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Abstract: Parkinson’s disease is characterized by motor and cognitive deficits that usually have an
impact on quality of life and independence. To reduce impairment, various rehabilitation programs
have been proposed, but their effects on both cognitive and motor aspects have not been systematically
investigated. Furthermore, most intervention is focused on lower limb treatment rather than upper
limbs. In the present study, we investigated the effect of 3-week upper limb vibratory stimulation
training on cognitive functioning in 20 individuals with Parkinson’s disease. We analyzed cognitive
(Montreal Cognitive Assessment, Trial Making Test, Digit Symbol, Digit Span Forward and Backward
and Alertness) and motor performance (Unified Parkinson’s Disease Rating Scale—part III; Disability
of the Arm, Shoulder and Hand Questionnaire) before treatment, at the end of treatment and one
month post treatment. After rehabilitation, a statistically significant improvement was observed
in terms of global cognitive status, attention, global motor functioning and disability. The results
suggest an impact of upper limb motor rehabilitation on cognition in Parkinson’s disease. Future
studies on neuromotor interventions should investigate their effects on cognitive functioning to
improve understanding of cognitive motor interaction in Parkinson’s disease.

Keywords: neuropsychological deficits; cognitive motor interference; motor treatment; movement
disorders; vibratory stimulation

1. Introduction

Parkinson’s disease (PD) is a neurological degenerative disease that leads to motor and
non-motor impairments. Motor aspects of PD include problems with gait, postural control
and tremors [1,2]. Furthermore, some people with PD (pwPD) present with cognitive
difficulties in executive function, memory and attention [3–5], affecting approximately 25%
of newly diagnosed patients [5,6]

Pharmacological interventions and deep brain stimulation treatment are not effective
in slowing or treating the progression of cognitive decline in pwPD [7,8]. Physical exercise
is a valid complementary therapy option not only to alleviate motor symptoms [9,10] but
also to exert a beneficial impact on cognitive impairment, especially in the early stage of
disease in healthy older adults [11–13]. Clinical and preclinical studies on animal and
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human models have highlighted multiple mechanisms by which physical activity may
improve brain function, with a consequent positive impact on both motor and cognitive
aspects in pwPD and healthy older rats [14–16]. Furthermore, some studies have suggested
that the neural networks underlying such cognitive processes may also play an important
role in motor manifestations and vice versa, highlighting the role of cognition in determin-
ing/influencing some motor symptoms [17,18]. A recent systematic review of randomized
controlled trials [13] reported positive effects of physical exercise on cognitive functions
in pwPD with aerobic exercises [19], robotic training [14,20] and dual-task training [21].
Specifically, global cognitive function [19,21] and specific aspects of executive and spatial
functions, such as processing speed, sustained attention and cognitive flexibility, [14,20]
were observed at the end of training. Physical therapy programs seem to support the stabi-
lization of an individual’s cognitive performance over time [22]. For example, cognitive
improvement observed immediately after treatment was shown not to be maintained at
six-month follow-up. However, the neuropsychological functional level of the experimen-
tal group returned to baseline, in contrast to the control group, which presented with a
progression of cognitive decline [22].

Many studies have demonstrated the influence of motor training on cognition in
people with neurological diseases [23–25]. In pwPD, cognitive functioning has been inves-
tigated after various kinds of aerobic, walking or dance training [26,27]. The data indicate
that the involvement of the lower limbs has an influence specifically on executive function,
verbal memory, language and attention [26,28].

Regarding the effect of upper limb motor therapy on cognitive functioning, some stud-
ies have demonstrated the influence of motor rehabilitation on specific cognitive abilities
of people with stroke, such as short-term memory, working memory and attention [23,29].
Daily upper extremity training improves short-term memory, attention and executive func-
tions [29]. To the best of our knowledge, no studies have been published to date that have
investigated the possible effects of upper limb motor therapy on cognition in pwPD.

Upper limb deficits in such individuals are usually treated by fine-motor hand exercise
programs, practice-based programs, visual and auditory cueing [30], resistance training [31]
and rhythmic auditory stimulation [32].

Another rehabilitation approach in pwPD is vibration stimulation. However, this
method is typically used to improve gait and balance [33]. The underlying mechanism is the
induction of a series of vibratory stimuli that favor a central integration and elaboration of
proprioceptive stimuli and improved motor and postural control [33,34]. A meta-analysis
reported on improvements in gait and balance after whole-body vibration conducted
with different oscillation parameters. The authors suggested that the results could be
explained by the activation of vibratory-induced muscular receptors and the related motor
response, which could contribute to a major central sensitization and improved sensory
elaboration, producing improvements in the adaptation of postural adjustments [33]. This
mechanism could have an effect on neuropsychological aspects; however, to the best of our
knowledge, there are no data available with respect to cognitive functioning. We therefore
hypothesize a possible influence of vibratory treatment on cognitive functioning, as well as
on motor aspects.

The aim of the present study was to investigate whether upper limb vibratory stimula-
tion training has an influence on cognitive functioning in pwPD.

2. Materials and Methods
2.1. Study Design

This uncontrolled before–after clinical trial was carried out at the Neurorehabilitation
Unit of the University Hospital of Verona from January 2022 to July 2022. The study was
approved by the CESC (Comitato Etico per la Sperimentazione Clinica delle Province
di Verona e Rovigo; Approval code: 3670CESC). All participants were informed about
the study’s procedures and provided written informed consent before taking part in the
assessment. A consecutive sample was used. The participants enrolled in this study are a
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subgroup involved in the registered randomized control trial on Open Science Framework—
OSF (https://doi.org/10.17605/OSF.IO/CH8MB, accessed on 1 December 2022). The study
protocol was performed in accordance with the Declaration of Helsinki.

2.2. Subjects

Individuals with a diagnosis of PD according to United Kingdom Parkinson’s Disease
Society Brain Bank Criteria [35] were recruited. Participants presenting with disease stages
1 to 3 according to the Hoen and Yahr classification (determined in the “on” phase) [36] or
absence of dementia according to the Montreal Cognitive Assessment (MoCA > 15.50) [37]
were included. Exclusion criteria were other neurological disorders or orthopedic condi-
tions involving upper limbs, concomitant neuromotor or cognitive rehabilitation treatment
during the period of management for the study or carried out in the 2 preceding months,
changes in drug therapy during the study period, psychiatric diseases, untreated depres-
sion or anxiety symptoms, alcohol or drug abuse and the presence of uncorrected visual or
auditory disturbances that may limit the administration of the test and/or treatment.

2.3. Intervention and Procedures

Participants underwent a 3-week one-to-one treatment three times a week for a total of
nine sessions. Each session lasted approximately 45 min and was led by a physiotherapist
specialized in neuromotor rehabilitation. Treatment consisted of an upper limb exercise
protocol using a device that produces various vibration frequencies (Armshake® device,
product by Move it GmbH; www.move-it-med.com, accessed on 1 December 2022) [38].
Vibration was transmitted to the entire upper limb of the subject and may have varied
during the treatment (range: 2 to 20 Hz). The training session involved exercises performed
with one or both upper limbs holding the device. Details about the exercises are provided
in the Supplementary Materials. During the activities, participants were encouraged to
concentrate and focus attention on the position and movement of their upper limbs. In ad-
dition, during exercises performed in the standing position, participants were encouraged
to maintain a postural stance as erect as possible in an effort to work on the coordina-
tion between the upper limbs and balance maintenance. Individuals who used assistive
ambulation devices performed exercises mostly in the seated position.

The intervention was adapted to each individual according to his/her level of motor
and cognitive functionality. Adaptations implemented in each session in terms of exercises
difficulty (i.e., number of repetitions, duration of the exercises, rest time between exercised,
seated/standing position, etc.). See the attached form for more details (Figure S1).

2.4. Data Collection, Assessment Procedures and Blinding

In addition to the motor assessment, each individual underwent 3 cognitive evalua-
tions before (T0), immediately after (T1) and 30 days after the physiotherapy treatment (T2).

Cognitive measures were administered by a neuropsychologist (E.E.).
In the present study, we were specifically interested in the influence of motor treat-

ment on cognitive functioning. In terms of motor outcome measures, we reported only
data related to global motor functioning and disability of the upper limbs collected by a
rehabilitation physician.

Outcome measure assessors were not involved in treatment and were blinded with
respect to the timing of the assessment (i.e., T0, T1 or T2). The pwPD subjects were involved
in a study with a repeated measure analysis of primary and secondary cognitive outcomes.

The participants were tested in the “on” state.

2.5. Outcome Measures
2.5.1. Primary Outcome Measure

The primary outcome measure was the Trail Making Test, Part B (TMT B), which
investigates attention capacity, the ability to switch attention between two rules or tasks
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and cognitive flexibility. The time taken to complete the trails was recorded (longer = worse
performance) [39].

2.5.2. Secondary Outcome Measures

Additional cognitive, motor and disability outcomes were recorded.
To screen the cognitive status of pwPD, we used the Italian version of the MoCA

(ICC = 0.79; [40]) [37], which consists of 12 subtasks exploring the following cognitive
domains: (1) memory, (2) visuospatial abilities, (3) executive functions, (4) attention, con-
centration and working memory, (5) language, and (6) temporal and spatial orientation. The
MoCA total score ranges from 0 (worst performance) to 30 (best performance). To reduce
possible learning effects between consecutive assessments, we used different versions of
the MoCA (7.1, 7.2 and 7.3) [41].

Visual selective attention and sequencing skills were evaluated with the TMT (ICC
part A = 0.745, part B = 0.849 [39]). The time taken to complete the trails was recorded
(longer = worse performance) [39]. Digit Symbol (DSym) (ICC = 0.91), a subtest of the
Wechsler Adult Intelligence Scale, was used to measure psychomotor speed, visual–motor
coordination, attention and concentration. Within a specified time limit, the participants
pressed a key to copy symbols that were paired with numbers (higher scores indicate better
performance) [42]. Working memory was assessed with the Digit Span Backward (DSB)
test [43]. Individuals were asked to repeat a list of single-digit numbers in the correct reverse
order immediately after presentation. The maximum score is 8 (best performance). Reaction
time was tested by under two conditions using Alertness, a subtest of the computerized
Test of Attentional Performance 2.3.1 (TAP) (ICC = 0.90) [44]. The first condition involves
simple reaction time measurements, measuring intrinsic alertness; a cross appears on the
monitor at randomly varying intervals, to which the subject is instructed to respond as
quickly as possible by pressing a key (Alertness without advertisement, ALL_SA). Under a
second condition, reaction time is measured in response to a critical stimulus preceded by
a cue stimulus presented as warning tone (Alertness with advertisement, ALL_CA).

Global motor functioning was assessed using the Unified Parkinson’s Disease Rating
Scale—part III (MDS-UPDRS—part III) [36], which consists of 34 scores (each rated on a
scale from 0 to 4 points) based on 18 questions about tremors, slowness (bradykinesia),
stiffness (rigidity) and balance and was used to assess movement capacity. The total score
is the sum of all items, ranging from 0 (best performance) to 136 (worst performance). The
upper limb disability experiences of participant were investigated using the Disability of the
Arm, Shoulder and Hand Questionnaire (DASH) (ICC = 0.536; [45]) [46]. This questionnaire
lists a series of activities associated with daily living; respondents are asked to indicate
their difficulty in carrying out a given activity on a scale from 1 (no difficulty) to 5 (I didn’t
succeed). The total score ranges from 0 to 150 (higher score = higher level of felt disability).

2.6. Statistical Analysis

Data were analyzed using IBM SPSS version 26.0 software for Macintosh (IBM Corp,
Armonk, NY, USA). Normal distribution of data was determined using Kolmogorov–
Smirnov (KS) and Shapiro–Wilk (SW) tests. Normal variables were analyzed with one-way
ANOVA for repeated measures within-individual factor “time” with 3 levels (pretreat-
ment, post treatment, and follow-up). The alpha level for significance was set at p < 0.05.
Post hoc comparisons were corrected using the least significant difference (LSD) method.
Non-normally distributed variables were analyzed using the Wilcoxon signed-rank test.
Results are presented as means and standard deviations. Power analysis was carried out
with G*Power 3.1.9.4 software (Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. 2007;
Heinrich-Heine-Universität Düsseldorf, Germany), with one group measured across three
observations, an alpha of 0.05, a power of 0.80 and a small treatment effect of 0.01. A
total of 16 observations were needed to detect a significant treatment effect. Therefore, a
total sample size of 18 participants was suitable, taking into account a possible 15% rate
of dropout.
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3. Results

A total of 20 individuals (18 men, 2 women; age: 70.65 ± 8.5 years; education:
8.8 ± 3.42 years; H&Y classification 2.05 ± 0.88) presenting with idiopathic PD (disease
duration: 5 ± 4.74 years; 6 presented with depression) were recruited among 36 individuals
referred to the Neurorehabilitation Unit of University Hospital of Verona, Italy, between
January 2022 and July 2022. Two individuals needed assistive devices (walker-rollator),
and all participants were on dopaminergic medication. The pwPD were allocated for upper
limb motor training. No dropout was observed, and no adverse events occurred during
the trial. Individuals completed the training program and post-treatment evaluation, and
18 participants completed follow-up assessment. A flow diagram of the study is shown in
Figure 1.
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3.1. Baseline

MoCA, TMT B, DSym and ALL_CA were normally distributed (KS and SW tests,
p > 0.05) and were analyzed by parametric tests.
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3.2. Primary Outcome

One-way ANOVA revealed a principal significant effect of “time” for TMT B
(F(2.32) = 3.988; p = 0.045; η = 0.2). Post hoc comparisons revealed significantly higher
scores post treatment (mean score: 153.95 ± 74.96; p = 0.011) compared to pretreatment
(mean score: 179.63 ± 81.19) and no change from baseline to follow-up (mean score:
208.76 ± 93.57; p = 0.389).

3.3. Secondary Outcomes

Within-group comparison showed significant changes in pretreatment versus post-
treatment scores for the MDS-UPDRS—part III (p = 0.005; z = −2.827), DASH (p = 0;
z = −3.298), TMT A (p = 0.011; z = −2.557), ALL_SA (p = 0.033; z = −2.134) and ALL_CA
(p = 0.009; z = −2.628). Scores also significantly changed between pretreatment and the
follow-up phase for DASH (p = 0.001; z = −3.298), TMT A (p = 0.015; z = −2.439), ALL_SA
(p = 0.049; z = −1.965) and MDS-UPDRS—part III (p = 0.005; z = −2.204).

The one-way ANOVA revealed a significant main effect of time, with significant differ-
ences observed in DSym scores between pre- and post-treatment phases (F(2.32) = 6.758;
p = 0.004). In particular, DSym scores were higher post treatment (M = 23.41; SD = 7.82,
p = 0.003) compared to pretreatment (M = 20.94; SD = 8.36) and were higher in the follow-up
phase (M = 23.71; SD = 9.47, p = 0.007) compared to pretreatment.

The other secondary outcome showed no significant differences. Tables 1 and 2 present
the group data and results of the within-group analysis.

Table 1. Within-group comparisons for outcome measures analyzed using non-parametric tests.

Outcome Pretreatment Post Treatment Follow-Up

Within Group Comparison

Post vs.
Pretreatment

p-Value

Follow-Up vs.
Pretreatment

p-Value

TMT A (seconds)
mean (SD) 78.47 (40.48) 65,63 (36.12) 86.88 (49.07) 0.011 * 0.309

ALL_SA (mseconds)
mean (SD) 429.60 (197.76) 367.44 (135.33) 381.44 (124.94) 0.033 * 0.049 *

ALL_CA (mseconds)
mean (SD) 402.55 (164.07) 347.2 (116.42) 350.56 (89.09) 0.009 * 0.079

MDS-UPDRS—part III
(0–136)

median (IQR)
20 (16.75; 38.25) 18 (13; 33) 18.50 (14.5; 30.75) 0.005 * 0.028 *

DASH (0–150)
median (IQR) 47 (36; 51.25) 39 (32; 43.75) 36 (32; 46) 0 * 0.001 *

Abbreviations: IQR = interquantile range; SD = standard deviation; TMT A = Trial Making Test Part A;
ALL_SA = Alertness without advertisement; ALL_CA = Alertness with advertisement; MDS- UPDRS—part
III = Unified Parkinson’s Disease Rating Scale—part III; DASH = Disability of the Arm, Shoulder and Hand
Questionnaire; * = statistically significant (p < 0.05).
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Table 2. Within-group comparisons for outcome measures analyzed using parametric tests.

Outcome Pretreatment Post Treatment Follow-Up
Repeated
Measures

ANOVA p Value

Pos Hoc Analysis
Whitin-Group Comparison

Post vs.
Pretreatment p
Value (95% CI)

Follow-Up vs.
Pretreatment p
Value (95% CI)

MoCA (0–30)
mean (SD) 22.35 (4.92) 23 (4.69) 23.06 (3.26) 0.468 / /

TMT B (seconds)
mean (SD) 179.63 (81.19) 153.95 (74.96) 208.76 (93.57) 0.045 * 0,011 (7.53; 49.88) * 0,389 (−56.94;

23.41)
DSym (0–93)
mean (SD) 21.94 (9.16) 24.47 (8.17) 23.71 (9.47) 0.004 * 0.003 (−3.97;

−0.97) *
0,007 (−4.65;
−0.87) *

DSB (2–8)
mean (SD) 3.80 (1.23) 3.65 (1.08) 3.78 (1.11) 0.611 / /

Abbreviations: SD = standard deviation; CI = confidence interval; MoCA = Montreal Cognitive Assessment;
TMT B = Trial Making Test—part B; Dsym = Digit Symbol; DSB = Digit Span Backward; * = statistically significant
(p < 0.05).

4. Discussion

In the present study, we aimed to investigate the effects of upper limb vibratory
stimulation training on cognitive functioning in pwPD.

The results indicate (1) an improvement in some specific cognitive abilities (i.e., exec-
utive functions and attention) and (2) motor abilities (i.e., global motor functioning and
reduction in the disability of the upper limbs), whereas (3) no effect was observed on global
cognitive functioning and working memory after upper limb vibratory treatment.

With respect to executive functions after treatment, we observed an improvement in
the ability to switch attention between two rules or tasks and cognitive flexibility (TMT B).
This improvement was not maintained in the follow-up. In contrast to our results, previous
studies reported no changes in this function after motor treatment [47–49], possibly owing
to differences in the type, frequency or duration of the interventions. The abovementioned
studies focused on gait and balance treatment, whereas we trained the upper limbs ex-
clusively. In contrast to gait [50–52], during upper limb movements, prevalent cerebral
activation occurs in the cortical areas (i.e., sensorimotor cortex, supplementary motor area,
premotor cortex, inferior frontal gyrus and ipsilateral anterior cingulate) both in neurologi-
cal patients and healthy controls [53,54]. Motor exercise may increase the production of
growth factors and promote gray and white matter changes, especially in the prefrontal
region, with a particular effect on executive functions [55–57]. On the other hand, during
executive tasks, improved performances were associated with an increased activation of
cortical regions [58–60]. Accordingly, specific motor training with upper limbs, which
enhances cortical activation in a different manner than lower limb training, could facili-
tate an improvement in executive functions (switching attention and cognitive flexibility).
However, this hypothesis should be tested by brain imaging studies in the future.

We observed an improvement in visual selective attention (TMT A), psychomotor
speed, visual–motor coordination, concentration (DSym) and alertness (ALL_CA). With
respect to selective attention, our results are in line with those reported in previous stud-
ies [13,61]. To the best of our knowledge, this is the first report on an investigation of
attention aspects before and after upper limb motor training (i.e., psychomotor speed,
visual–motor coordination, concentration and alertness). Considering the impact of at-
tention on the lives of pwPD, these data could be useful with respect to the choice of
rehabilitation path to improve attentional skills during motor activities.

Concerning motor aspects, after treatment, we observed an improvement in global
motor functioning (MDS-UPDRS—part III) and a reduction in the disability of the upper
limbs (DASH), which was maintained at follow-up. These data are in line with evidence
reported in the literature [62–64].

In agreement with literature, our data indicate no effects of upper limb motor treatment
on global cognitive functioning (MoCA) or working memory (DSB).
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Specifically, previous studies indicated no improvements in global cognitive func-
tioning after anaerobic lower limb treatment [22,47], whereas a significant change in the
MoCA score has been reported after aerobic programs (e.g., dance or bodyweight exercise
treatments) [19,21]. It is possible that different types of exercise (aerobic vs. anaerobic)
have different effects on global cognitive functioning. Our intervention involved activities
performed with the upper limbs, which can be considered anaerobic training. We hypothe-
sized that although the MoCA adequately considers psychometric properties for a brief
assessment of overall cognition in pwPD [40], it is not able to detect cognitively specific
changes after an anaerobic program. Therefore, function-specific tests could be used to
provide clear indications of cognitive functioning. Accordingly, we evaluated multiple
cognitive domains before and after treatment.

Previous studies indicated that a short motor treatment, such as that investigated in the
present study, has no effects on working memory [19,49]. Conversely, an improvement in
working memory was reported after a 24-month training program [61]. Therefore, memory
functions seem to be influenced by the duration of the treatment.

The present study is subject to some limitations. Because individuals were not tested
“off” medication, no conclusions can be drawn about the unmedicated state. A sample size
with greater gender and age balance could better validate our results. Another limitation is
the lack of a control group, as a placebo effect has been reported in several studies involving
pwPD [65,66]. Further investigations are needed to compare the effects of different motor
rehabilitation approaches with the effects of combined programs (cognitive plus motor)
on motor and cognitive abilities. Finally, it will be useful to investigate whether the
reported treatment could also be beneficial in pwPD in an advanced stage of the disease
who are more compromised. Despite our attempts to maintain the blinding of outcome
measure assessors, masking might have been incomplete. Given these limitations, caution
is warranted in generalizing the results to the population of pwPD, and additional research
is warranted.

In summary, our results seem to indicate that upper limb vibratory rehabilitation
promotes an improvement in cognitive and motor skills in pwPD, which can be explained
by the complex interplay between the basal ganglia and cortical–cerebellar networks in the
modulation of both cognitive–motivational and motor aspects of action [67,68], which have
been widely studies in recent years.

The aim of our study is in line with the growing interest in cognitive deficits in pwPD,
which frequently impair social function, intensify caregiver burden and increase the costs
of disease-related medical care [69]. Accordingly, it is important investigate the influences
of motor rehabilitation on cognition. Studies have suggested a significant correlation
between functional mobility and global cognitive functioning and attentional ability in
pwPD [70], with improvement in cognitive function reported following several kinds of
physical intervention for lower limbs [13,71,72]. To the best of our knowledge, this is
the first study to investigate the effect of upper limb motor rehabilitation on cognition in
pwPD. Further investigation of cognitive–motor relations can improve understanding of
the complexity of PD and aid in the development of appropriate rehabilitation programs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12121684/s1, Figure S1: Study flow. Table S1: Within-
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