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Abstract: Major depressive disorder (MDD) is a common mental illness. This study used electroen-
cephalography (EEG) to explore the effects of music therapy on brain networks in MDD patients and
to elucidate changes in functional brain connectivity in subjects before and after musical stimulation.
EEG signals were collected from eight MDD patients and eight healthy controls. The phase locking
value was adopted to calculate the EEG correlation of different channels in different frequency bands.
Correlation matrices and network topologies were studied to analyze changes in functional connectiv-
ity between brain regions. The results of the experimental analysis found that the connectivity of the
delta and beta bands decreased, while the connectivity of the alpha band increased. Regarding the
characteristics of the EEG functional network, the average clustering coefficient, characteristic path
length and degree of each node in the delta band decreased significantly after musical stimulation,
while the characteristic path length in the beta band increased significantly. Characterized by the
average clustering coefficient and characteristic path length, the classification of depression and
healthy controls reached 93.75% using a support vector machine.

Keywords: major depressive disorder; music therapy; electroencephalography; functional connectivity;
phase-locking value; frequency band; brain network

1. Introduction

Major depressive disorder (MDD) is a common multidimensional disorder [1,2]. Symp-
toms often include lack of energy and loss of interest in life [3]. Compared with other
diseases, MDD mainly impairs social cognitive function [4–6]. As a major worldwide dis-
ease, the treatment of MDD is usually divided into drug therapy and psychotherapy [7,8].
Although drugs are the main treatment for depression, 20% of patients cannot take them
because of strong adverse drug reactions or psychological problems [9]. Psychotherapy
as an alternative option, such as through music therapy, has been shown to significantly
relieve depression in clinical studies [10]. Numerous studies have shown that the expres-
sion of music can improve the functioning of the nervous and endocrine systems [11,12].
At the same time, music therapy also provides patients with the opportunity to express
their inner emotions through music, which can enable patients to obtain opportunities for
self-expression through musical activities [13,14]. Therefore, musical stimulation therapy
has been proven to be a new approach in the treatment of MDD patients, and the effect is
widely recognized [15–17].

Music therapy is a great help in treating MDD [18–20], but the specific changes in brain
connectivity that this treatment modifies are unknown. Electroencephalography (EEG) is a
non-invasive real-time neuroimaging technique. Benefiting from its high temporal resolu-
tion, EEG records electrical activity in relation to neuronal activity with excellent temporal
resolution on the order of milliseconds. These advantages of EEG make it an irreplaceable
technique when observing the brain [21]. EEG, combined with graph-theory-based network
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analysis, is gradually being used to explain the topology of brain networks and to analyze
functional connections in the brain [22]. Functional connectivity (FC) is defined as the
statistical interdependence between spatially distant neurophysiological regions, most com-
monly the correlation or coherence assessment between signals from pairs of electrodes [23].
FC provides a new approach to the rehabilitation of MDD patients [24]. Most of the re-
search on MDD is based on non-invasive imaging, such as fMRI and EEG [25,26]. Signal
features, including FC, are extracted by these techniques to understand data on normal
or pathological brain states. EEG research focuses on MDD feature extraction and classi-
fication [27–29]. EEG-based signal feature extraction and classification of MDD patients
focuses on the resting state or repetitive task state, which is different from the test state
under natural conditions, as the world in which people live is changeable. As a part of daily
entertainment, music can improve people’s spiritual world, open closed hearts, and relieve
depression [30,31]. Music therapy has emerged as a powerful tool in the treatment of MDD,
and previous research has focused on exploring differences in how the brain responds to
musical stimuli [32,33]. However, these approaches have yet to explain what the music
changes to dampen the brain’s hypoactive state. By combining EEG with musical stimula-
tion therapy and decomposing EEG signals into different frequency bands, differences in
brain function in response to musical stimulation were revealed [34–37]. When people are
in different active states, there are differences in EEG signals of different frequencies [38,39].
Previous studies have demonstrated that the FC of MDD changes in different frequency
bands, so the diagnosis of MDD by FC analysis with different frequency bands is worth
investigating [40]. Specific frequency changes and specific network connectivity changes
were seen in behavioral cognitive tasks, especially during music perception. According to
He et al., music therapy relieves clinical MDD symptoms by improving functional brain
connectivity and increasing connectivity with changes in FC [41,42]. These results sup-
port our hypothesis that functional connectivity across frequency bands is altered during
musical stimulation therapy in MDD patients. Nonetheless, the mechanisms underlying
functional connectivity problems and brain responses during musical stimulation therapy
in MDD patients are unclear.

In the EEG sensor space, the brain network consists of nodes and edges, where
electrodes represent nodes and channel connections represent edges [43,44]. Various
network properties are valid measures for quantifying functional integration and functional
segregation in the brain. At present, the feature matrix of EEG functional connectivity
mainly adopts correlation and coherent coupling methods. Phase-locking value (PLV) and
coherence have stable effects on bulk conductivity [45]. Therefore, this paper adopts the
PLV algorithm to calculate the correlation between EEG channels. By comparing the results
of functional linkages, biomarkers that distinguish MDD and control groups were extracted.

This study mainly analyzes the network changes of MDD in different frequency bands
before and after musical stimulation. The connectivity matrix and topology graph are
compared, and the network properties of graph theory are analyzed. The network features
mainly include path length, node degree and clustering coefficient.

2. Materials and Methods
2.1. Participants

A total of 16 subjects were selected for this study, including 8 patients with major
depressive disorder and 8 healthy controls. All subjects signed written consent. The
ethics review was approved by the Ethics Committee of Hangzhou Mingzhou Naokang
Rehabilitation Hospital, approval number 20210201. Of the 8 patients selected, 6 were
male and 2 were female. Age: 24–51 years (mean ± SD: 30.85 ± 7.5 years). Patients with
severe depression were from the Seventh People’s Hospital of Hangzhou. The patients
were surveyed with a depression scale. Questionnaires included the Generalized Anxiety
Disorder (GAD-7) and Patient Health Questionnaires (PHQ-9). The short international
interview exam for neuropsychiatric disorders was used to screen patients for depression.
The main criteria were the Diagnostic and Statistical Manual of Mental Disorders-IV (Dsm-
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5) fourth edition criteria. The inclusion criteria for major depressive disorder were: patients
with PHQ-9 scores greater than 10 and GAD-7 scores greater than 10. All participants signed
an informed consent form. To exclude cognitive impairment, the educational background
of subjects was required to be reported. The education level of the patients was divided
into two levels: 2 with a master’s degree and 6 with a bachelor’s degree.

Eight healthy controls (HC) were selected for the experiment, aged from 24 to 48 years
old (mean ± SD: 27.65 ± 8.6 years old), and all were male. They all had college degrees.
Demographic variables of depressed patients and healthy controls are shown in Table 1.
The inclusion criteria for healthy control samples included:

(1) Age matching with depression patients.
(2) In good physical and mental health, with no history of mental illness.
(3) A PHQ-9 questionnaire score of less than 4.
(4) Exclusion of individuals with chronic diseases.
(5) Cognitively normal, no history of major depression, schizophrenia, bipolar disorder,

or drug abuse, and no medication that may affect cognition and walking.

Table 1. Demographic variables of depression patients and healthy controls.

MDD (n = 8) HC (n = 8)
p

Average SD Average SD

age 30.85 7.5 27.65 8.6 0.89
gender 6 male/2 female 8 male
PHQ-9 15.42 5.32 2.44 0.92 0.00
GAD-7 11.62 6.50 2.19 3.74 0.00

2.2. EEG Data Acquisition and Preprocessing

64-channel (NeuSen.W64, Neuracle, Changzhou City, China) EEG signals were col-
lected at a sampling frequency of 500 Hz. The instrument used in this study adopted
the 10–20 international EEG standard. Before the electrodes were connected, each subject
cleaned the area of contact. During the experiment, the impedance of each electrode was
maintained below 15 KΩ. In order to visualize the whole-brain functional connectivity
activity, the Fp1, Fp2, Fpz, F3, F4, F7, F8, Cz, C3, C4, T7, T8, Pz, P3, P4, P7, P8, O1 and O2
channels were retained, and the remaining channels were excluded.

We used the EEGLAB toolbox for EEG data processing. EEGLAB is an open-source
MATLAB toolkit that uses a visual interface to rapidly process biological signals [46]. The
EEG signal whose re-reference form was a common average reference was preprocessed
using the EEGLAB toolbox. All EEG signals were bandpass filtered using finite impulse
response filters with cutoff frequencies of 0.1 Hz and 30 Hz. Any 50 Hz powerline interfer-
ence was eliminated using EEGLAB’s independent components. Additionally, abnormal
fragments were removed manually. Similarly, blinking and eye movements were elimi-
nated manually by visual examination as well as by using independent component analysis
techniques. Here, components that represented artifacts, such as blinking, eye movements
and muscle activity, were removed. Typically, for each subject, only one or two independent
components associated with blinking or eye movements were removed, and the remaining
components were used for analysis.

2.3. Experimental Paradigm

In this experiment, the EEG data of healthy controls and depressed patients were col-
lected. EEG signals were collected while the subjects were in resting state. The experiment
was divided into three parts, totaling six minutes. The specific steps are as follows: (1) the
patient’s resting state data for 1 min in the relaxed state was collected; (2) music audio
was played to stimulate the patient for 4 min; (3) 1 min resting EEG signal was collected
again after musical stimulation. The EEG acquisition process is shown in Figure 1. The
music signal used in the experiment was a piece of soft music selected by hospital experts
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conducive to mental relaxation. Music standards were recommended by doctors and voted
on by all participants. The final choice was Canon in D Major, author Dylanf.
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2.4. Data Analysis
2.4.1. Phase Locking Value

Phase-locking value (PLV) statistics are a time course, so phase-locking values can be
used to observe instantaneous changes in connectivity [47]. The synchronization algorithm,
based on Hilbert transform, has been widely used in correlation analysis between multi-
channel EEG signals. In this experiment, the phase was used to calculate the PLV, and the
Hilbert transform x̃(t) of the signal x(t) is defined as:

x̃(t) = H[x(t)] =
1
π

+∞∫
−∞

x(τ)
t− τ

dτ = x(t) ∗ h(t) (1)

For a single-channel EEG signal x(t), the analytical signal can be defined as:

Z(t) = x(t) + ix̃(t) = AH
x (t) exp

[
iΦH

x (t)
]

(2)

where ΦH
x is the phase of x(t) and AH

x is the magnitude of x(t). exp
[
iΦH

x (t)
]

is the complex
signal obtained with the help of phase by Euler’s formula. The PLV of this study was
defined as:

PLV =
√

< cosΦH
xy(t)

2
t
> +< sinΦH

xy(t)
2
t
> (3)

where Φxy(t) = φx(t)− φy(t) represents the phase difference of the two signals. If PLV = 0,
x(t) and y(t) are not synchronized, and if PLV = 1, it means that the two signals are
completely synchronized. <>t represents the average over time.

Determining the adjacency matrix based on the PLV is defined as:

w∗pq =

{ 1
s |∑

s
n=1 exp(i(∆Φn(t)) )|, i f x 6= y

1 , i f x = y
(4)

where S is the length of the time series.



Brain Sci. 2022, 12, 1680 5 of 13

2.4.2. Network Characteristics

The constructed PLV-based functional brain network was used to characterize the
connection structure between the MDD brain channel pairs under different musical stimuli.
The building process of the brain functional network can be thought of as a process of
abstractly representing connections between brain regions as nodes and connecting edges.
The analysis of brain functional segregation is based on the local scale, and local measures
focus on the functional differentiation capacity of the brain and measure the clustering
properties within the brain network [48]. Because the brain functional network is complex
and changeable, in order to further monitor the functional state of the brain, graph theory
is used to extract multiple topological properties of the brain functional network: the brain
functional network is constructed to extract the clustering coefficients and characteristic
path lengths under different bands [49–51]. In this study, the corresponding local features
are extracted for each PLV network constructed.

The degree in the network represents the number of connections between a node and
other nodes, and can be used as a measure to analyze the importance of a node in the
network. The clustering coefficient of the brain function network indicates the possibility
that the neighbors of a node become neighbors of each other [52–54]. The clustering
coefficient (CC) of a node can reflect the closeness of the association relationship between
the node groups in the network and is defined as:

CC = 1
n ∑i∈N

2ti
ki(ki−1) (5)

where n is the total number of nodes, ki represents the number of adjacent nodes that
the node has, and ti represents the number of relationships between the network through
i-neighbor nodes.

The characteristic path length is the average of the shortest path lengths between two
nodes [55]. The length of the characteristic path can measure the information interaction
strength between two nodes. The shorter the length, the stronger the information interaction
between the two nodes, which can effectively characterize the connectivity of the two nodes.
The characteristic path length (CPL) is used to measure the robustness of the network
topology, and it is defined as:

CPL = 1
n ∑i∈N

∑j∈N,j 6=i dij
n−1

(6)

where n represents the number of nodes in the network, i and j represent different types of
nodes in the network, and dij represents the distance between point i and point j.

3. Results
3.1. Network Analysis

Figure 2 shows the correlation matrix constructed using the PLV of the EEG signals for
MDD (before and after music stimuli) and HC in four frequency bands: delta (0.5–4 Hz),
theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz). In the delta band, the phase lag index
of depressed patients was higher than that of healthy controls, and the phase lag index of
depressed patients decreased in multiple channels after the musical stimulation. In the
theta band, the phase lag index was slightly higher in healthy controls than in depressed
patients in the parieto-occipital lobe. However, after musical stimulation, the phase lag
index of depressed patients showed different changes in different regions, although there
was an overall increase, but no obvious regularity. In the alpha band, the phase lag
index of the EEG signals in depressed patients increased significantly in the parietal and
occipital regions and slightly in the frontal and polar regions after musical stimulation, but
decreased in other locations. Compared with the healthy control group, the phase lag index
of depressed patients in the alpha frequency band was decreased overall, and some regions
were higher than the control group. In the beta band, the index of the healthy control group
was higher than that of depressed patients, and after musical stimulation, the phase lag
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index of depressed patients also increased. According to the matrix, it can be found that in
the beta band, the phase lag index changed significantly with significant regularity.
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the frequency band of the signal (a–l).

In order to show the connection of brain regions more clearly, we drew a network
topology map using the binary sentence method as shown in Figure 3. In the delta band, the
association of depressed patients decreased after musical stimulation, mainly in the frontal
pole and frontal lobe, and also in the parietal lobe. Healthy controls were less connected to
this band than depressed patients. In the theta band, the topological connection increased
after musical stimulation, and the connection in the central region increased. In the al-
pha band, depressed patients showed improved left–right brain symmetry and slightly
improved connectivity between the frontal and central regions after musical stimulation.
Healthy controls and musical stimulation did not change much in the brain topology of
depression. In the beta band, after musical stimulation, the functional topology connectivity
of depressed patients’ brains was reduced, mainly in the frontal lobe and central region,
especially in the left hemisphere. Healthy controls were also less connected than depressed
patients. In this study, the threshold was 80% of the maximum value.
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yellow lines represent the connections of the channels.

3.2. Network Properties

The average clustering coefficients of depressed patients before and after musical
stimulation and healthy controls in different frequency bands are shown in Figure 4a. As can
be seen from the Figure, in the delta band, the clustering coefficient increased significantly
after musical stimulation, and the clustering coefficient was higher in depressed patients
than in healthy controls (with a significant difference). In other frequency bands, the
average clustering coefficient of depressed patients decreased after musical stimulation,
but the difference was not significant.
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The characteristic path length of the brain functional network in depressed patients
before and after musical stimulation, and healthy controls at each frequency band, is
shown in Figure 4b. In the beta band, the characteristic path length of the brain functional
network in depressed patients increased significantly after musical stimulation, while
the characteristic path length of other bands decreased. In addition, compared with
healthy controls, the characteristic path length of depressed patients in the beta band was
significantly lower than that of healthy samples, while the characteristic path length in the
delta band was significantly higher.

The number of node degrees in different frequency bands in the brain functional
network of depressed patients and healthy controls is shown in Figure 5. In the delta
band, the values of all node degrees decreased in the depressed patients after musical
stimulation, and the node degrees were much lower in the normal control group than in
the depressed patients. In the theta band, the node degree in the temporal lobe region (T7,
T8) was significantly increased in depressed patients compared with healthy controls. In
the alpha frequency band, there was no obvious difference in node degree of the brain
functional network among different states. In the beta band, the node degree of the central
region (Cz, C3, C4) was significantly different between depressed patients and healthy
controls, and the musical stimulation had little effect.
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3.3. Classification

The main purpose of this section is to classify depression patients and the healthy
control group, and discuss the effect of feature recognition from individual directions.
According to the above analysis, the average clustering coefficient of the delta band and
the characteristic path length and the characteristic path length of the beta band were
adopted as the effective features of recognition. Features were classified using Support
Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbor (KNN) and Random Forest
(RF) algorithms [56–60]. Ten-fold cross-validation was used. The classification results are
shown in Table 2:
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Table 2. Classification accuracy of association matrix.

Classifier Accuracy Precision Recall

KNN 81.25% 75% 68.75%
SVM 93.75% 87.5% 93.75%
DT 68.75% 62.5% 62.5%
RF 75% 68.75% 75%

4. Discussion

This study explores the effect of musical stimulation therapy on functional brain
connectivity in patients with MDD. Specifically, first, subjects’ EEGs before and after music
therapy were recorded and preprocessed. Secondly, a PLV-based correlation matrix was
constructed according to frequency segmentation, and the phase lag index was used as
an evaluation criterion for analysis. In order to intuitively characterize the connectivity of
brain regions, we drew the network topology corresponding to the binary matrix. Then, the
characteristic path length and average clustering coefficient of the brain function network
in each frequency band of depression patients and the healthy control group before and
after musical stimulation were used as indicators to calculate the network characteristics.
Finally, four machine learning methods were used to classify patients with depression and
healthy controls, and the effect of feature recognition was discussed from an individual
perspective.

According to Figures 2 and 3, we can analyze the changes in the brain networks
before and after musical stimulation. In the delta band, the associated connections in
depressed patients were reduced after musical stimulation, and were mainly concentrated
in the frontal pole and frontal lobe regions. Studies have shown that delta signals brain
abnormalities to a certain extent. The frontal lobe of the brain is responsible for higher
levels of thought, including language, emotional expression, and working memory. This
partly explains the lower connectivity of the frontal lobe region in the delta band in healthy
patients than in depressed patients. The functional network in the delta band may be an
important band to distinguish between types of depression. In the theta band, the change
in the topology was not obvious. Changes in the alpha band can be analyzed using alpha
asymmetry. Alpha is a frequency band that indicates brain health and is strongly associated
with depression, and alpha asymmetry is also a biological feature of depression [61,62]. In
the beta band, after musical stimulation, the functional topology connectivity of depressed
patients was reduced, mainly in the frontal lobe and central region. The reason for this
phenomenon may be that beta bands indicate the degree of emotional change and reflect
the level of arousal in the brain. In addition, the cluster degree of the healthy control group
also decreased in this frequency band, and the difference between the depressed patients
and the healthy control group was significant.

The frequency is related to the frequency of the musical stimulus [40]. According to
the analysis of the statistical results, for the clustering coefficient, there was a significant
difference in the delta frequency band before and after the musical stimulation, and there
was also a significant difference between the patients and the control group. For the
characteristic path length, there was a significant difference between the delta and beta
bands. The results obtained were similar to previous studies [28].

Figures 4 and 5 show the changes to network properties. For average clustering
coefficient, the clustering coefficient, which measures the degree of aggregation of nodes
in the functional brain network, meant that depressed people were less connected in
the delta band and improved after musical stimulation. In other bands, there was little
difference between healthy controls and depressed patients. Based on the above analysis,
the clustering coefficient in the delta band can be used as a feature to classify depression
and health samples. According to Figure 4, since the path length shows the path from
a node to another node, the shorter path length also represents the higher information
transmission efficiency, indicating that in the beta band, depressed patients have a poor
information transmission rate and a tendency of random network. In the theta and alpha
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bands, the difference between healthy samples and depressed patients was small, making
it difficult to analyze their information transmission efficiency.

According to the classification results, SVM had the best classification effect, reaching
93.75%, followed by KNN at 81.25%, and DT had the worst classification performance of
only 68.75%. In addition, SVM also had the highest accuracy and recall rate among the
classifiers, which shows that SVM has unique advantages in solving the problem of small
samples and nonlinear dichotomy. Therefore, the clustering coefficient and characteristic
path length can be considered as biomarkers to distinguish MDD from healthy controls.

This study has some limitations. First of all, EEG signals are very susceptible to
ex-ternal interference. Although we collected signals in a quiet environment and supple-
mented the preprocessing, there were still some interferences that we could not completely
eliminate. Second, the number of subjects were relatively small, and the decision tree
appears to be over-under-fit. Therefore, we need more samples to further verify the re-
sults. Finally, the choice of depression assessment scale was too singular, and we can
consider choosing MADRS or HAM-A, which is actively implemented by doctors and can
analyze individual items. Music therapy has been shown to be effective in the treatment
of depression, and future research can consider the effects of different styles of music on
depression.

5. Conclusions

This study obtained the following three results. First, delta and beta band connectivity
decreased after musical stimulation, while alpha band connectivity increased. Secondly,
in terms of EEG functional network characteristics, the average clustering coefficient,
characteristic path length and degree of each node in the delta band decreased significantly
after musical stimulation, while the characteristic path length in the beta band increased
significantly. Finally, the average clustering coefficient and characteristic path length can be
used as features to distinguish MDD from healthy controls.
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