates during reward and punishment processing. Thus,
it would seem important to evaluate both depression and drinking severity in the same
cohort of individuals.

In the current study, we aimed to investigate the neural correlates of reward and
punishment processing shared between problem drinking and depression in a sample of
largely nondependent alcohol drinkers. We performed whole-brain regressions to examine
regional responses to win and loss outcomes in an MIDT each in association with the
severity of problem drinking and with depression. Further, we employed mediation
analyses to evaluate the inter-relationships between the shared neural correlates, drinking,
and depression severity. We hypothesized that the shared neural correlates would mediate
the relationships between problem drinking and depression.

2. Methods
2.1. Subjects

Forty-three adult alcohol drinkers (sixteen women; 23–74 or 45.4 ± 12.9 years of age)
participated in this study. All subjects were otherwise healthy with no current medical
conditions or use of prescription medications. None reported a history of head injury or
neurological illness. Other exclusion criteria included current or past Axis I Disorders,
including dependence on a psychoactive substance (except alcohol), according to DSM-
IV [40]. The Human Investigation Committee at the Yale University School of Medicine
approved the study (protocol code 0906005272). All subjects gave written informed consent
prior to participation.

2.2. Assessments, Monetary Incentive Delay Task (MIDT), and Imaging Protocol

All participants were evaluated with the Alcohol Use Disorders Identification Test
(AUDIT), Beck’s Depression Inventory (BDI-II), and the Fagerström Test for Nicotine
Dependence (FTND). A 10-item instrument to screen for harmful drinking, the AUDIT,
assesses the frequency of alcohol consumption, dependence, and associated harm. Each
item is scored from 0 to 4 and the total score ranges from 0 to 40, with a higher score
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indicating greater severity of problematic alcohol use [41,42]. Five of the forty-three
participants with the highest AUDIT scores (all > 14) also met criteria for alcohol abuse. The
BDI-II is a 21-item assessment of the presence and severity of depression symptoms within
the prior 2 weeks, with each item scored 0 to 3. A total score of 0 to 13, 14 to 19, 20 to 28,
and 29 to 63 indicates minimal, mild, moderate, and severe depression, respectively [43–45].
Three of the forty-three participants scored > 19 and had moderate severity of depression.
The FTND assesses the severity of cigarette consumption, compulsion to smoke, and
physical dependence on nicotine, with a range of 0–10. A higher FTND score indicates
greater severity of nicotine dependence [46]. Each subject completed two 10-min runs of
the MIDT (Figure 1A), as described in our previous studies [47,48]. Across subjects, they
completed an average of 184 ± 4 (mean ± SD) trials.
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Figure 1. (A) Monetary incentive delay task: Each trial starts with a bet (a dollar, a cent, or no money).
After a randomized interval of 1–5 s, a target box is presented and disappears after a response window.
Subjects are requested to make a response as quickly as possible to collect the money (win) before it
disappears, following by feedback that indicates the amount of money won (in red) or lost (in blue).
(B) Accuracy rate and (C) RT of trials (mean ± SD).

2.3. Imaging Data Preprocessing and Group Analyses

Briefly, brain images were collected using multiband imaging (multiband factor = 3)
with a three-Tesla MR scanner (Siemens Trio, Erlangen, Germany). Data were analyzed with
Statistical Parametric Mapping (SPM8, Wellcome Department of Imaging Neuroscience,
University College London, UK), including realignment, slice timing, co-registration, seg-
mentation, normalization, and smoothing, as in our earlier studies [39,48]. We examined
event-related BOLD signals in a single model focusing on the feedback or outcome phase of
win or loss processing, as described in our previous study [47]. We performed one-sample
t tests of win vs. nil and loss vs. nil. To investigate the neural correlates of AUDIT and
BDI-II, we conducted whole-brain linear regressions of these contrasts on AUDIT and
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BDI-II, separately, with age, sex, and FTND scores as covariates. All models were evaluated
with a threshold combining voxel p < 0.001, uncorrected, and cluster p < 0.05 family-wise
error (FWE), corrected, following current reporting standards. Voxels with peak activity
were indicated with Montreal Neurological Institute (MNI) coordinates. We performed
inclusive masking to identify the neural correlates shared between AUDIT and BDI-II for
win vs. nil and loss vs. nil, respectively.

2.4. Mediation Analyses

We examined how activations of the regions of interest, AUDIT and BDI-II scores
were inter-related with mediation analyses [49], as described in our prior work [50]. The
mediation test was performed by employing three regression equations [49].

Y = i1 + cX + e1

Y = i2 + c′X + bM + e2

M = i3 + aX + e3

where a, b, c′, and c represent path coefficients, and variable M is a mediator of the correla-
tion X→ Y. The significant paths a and b, as well as (c—c′), indicate that X→ Y is mediated
by M. Moreover, if the path c′ is not significant, then X→ Y is completely mediated by M.

3. Results
3.1. Clinical Characteristics and Behavioral Performance

Table 1 summarizes the demographic and clinical characteristics for men and women
separately. The mean FTND score was <1, suggesting a largely non- or light-smoking
sample. No sex differences were noted for age, years of education, AUDIT, BDI-II, or FTND
score; thus, we combined men and women in data analyses. Figure 1B,C show the accuracy
rate and reaction time (RT) of dollar, cent, and nil trials. The accuracy rates were close
to 67%, suggesting the success of the staircase procedure. Across subjects, the AUDIT
score was significantly and positively correlated with the BDI-II score without (r = 0.555,
p < 0.001) or with (r = 0.560, p < 0.001; Figure 2) age, sex, and FTND as covariates. The
AUDIT or BDI-II score did not show a significant correlation with either accuracy rate or
with RT of dollar, cent, and nil trials (p’s ≥ 0.062 without covariates; p’s ≥ 0.109 with age,
sex, and FTND as covariates), or the differences of dollar/cent vs. nil in either accuracy rate
or RT (p’s ≥ 0.338 without covariates; p’s ≥ 0.308 with age, sex and FTND as covariates).

Table 1. Demographic and clinical characteristics in men and women.

Men (n = 27) Women (n = 16) t p

Age (years) 44.9 ± 11.3 46.4 ± 15.6 −0.34 0.71
Education (years) 15.0 ± 3.6 14.8 ± 3 0.27 0.79

AUDIT score 7.8 ± 9.3 4.9 ± 4.8 1.15 0.26
BDI-II score 5.0 ± 8.7 7.7 ± 8.8 −0.96 0.34
FTND score 0.4 ± 1.4 0.8 ± 2.2 −0.63 0.53

Note: Values of mean± SD; AUDIT: Alcohol Use Disorders Identification Test; BDI-II: Beck’s Depression Inventory;
FTND: Fagerström Test for Nicotine Dependence.
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Figure 2. Scatter plot of AUDIT and BDI-II scores. Note that the standardized residual scores after
controlling for age, sex, and FTND score as covariates are shown here. Dashed lines represent 95%
confidence intervals of the mean regression (solid line). Crosses represent individual data points.

3.2. Brain Activations of Win vs. Nil and Loss vs. Nil

In one-sample t-tests, we evaluated regional activations to win vs. nil and loss vs. nil
across all subjects. The results are shown in Supplementary Figure S1 and summarized
in Supplementary Table S1. Compared to nil, win trials showed higher activations in the
bilateral caudate, anterior cingulate cortex, bilateral lingual gyri, and cerebellum; loss trials
showed higher activations in the bilateral lingual gyri, anterior cingulate cortex, bilateral
insula, bilateral precentral gyri, and cerebellum.

3.3. Whole Brain Regressions on AUDIT and BDI-II Scores

We performed whole-brain regressions of win > nil (Figure 3A,B; Table 2) and
loss > nil (Figure 4A,B; Table 2) against AUDIT and BDI-II scores, separately, with age, sex,
and FTND score as covariates across subjects. We identified the clusters that overlapped
between AUDIT and BDI-II regressions (Figures 3C and 4C). For win > nil, the overlapping
clusters included bilateral parahippocampal gyrus, superior frontal gyrus, and posterior
cingulate cortex/precuneus, left inferior parietal lobule and inferior temporal gyrus, and
right middle temporal gyrus, putamen, and insula. For loss > nil, the overlapping clusters
included bilateral hippocampus/parahippocampal gyrus, superior frontal gyrus, mid-
cingulate cortex, cerebellum, and right amygdala, middle temporal gyrus, thalamus, and
inferior parietal lobule.
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with age, sex, and FTND score as covariates with threshold of voxel p < 0.001 in combination with
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of (A,B). Warm/cool colors indicate positive/negative correlations. L: left; R: right; CBL: cerebellum;
IFGtri: inferior frontal gyrus pars triangularis; INS: insula; IPL: inferior parietal lobule; ITG: inferior
temporal gyrus; MFG: middle frontal gyrus; MTG: middle temporal gyrus; OC: occipital cortex; Pcu:
precuneus; PHG: parahippocampal gyrus; PoCG: postcentral gyrus; PUT: putamen; rACC: rostral
anterior cingulate cortex; SFG: superior frontal gyrus; SMA: supplementary motor area.

Table 2. Regional activations to win > nil and loss > nil in correlation with AUDIT and BDI-II scores
with age, sex, and FTND score as covariates.

Volume
(mm3) Peak Z

MNI Coordinate (mm)
Side Identified Brain Region

x y z

Regression with AUDIT
Positive with Win > Nil

100,845 5.34 −15 29 43 L/R DLPFC, SFG, Precentral G, SMA
4.84 36 −31 40 L/R IPL, PCC, Precuneus

49,815 5.27 −21 −37 −11 L Hippocampus, Amygdala
5.21 54 −46 −5 R Temporal G

6669 4.48 6 41 13 L/R ACC
2862 4.06 −9 −7 −11 L/R Hypothalamus
2511 3.85 −33 32 4 L IFG

Negative with Win > Nil
4266 4.06 6 −70 −35 L/R CBL

Positive with Loss > Nil

68,796 5.97 54 −31 −8 R Temporal G, Hippocampus, Amygdala,
Hypothalamus

5.29 −12 −58 −20 L CBL
84,375 5.10 18 −46 40 L/R Precuneus, DLPFC, MPFC, MCC

4.90 60 −55 31 R IPL, Precentral G,
3078 4.49 −33 11 −8 L Insula
4806 4.30 −33 −1 40 L Precentral gyrus
2538 4.30 9 59 −5 R VMPFC

Negative with Loss > Nil
None

Regression with BDI
Positive with Win > Nil

54,324 4.95 21 −7 −17 R Hippocampus, Amygdala, Hypothalamus
4.76 45 −43 −14 R Temporal G

33,696 4.63 −6 −40 40 L Precuneus, PCC, DLPFC, SFG, SMA
6048 4.57 57 −61 34 R IPL
4401 4.29 −42 −40 34 L IPL
6399 4.26 −12 23 40 L SFG

Negative with Win > Nil
None

Positive with Loss > Nil
10,665 4.89 −18 −10 −20 L Hippocampus, Amygdala, Temporal G
25,326 4.81 24 −10 −14 R Hippocampus, Amygdala, Temporal G, CBL
6399 4.21 63 −46 37 R IPL
4320 4.08 21 59 22 R SFG
4158 3.84 −9 −7 34 L MCC
2403 3.67 −6 −37 40 L MCC

Negative with Loss > Nil
None

Note: Results were evaluated at voxel p < 0.001 and cluster-level p < 0.05, FWE corrected; L: left; R: right; G:
gyrus; Cerebellum: CBL; DLPFC: dorsolateral prefrontal cortex; SFG: superior frontal gyrus, IPL: inferior parietal
lobule; PCC: posterior cingulate cortex; ACC: anterior cingulate cortex; IFG: inferior frontal gyrus; MPFC: medial
prefrontal cortex; MCC: mid-cingulate cortex; VMPFC: ventromedial prefrontal cortex; SMA: supplementary
motor area.
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Figure 4. Regional activations to loss vs. nil in correlation with (A) AUDIT and (B) BDI-II score with
age, sex, and FTND score as covariates at voxel p < 0.001 in combination with cluster-level p < 0.05
FWE corrected. The brain regions are summarized in Table 2. (C) ROIs overlapped of (A,B). L: left; R:
right; AMY: amygdala; CBL: cerebellum; IFGorb: inferior frontal gyrus pars orbitalis; HIP: hippocam-
pus; IPL: inferior parietal lobule; ITG: inferior temporal gyrus; MCC: mid-cingulate cortex; MFG:
middle frontal gyrus; MTG: middle temporal gyrus; OC: occipital cortex; PHG: parahippocampal
gyrus; SFG: superior frontal gyrus; SMA: supplementary motor area; THA: thalamus.
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3.4. Mediation Models

The AUDIT and BDI-II scores were positively correlated, as shown earlier. As expected,
the activation (β) of overlapping clusters was each positively correlated with the AUDIT
score (r = 0.66, p < 0.001 for win > nil and r = 0.65, p < 0.001 for loss > nil) and BDI-II score
(r = 0.67, p < 0.001 for win > nil and r = 0.64, p < 0.001 for loss > nil). Thus, we conducted
mediation analyses to examine the relationships amongst the βs, AUDIT, and BDI-II scores.
We tested all six models for each contrast. The results showed that the β of win > nil
and of loss > nil each completely mediated the relationship between BDI-II and AUDIT
(Figure 5). None of the other models showed significant mediation at a corrected threshold
p < 0.05/6 = 0.0083 (Table 3).
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of the shared ROIs completely mediated the correlation between BDI-II (in blue) and AUDIT (in
yellow) scores. All six models were assessed for each contrast and evaluated at a corrected threshold
p = 0.05/6 = 0.0083. The p values associated with mediation are for the path “a × b” (see Section 2).
The statistics of all models are summarized in Table 3.

Table 3. Mediation models of AUDIT, BDI-II score, and brain activation (β) each for win > nil and
loss > nil.

p Values

X M Y X→M M→ Y X→ Y Mediated X→ Y Mediation

Win > Nil
AUDIT BDI Brain <0.001 0.006 <0.001 <0.001 0.021
Brain BDI AUDIT <0.001 0.190 <0.001 <0.001 0.204

AUDIT Brain BDI <0.001 0.006 <0.001 0.190 0.013
BDI Brain AUDIT <0.001 <0.001 <0.001 0.190 0.005 *

Brain AUDIT BDI <0.001 0.190 <0.001 0.006 0.201
BDI AUDIT Brain <0.001 <0.001 <0.001 0.006 0.009

Loss > Nil
AUDIT BDI Brain <0.001 0.010 <0.001 <0.001 0.029
Brain BDI AUDIT <0.001 0.149 <0.001 <0.001 0.166

AUDIT Brain BDI <0.001 0.010 <0.001 0.149 0.020
BDI Brain AUDIT <0.001 <0.001 <0.001 0.149 0.006 *

Brain AUDIT BDI <0.001 0.149 <0.001 0.010 0.162
BDI AUDIT Brain <0.001 <0.001 <0.001 0.010 0.009

Note: The mediation models were evaluated at a corrected p = 0.05/6 = 0.0083. * p < 0.0083. A significant
mediation and non-significant mediated X → Y suggest that M completely mediates the correlation of X and Y.

4. Discussion

We identified regional brain responses to monetary win and loss outcomes in corre-
lation with both AUDIT and BDI-II scores in non-dependent drinkers. Individuals with
higher AUDIT and BDI-II scores showed greater activation to wins in bilateral fronto-
parietal cortex, precuneus/posterior cingulate cortex, and right temporal cortex. Individu-
als with higher AUDIT and BDI scores also showed higher activation to losses in bilateral
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(but predominantly right-hemispheric) hippocampus/parahippocampal gyrus, cerebel-
lum, right temporal and inferior parietal cortex, and posterior cingulate cortex. These
regional activities completely mediated the relationship between depression and alcohol
use severity. The findings highlight shared neural correlates of reward and punishment
processing between depression and alcohol misuse and may help research of the etiologies
of comorbid depression and AUD. We highlight the major findings for discussion.

4.1. Depression and Alcohol Misuse Shared Neural Responses to Monetary Win and Loss

A wide array of cortical and subcortical regions was involved during win and loss
processing in link with depression and problem drinking. Most notable among these
regions are bilateral hippocampi/parahippocampal gyri (HC/PHG), which are shared for
both contrasts—win vs. nil and loss vs. nil—although the latter also involved the right
amygdala in activities shared between depression and alcohol misuse. The HC/PHG is
best known for its function in memory encoding and retrieval, and high-arousing, salient
events consistently engage the HC/PHG [51,52]. Relative to nil, both win and loss trials are
more salient; thus, the current findings suggest elevated HC/PHG responses to saliency
both in association with the severity of depression and alcohol misuse. These findings are
broadly consistent with previous reports of HC/PHG structural and functional changes in
depressive and anxiety [53–55] and alcohol use [56–58] disorders. Studies of the etiological
mechanisms of depression have emphasized ill-adaptive HC/PHG circuit responses to
stress [59]. An imaging literature has associated with HC/PHG circuit dysfunction in
emotional and reward processing [60–62]. Here, we demonstrated that depression and
alcohol misuse both implicate the HC/PHG in heightened responses to wins and losses—
salient stimuli irrespective of their valence.

The shared correlates that appeared to be specific to win and loss processing are the
posterior cingulate cortex and precuneus (PCC/Pcu) and mid-cingulate cortex (MCC),
respectively. Although less of a focus in human studies of reward processing, the PCC
is implicated in post-decisional reward signaling in neuronal recordings from behaving
monkeys [63]. Notably, the PCC/Pcu did not show significantly higher responses to
win vs. nil in the one-sample t test (Supplementary Figure S1), suggesting this default
mode network region solely as a correlate of individual variation in depression and alcohol
misuse. In contrast, a hub of the limbic motor circuit, the MCC responds to learning
of aversive consequences and behavioral avoidance [64,65]. The MCC along with other
midline brain regions, including the supplementary motor area, showed significantly
higher activation to loss vs. nil in the one-sample t test (Supplementary Figure S1). Thus,
individuals with more severe depression and alcohol misuse would engage the MCC
greater than the average extent, likely to support emotional motor processes of negative
reinforcement. Also notable is the rostral anterior cingulate cortex (rACC), which showed
higher responses to both win and loss vs. nil across subjects but only higher responses to
win vs. nil in correlation with AUDIT but not BDI-II score. The rACC is part of the saliency
and executive control circuit [66,67]; rACC responses to reward may potentially represent a
unique marker of alcohol misuse. These findings support studies of neuromodulation of the
ACC as a treatment of AUD [68,69]. More research is warranted to evaluate sub-regional
cingulate cortical responses to reward and punishment and how these responses may be
altered in depressive and alcohol use disorders [70].

4.2. Shared Neural Responses Mediated the Link of Depression and Alcohol Misuse

Across individuals, BDI-II and AUDIT scores were positively correlated, supporting
the comorbidity of depression and problem drinking even in non-dependent
drinkers [7,10,71–74]. Importantly, we observed shared brain activities in response to
reward and to punishment, and these activities completely mediated the relationships
between the severity of depression and alcohol misuse. Specifically, with correction for
multiple testing, the findings suggest that depression contributes to alcohol misuse through
the shared neural responses to monetary win and loss. As discussed in the Introduction,
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earlier studies have suggested individual differences in reward sensitivity as a risk factor of
both depression and alcohol misuse [75–77]. The current findings expand this literature by
showing evidence that depression contributes to alcohol drinking through brain activities
in response to reward and punishment. Notably, although only one of the mediation
models—depression→ β of win or loss→ problem drinking—showed significant, com-
plete mediation, the model problem drinking→ β of win or loss→ depression showed an
incomplete mediation effect with a p < 0.009. Given the small sample size of the study, it
remains to be seen whether the shared correlates may mediate the link of depression and
problem alcohol use bidirectionally.

4.3. Limitations of the Study and Future Directions

Several limitations need to be noted for the study. Firstly, the study comprised a
small sample and, though evaluated at a corrected threshold, the findings and particularly
those of regional responses shared between AUDIT and BDI-II regressions, need to be
replicated. For the same reason, we did not investigate potential sex differences in the
current findings or whether depression and alcohol misuse may be associated with shared
reduction in neural responses differentiating reward and punishment [78]. Secondly,
reward and punishment come in many forms. Thus, the findings should be considered
specific to monetary win and loss. It remains unclear whether or how neural processes
of other modalities of reward and punishment (e.g., social interaction and rejection) may
be shared in the etiological processes of depression and alcohol misuse. Lastly, although
the participants in the current study were largely non- or light smokers (mean FTND
score < 1), we cannot entirely rule out the effects of smoking on the current findings.
Studies of a larger sample and perhaps of individuals with varying levels of nicotine
dependence would be needed to address the effects.

Although the study focused on reward processing, depression and alcohol misuse
involve and may share other etiological processes, including fronto-limbic dysfunction
in impaired inhibitory control and emotion processing and learning [79–83] and altered
mitochondrial bioenergetics [84–86]. More studies are needed to evaluate the respective
and potentially interactive roles of these neural and biological mechanisms of depression
and alcohol misuse. Further, to the extent that these findings are considered specifically
for non-dependent drinkers, future studies may incorporate assessment of physical, social,
and cultural factors that may influence alcohol intake and the emotional context under
which individuals engage in use and misuse of alcohol and “alcohol-like” drinks [87,88].

5. Conclusions

To conclude, we showed a significant correlation between the severity of depression
and alcohol misuse in non-dependent drinkers. Neural responses to monetary wins and
losses both mediated the relationship between depression and problem drinking. Sug-
gesting shared etiological processes, these findings not only enhance our understanding
of the neural mechanisms associated with both psychiatric conditions but also provide
evidence for the importance of concurrent treatment of depression and alcohol misuse in
clinical populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12121689/s1, Figure S1: Regional activations to (A) Win
vs. Nil and (B) Loss vs. Nil. Color bars indicate voxel T values. Results were evaluated at voxel
p < 0.001 in combination with cluster-level p < 0.05 family-wise error (FWE) corrected. The clusters
are summarized in Supplementary Table S1. L: left; R: right; ACC: anterior cingulate cortex; AMY:
amygdala; CB: caudate body; CBL: cerebellum; dACC: dorsal ACC; IFGorb: inferior frontal gyrus
(pars orbitalis); INS: insula; IPG: inferior parietal gyrus; MCC: mid-cingulate cortex; mOFC: medial
orbitofrontal cortex; OC: occipital cortex; PCC: posterior cingulate cortex; PoCG: postcentral gyrus;
SMG: supramarginal gyrus; SPG: superior parietal gyrus; STR: striatum; TAL: thalamus; Table S1:
Regional activations to Win vs. Nil and Loss vs. Nil in the MIDT (n = 43).

https://www.mdpi.com/article/10.3390/brainsci12121689/s1
https://www.mdpi.com/article/10.3390/brainsci12121689/s1
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