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Abstract: (1) Objective: The aim of this study was to examine the effect of high altitude on inhibitory
control processes that underlie sustained attention in the neural correlates of EEG data, and explore
whether the EEG data reflecting inhibitory control contain valuable information to classify high‑
altitude chronic hypoxia and plain controls. (2) Methods: 35 chronic high‑altitude hypoxic adults
and 32 matched controls were recruited. They were required to perform the go/no‑go sustained at‑
tention task (GSAT) using event‑related potentials. Three machine learning algorithms, namely a
support vector machine (SVM), logistic regression (LR), and a decision tree (DT), were trained based
on the related ERP components and neural oscillations to build a dichotomous classification model.
(3) Results: Behaviorally, we found that the high altitude (HA) group had lower omission error rates
during all observation periods than the low altitude (LA) group. Meanwhile, the ERP results showed
that the HA participants had significantly shorter latency than the LAs for sustained potential (SP),
indicating vigilance to response‑related conflict. Meanwhile, event‑related spectral perturbation
(ERSP) analysis suggested that lowlander immigrants exposed to high altitudes may have compen‑
satory activated prefrontal cortexes (PFC), as reflected by slow alpha, beta, and theta frequency‑band
neural oscillations. Finally, the machine learning results showed that the SVM achieved the optimal
classification F1 score in the later stage of sustained attention, with an F1 score of 0.93, accuracy of
92.54%, sensitivity of 91.43%, specificity of 93.75%, and area under ROC curve (AUC) of 0.97. The
results proved that SVM classification algorithms could be applied to identify chronic high‑altitude
hypoxia. (4) Conclusions: Compared with other methods, the SVM leads to a good overall perfor‑
mance that increases with the time spent on task, illustrating that the ERPs and neural oscillations
may provide neuroelectrophysiological markers for identifying chronic plateau hypoxia.

Keywords: high‑altitude chronic hypoxia; Go/No‑Go; sustained attention; EEG; inhibitory control;
machine learning

1. Introduction
The plateau environment frequently causes nervous system damage due to many fac‑

tors, such as low oxygen, low pressure, low temperature, low humidity, and high solar
radiation, which have a direct and vital impact on human cognitive ability, especially the
attention process [1–4]. Attention is usually divided into three functional components:
alertness, selective attention, and sustained attention [5]. Sustained attention is defined as
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the ability to maintain an efficient level of detection and responsiveness to certain changes
over a period of time [6–8]. It is dependent on the proper functioning of executive control
mechanisms, particularly inhibitory control to regulate thought and action to conformwith
internal goals [9,10]. Inhibitory control, as the core of high‑level cognitive functions, is a
general controlmechanism that includes flexiblymonitoring the cognitive system [11], sup‑
pressing dominant or competitive responses [12,13], and optimizing the implementation of
specific objectives [14,15]. Appropriate performance in inhibition‑control tasks requires in‑
creased attentional resources allocated to task demands [16]. Previous studies have shown
that sustained attention is influenced by Alzheimer’s disease [17], epilepsy [18], attention
deficit hyperactivity disorder [19,20], and aging [21]. So far, it is not clear how the plateau
environment affects sustained attention through inhibitory control mechanisms. With the
increasing number of immigrants to the Qinghai–Tibet Plateau [22], it is increasingly im‑
portant to focus on the effects of a low‑oxygen environment on the cognitive function
of lowlanders.

Previous studies have found that long‑term chronic exposure to high altitude (HA)
induces oxidative stress [23]. This stress exerts diverse effects on neurotransmitter lev‑
els (i.e., the synthesis of glutamate) in the central nervous system [24] and influences the
normal and abnormal processes of sustained cognition by activating glutamatergic neu‑
rotransmission in the PFC [25], particularly inhibitory control processing in the execu‑
tive function [24]. Among studies of chronic altitude hypoxia, the classic Go/No‑Go task,
which is relevant to the inhibition of dominant approach responses, has been commonly
used to examine abnormal inhibitory control processing in populations with chronic hy‑
poxia [26–29]. However, this paradigm is insufficient for evaluating the ability to maintain
sustained attention over extended periods. In contrast, in the Go/No‑Go sustained atten‑
tion task (GSAT), participants were asked to respond to a high‑proportion of Go stimuli
and to withhold responses to the low proportion of No‑Go target stimuli during three ex‑
tended attention periods. Inhibitory control is critically in two aspects of this task: across
Go trials tomaintain task goals (i.e., withhold response when a low‑frequencyNo‑Go stim‑
ulus occurs), and after the reaction, especially following the No‑Go trials where the subject
failed to suppress the reaction (i.e., after an error) [30]. The GSAT is not only associated
with top‑down inhibitory control, but also explicitly reflects the distribution of attention
resources over different periods of time. Higher omission errors during this task are as‑
sociated with high‑altitude hypoxia, related to the decline in the efficiency of cognitive
control mechanisms [31]. Indeed, evidence from aging studies using event‑related poten‑
tials (ERPs) has shown age‑related differences in the recruitment of prepotent response
inhibition over the course of the GSAT [21,32], in which the sustained potential (SP) fol‑
lowing the stimulus, that is, maintaining attention across Go trials and withholding re‑
sponses in No‑Go trials, were related to inhibitory control [33]. In addition, a previous
study used the classical Go/No‑Go paradigmwith the time‑frequency approach to explore
the neural oscillation courses of response inhibition, and found that the power of the delta
(1–4 Hz) and theta (4–8 Hz) bands in the high‑altitude area was lower than in the bands
in the low‑altitude area [34]. Roxburgh et al. (2020) also demonstrated that event‑related
oscillation (ERO) changes in the beta band (14–30 Hz) are relevant to frontal inhibitory
control processing [35]. Heretofore, both time‑frequency and time‑domain analyses have
rarely assessed how inhibition control is influenced by a high‑altitude hypoxic environ‑
ment sustained over time. However, evidence points to the fact that the application of
ERPs (i.e., SP) and EROs markers (i.e., delta and theta) provides a new way to predict the
performance of inhibitory control under sustained attention after long‑term exposure to a
high‑altitude plateau environment.

So far, EEG studies on altitude hypoxia have mostly applied traditional statistical
inference to compare between‑group differences of high‑ and low‑altitude populations,
which would be exposed to type I or type II errors [36,37]. Additionally, the accuracy of
relevant ERPs and neural oscillation signal characteristics for detecting related chronic hy‑
poxia stress could not be confirmed. Machine learning is an approach that can solve type
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I and type II errors and improve reproducibility by reducing overfitting. This method is
favored for its ability to analyze large and complex datasets and for its predictive accuracy
when multiple predictive variables have complex interactions, through training, accumu‑
lating experience, and updating algorithms [38]. Automatic classification ofmachine learn‑
ing is an important step towardmaking EEGmore practical and less dependent on trained
professionals for applications. At the most basic level, EEG datasets consist of 2D (time
and channel) matrices of real values representing brain‑generated potentials recorded on
the scalp in relation to specific task conditions [39]. A great number of traditional ma‑
chine learning algorithms such as logistic regression [40], SVM [41], decision tree [42], and
random forest [43] have been applied on EEG data. In the clinical setting, EEG signals
combined with machine learning have recently been used for identifying sleep disorders,
epilepsy, strokes, and other neurological disorders [44]. To date, we have found only a
flight hypoxia detection system designed to classify normal from hypoxic instances using
the transformed EEG data, which were processed on the naïve Bayes, decision tree, ran‑
dom forest, and neural network algorithms, with sensitivity and specificity ranging from
0.83~1.00 and 0.91~1.00, respectively [45]. From a neuro‑cognitive perspective, Knudsen’s
attentional model proposed that inhibition of task‑irrelevant processes played a vital role
in sustained attention tasks [46,47]. However, the classification performance of inhibitory‑
control‑related ERP components and neural oscillations in the GSAT as a tool for the aux‑
iliary diagnosis of chronic altitude hypoxia stress has not been studied.

Therefore, in the current study, the GSAT was employed to explore the inhibitory
control processes underlying sustained attention in HAs. At the behavioral level, we pre‑
dicted that HAs would have higher omission errors in the No‑Go trials, especially during
the later period of sustained attention. At the neurological level, we expected that HAs
would demonstrate certain abnormal neurophysiological indicators, which might mani‑
fest as difficulty withholding the response to No‑Go trials by enhancing SP amplitude and
increasing latency. Consistent with previous studies [48], we identified concerns about
band‑specific neural activities that are involved in chronic high‑altitude hypoxia. Addi‑
tionally, we examined whether ERP components and neural oscillations contained valu‑
able information for discriminating between HAs and LAs. Classification accuracy was
compared for different featur‑selection techniques and classifiers, in order to identify the
best selection method and classifier combination for assessing important biomarkers to
help determine vulnerability to high‑altitude hypoxia stress.

2. Methods
2.1. Participants

A total of 35 college students (16 females, 19 males; 22.200 ± 1.699 years) in high‑
altitude areas (Lhasa: 3680 m) were recruited from the Tibet University campus for the
present study. These participants lived in low‑altitude areas (<500m) until early adulthood
and had never lived at high altitude. At the time of the study, they had been living in Lhasa
city for three years. The exclusion criterion of the high‑altitude group was having a high‑
altitude experience before attending college.

We also collected data from 32matched healthy college students (15 females, 17males;
21.933± 1.438 years) in low‑altitude areas (Guangzhou city)who had never lived at high al‑
titude, as the control group. The exclusion criterion of the low‑altitude group was having
an experience of visiting the plateau. All participants were right‑handed, free of neuro‑
logical and psychiatric diseases, and had normal or corrected‑to‑normal vision. The two
groups of participants were matched based on personality as tested by the NEO five‑factor
inventory (NEO‑FFI) [49], intelligence scores on the Raven’s standard progressive matri‑
ces (SPM) [50], and their scores for the Pittsburgh sleep quality index [51] (all p > 0.05).
Informed consent was obtained from each participant before the experiment, which was
conducted in accordance with the Declaration of Helsinki and was approved by the Ethics
Committee of Tibet University (XZTU2021ZRG‑05).
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2.2. Experimental Procedure
Settled in a dimly lit and sound‑attenuated room, all participants were required to

take part in a Go/No‑Go sustained attention task (see Figure 1), which involved “Go tri‑
als” (the word and its font color were congruent) and “No‑Go trials” (incongruent No‑Go
trials: the word and its font color were incongruent; repeat No‑Go trials: the word and
its font color were congruent but appeared in two consecutive trials). The trials were pre‑
sented against a gray background and appeared 0.25◦ above a white point (in the center
of a computer screen) at a distance of 100 cm. Participants were asked to press button ‘J’
when the “Go trials” stimuli were presented. In contrast, no response was required from
participants when the “No‑Go trials” appeared. The experiment consisted of two parts:
first was the practice section of 60 trials prior to the formal experiments; the other was the
formal experiments that included nine blocks lasting 72 min except for the practice part,
each block consisting of 222 trials (198 Go trials and 24 No‑Go trials). All stimuli were
randomly selected and presented for 600 ms followed by a gray screen with a white point
lasting approximately 1500 ms (in other words, the inter‑stimulus interval was 1500 ms).
The E‑prime software system (Version 1.1, Psychology Software Tools, Inc., Pittsburgh, PA,
USA) was used to present the experimental stimuli and collect behavioral response data.
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2.3. EEG Recording and Analysis
Electroencephalograms (EEGs) were recorded from a 64‑channel Neuroscan

SynAmps2 amplifier (10/20 system) using Ag/Agcl electrodes mounted on a Neuroscan
64‑channel QuickCap (Compumedics USA, Charlotte, NC, USA). EEG and vertical and
horizontal electrooculogram (EOG) data were sampled at a rate of 500 Hz using an online
bandpass filter of 0.01 Hz to 100 Hz. The data were re‑referenced offline to the average for
a bilateral mastoid on two ears, with a high‑pass filter of 0.1 Hz (48 dB/oct) and a low‑pass
filter of 30 Hz (48 dB/oct). The impedances of all the electrodes were less than 10 kΩ. EOG
were recorded bipolarly in order to monitor ocular artifacts.

2.3.1. Time Domain Analysis
Curry 7.0 software was employed to remove ocular artifacts and bad blocks from the

EEG signal. The rejection criterion for ocular artifacts was a negative or positive change
of more than 200 µv, while the bad blocks caused by body movements or muscle activity
with a negative or positive change of more than 100 µv were rejected. The averaged wave‑
forms for each participant were calculated for each station. The stimulus‑locked data were
segmented into epochs of 200ms before and 1000ms after stimulus onset [52,53], including
the baseline‑corrected interval of−200 ms to 0 ms. The stimuli‑locked ERPs (SP) in the Go
and No‑Go trials were averaged. At the electrode site of the CPZ, the maximum frontal
and parietal amplitudes of the SP were observed within the 460 to 700 ms time window.
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2.3.2. Time‑Frequency Analysis
A time‑frequency analysis was performed using the MATLAB toolbox FieldTrip [54],

epoched into a period of−200 to 1000ms, corresponding to the onset of the word stimulus.
A short‑time Fourier transformmethod was applied to estimate event‑related spectral per‑
turbation (ERSP). Spectral powerwas calculated on artifact‑free epochs using a fast Fourier
transform (FFT)with aHanningwindow at a resolution of 0.1Hz, averaged across all trials,
and then converted to log power. Baseline‑normalized ERSP was acquired by subtracting
the average baseline log power spectrum from each spectral estimate (in dB). Again, since
we aimed to compare the time‑frequency responses to successful restraint and cancella‑
tion, the results for each participant of the successful Go and No‑Go trials were separately
averaged for further analysis. Based on the grand‑averaged time‑frequency plots in the
present study and the existing literature using Go/No‑Go and stop‑signal tasks, we specif‑
ically examined the powers of theta [55,56], alpha [57,58], and beta oscillations [58–60].
The time window of interest was selected from the grand‑averaged time‑frequency plots.
In the present study, the theta (4–8 Hz), slow alpha (8–10.5 Hz), fast alpha (10.5–13 Hz),
and beta (13–30 Hz) powers were defined as the mean of the time window of 460 to
700 ms, respectively.

2.4. Statistical Analysis
2.4.1. Analysis of Demographic Data

For the demographic data analysis, t‑tests were performed on participants’ scores
on the Pittsburgh sleep quality index (PSQI) [61], Raven’s standard progressive matri‑
ces (SPM) [62], and the neuroticism‑extraversion‑openness five‑factor inventory (NEO‑
FFI) [63].

2.4.2. Behavioral Data
The experiment was divided into three periods (a1, a2, a3), which correspond to the

early, middle, and later stages of sustained attention. Each period included three task
blocks lasting 24 min before the ERP and performance data were analyzed. At the be‑
havioral level, the reaction times (RTs) for hits on the Go trials and the rate of omission
errors (the miss rate in the Go trials) were recorded. Behavioral data were analyzed using
repeated‑measures ANOVA with group (HA vs. LAs) as the between‑subjects factor and
period (a1 vs. a2 vs. a3) as the within‑subjects factor.

2.4.3. Time‑Domain and Time‑Frequency Analysis
To evaluate the characteristics of response inhibition in HA, ERPs and ERSP were

compared between HA and LA participants. In particular, time‑domain analyses mainly
focused on the SP components, whereas the time‑frequency analysis mainly focused on
the theta, alpha, and beta frequencies. Since the alpha frequency band contains more
unique information, we divided this band into sub‑slow alpha (8–10.5 Hz) and fast alpha
(10.5–13 Hz) frequency bands.

The electrophysiological indicators (i.e., mean amplitude and latency of SP, the power
intensity in delta, slow alpha, and fast alpha)were assessed by repeated‑measuresANOVA
with group as the between‑subject factor and period and stimulus type (Go vs. No‑Go)
as within‑subjects factors. Greenhouse‑Geisser corrected p values were calculated when
necessary. Post‑hoc t‑tests (two‑tailed) were applied to examine significant interactions.
Two‑tailed tests at an a priori threshold of p < 0.05 were established to indicate statistical
significance.

2.5. Classification Methodology
2.5.1. Feature Generation
Time‑Domain Features

Twelve time‑domain features (at the 460–700 ms time interval) were selected for the
SP components obtained at the CPZ electrodes in the Go and No‑Go conditions.



Brain Sci. 2022, 12, 1677 6 of 19

(1) Latency, i.e., the time at which the maximum peak value of the SP component occurs:

tSP
SSP

max
= {t|SSP (t) = SSP

max} (1)

(2) Mean amplitude, which is the mean of the amplitude values for the SP component from 460
to 700 ms:

SSP
mean = (∑t=700

t=460 SSP (t))/t (2)

(3) Total area, which is the sum of the signal values for the SP component from 460 to 700 ms:

AMFN
S = ∑t=700

t=460 SSP (t) (3)

(4) Latency/mean amplitude ratio:

tSP
SSP

max
/SSP

mean (4)

(5) Absolute mean amplitude: ∣∣∣SSP
mean

∣∣∣ (5)

(6) Absolute latency/amplitude ratio: ∣∣∣tSP
SSP

max
/SSP

mean

∣∣∣ (6)

where tsp is the time window corresponding to the SP and SSP (t) is the signal value corresponding
to the SP.

Time‑Frequency Domain Features
The short‑time Fourier transform was used to convert the time‑domain signal into a time‑

frequency signal.

STFT(t, f ) =
∫ ∞

−∞
x(τ)h(τ − t)e−j2π f zdτ (7)

The time‑frequency features were selected from the CPZ electrodes. Four frequency bands
consisting of theta, slow alpha, fast alpha, and beta bands were extracted under Go and No‑Go
conditions, respectively. The time intervals corresponded to the time windows of the SP (460–700
ms). The mean power, maximum power value, and time points corresponding to the maximum
power value were calculated for the above time periods of the corresponding frequency bands. Each
participant had 24 features (two stimulus conditions × three time‑frequency feature values × four
frequency bands).

(1) Themean power in the above time periods (460–700ms)was calculated to obtain the average
power values of the corresponding frequency bands:

f SP
mean = (

t=700

∑
t=460

∑
f=∞
f=−∞ STFT(t, f )

f
)/t (8)

(2) The maximum power value was calculated using two steps: Firstly, the power values were
averaged at each time point in different frequency bands from 460–700 ms. We apply the maximum
of these power averages:

f SP
max = max((

f=∞

∑
f=−∞

STFT(t, f ))/ f ) (9)

(3) The time points corresponding to the maximum average power value:

tSP
f SP
max

= {t|(
f=∞

∑
f=−∞

STFT(t, f ))/ f = f SP
max} (10)

where STFT(t, f ) is the result of the short‑time Fourier transform, where t stands for time and f stands
for frequency.
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2.5.2. Feature Selection
As a data preprocess in machine learning, feature selection plays an important role in dimen‑

sionality reduction and irrelevant data removal to improve classification accuracy. There were
12 time‑domain and 24 frequency‑domain features in this experiment.

First, the feature data were processed as dimensionless because of the large difference in the
data values between the selected features, which may affect the data classification result. In this
study, the min–max normalization method was used for processing the dimensionless data. This
method maps the original data to between [0, 1] through a linear transformation, and the formula is
as follows:

X′ =
X − Xmin

Xmax − Xmin
(11)

where X′ represents the final result and X represents the original data, and Xmin and Xmax are the
minimum and maximum values of the data distribution, respectively.

Second, feature selectionwas followed bymin–max normalization. A higher feature dimension
influences the results of the classifier to a certain extent and reduces its efficiency. Therefore, we
adopted two feature selection methods, ReliefF and GainRatio (GR). The intersection of the results
of the two feature selection methods was then considered the final feature.

ReliefF, first proposed byRobnikšikonja andKononenko [64], is a feature‑sortingmethod based
on the distance between features. The basic idea is to select randomly a sample from the training
set and search for K‑nearest neighbor samples from the same and different categories. The feature
weights were updated according to the formula, and the relevant features were selected according
to the weights.

The GainRatio (GR) feature‑selection method calculates the information‑gain rate of each fea‑
ture and selects features according to information gain. Because information gain is greater for fea‑
tures with more values, the information gain rate overcomes some disadvantages; therefore, the GR
method was adopted. SplitInfoF (S) was applied to reduce the influence of information gain. The
formula used is as follows:

SplitIn f oF (S) = −∑v
i=1

|Sv|
|S| × log2

(
|Sv|
|S|

)
(12)

Sv represents the set of class v data. The calculation formula for the information gain rate is
as follows:

GainRatio (F, S) =
Gain (F)

SplitIn f oF (S)
(13)

Gain (F) represents information gain. The above two feature selection methods—ReliefF and
GR—were used for feature selection in the time and frequency domains, respectively. Each classifier
extracted 36 features, including 12 time‑domain and 24 frequency‑domain features. All features
generated by each classifier consisted of two permutations and were ranked from high to low. The
first 18 features of the two permutations were selected as two datasets, and the intersection of the
two datasets was utilized to obtain eight time‑domain and three frequency‑domain features.

2.5.3. Classifiers
As there is no unified classifier for this type of research, we used a variety of classifiers to

test and compare the results of each classifier. In this study, we chose a support vector machine
(SVM), logistic regression (LR), and a decision tree (DT) to construct the classification model. The
classification accuracy of each classifier for each component was tested using the leave‑one‑out cross‑
validation (LOOCV) method. This method keeps one sample at a time for the test set and the other
samples for the training set. If there are k samples, it is necessary to train k times and test k times.
The LOOCV calculation is complicated, but its sample utilization rate is high. Therefore, it is suitable
for use with small sample sizes.

An SVM can find hyperplane partition data in a given sample space to achieve data classifica‑
tion. It is also possible to classify nonlinear data by mapping the data to a higher‑dimensional space
through kernel functions.

Logistic regression is a dichotomous technique, and its mathematical model is expressed
as follows:

hθ (x) = g
(

θT x
)

(14)

g (z) =
1

1 + e−z (15)
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x represents each feature of the training set, θ is the parameter of themodel, and g (z) is the activation
function, which is an s‑shaped curve. The results obtained by θT x are mapped to [0, 1].

A decision tree is a tree‑like process classification algorithm, which creates a number of internal
nodes and leaf nodes to make a series of “yes” or “no” judgments, thereby achieving data classifi‑
cation. The leaf node represents the final classification result, and the branch path represents the
classification rule. In addition, there are attribute selection methods that usually include the Gini
index and information gain. The Gini index was also used in this study.

2.5.4. ROC Analysis
The ROC curve was computed from a set of dichotomous training data used for learning, pre‑

supplied with the data’s categorical labels. Sensitivity and specificity at different data thresholds
were calculated by analyzing the measurement results from a dichotomous population. The area un‑
der the curve (AUC) is generally used as an index to evaluate the accuracy of ROC analysis, reflecting
the accuracy of classification. In our study, the AUC value was used as the evaluation criterion to
indicate clearly and accurately which classifier had a better classification effect. In other words, the
AUC value was proportional to the classification effect of the classifier (Table 1).

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

F1‑score = 2 ×
(

precision × recall
precision + recall

)
(17)

Sensitivity =
TP

TP + FN
(18)

Specificity =
TN

TN + FP
(19)

AUC: The area under the curve.

Table 1. The metrics used for evaluating performance of classifiers.

True Value

Positive Negative

Predictive value
Positive TP FN
Negative FP TN

Note: TP = True Positive; FN = False Negative; FP = False Positive; TN = True Negative.

3. Results
3.1. Demography Data

Independent t testing and Chi‑square tests were performed on age, gender, PSQI, SPM, and
NEO‑FFI to establish whether the HA and LA groups matched each other regarding demographic
data (Table 2).

Table 2. Demographic data in high‑altitude and low‑altitude subjects.

High‑Altitude
(M ± SD)

Low‑Altitude
(M ± SD) t p

Age (years) 22.200 ± 1.699 21.933 ± 1.438 0.691 0.492
Gender (male/female) 19/16 17/15 0.009 0.924

PSQI 3.400 ± 2.291 3.281 ± 2.098 0.221 0.826
SPM 44.686 ± 15.976 47.250 ± 9.374 −0.792 0.431

NEO‑FFI 177.286 ± 56.098 194.469 ± 11.086 −1.775 0.084
Note: PSOI = Pittsburgh sleep quality index; SPM = Raven’s standard progressive matrices; NEO‑
FFI = neuroticism–extraversion–openness.

3.2. Behavior Performance
Regarding the omission error rate, two‑way mixed‑design ANOVAs revealed that there was

a significant main effect from altitude [F(1, 65) = 24.01, p < 0.001, η2
p = 0.270], and the omission er‑

ror rate (1.33 ± 1.04%) for the high‑altitude group was smaller than that of the low‑altitude group
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(3.98 ± 3.01%). A significant main effect for period was observed [F(2, 64) = 6.23, p = 0.003,
η2

p = 0.163], and the omission errors in the a1 period (2.82 ± 2.69%) were larger than those in the
a2 period (2.20 ± 2.31%). A marginally significant interaction between altitude and period was ob‑
served [F(2, 64) = 3.12, p = 0.051, η2

p = 0.089]. In the a1 period, the high‑altitude group (1.54 ± 1.26%)
made fewer omission errors than the low‑altitude group (4.21 ± 3.13%) [F(1, 65) = 21.64, p < 0.001,
η2

p = 0.250], and the same trend was observed in the a2 period [F(1, 65) = 13.90, p < 0.001, η2
p = 0.176]

and a3 period [F(1, 65) = 11.89, p = 0.001, η2
p = 0.210]. Pairwise comparisons showed that the low‑

altitude group made more omission errors during period a1 than during a2 (p = 0.036), whereas in
the high‑altitude group, omission errors remained stable with time spent on the task [F(2, 33) = 3.02,
p = 0.062, η2

p = 0.155] (Figure 2).
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The mean reaction times in the Go trials revealed a significant effect of period [F(2, 64) = 11.87,
p < 0.001, η2

p = 0.271]. Reaction times significantly decreased over the course of the task, reaction
times in period a1 (461.58 ± 88.90) were larger than those in periods a2 (431.49 ± 83.23) and a3
(426.53 ± 76.22). Furthermore, the values in period a2 (431.49 ± 83.23) were larger than in period
a3. No significant main effect of altitude [F(1, 65) = 0.35, p = 0.557, η2

p = 0.005] or interaction between
altitude and period [F(2, 64) = 0.78, p = 0.461, η2

p = 0.024] were found (Table 3).

Table 3. The mean RTs in high‑ and low‑altitude subjects (mean ± SD).

Stimulus Period HA Group (n = 35) LA Group (n = 32)

Go
a1 491.43 ± 10.26 540.56 ± 10.69
a2 503.03 ± 9.48 537.69 ± 9.51
a3 491.94 ± 8.23 542.25 ± 8.44

No‑Go
a1 571.60 ± 8.90 618.69 ± 8.54
a2 574.11 ± 9.82 584.25 ± 10.77
a3 564.34 ± 11.13 589.69 ± 9.90

3.3. Time‑Domain Analysis
Regarding SP latencies, a significantmain effect of stimulus typewas observed [F(1, 65) = 143.21,

p < 0.001, η2
p = 0.688]. The latencies in Go trials (517.82 ± 5.81) were shorter than in No‑Go tri‑

als (583.78 ± 5.14). In addition, effects of altitude [F(1, 65) = 14.50, p = 0.001, η2
p = 0.182] and the

period × altitude interaction effect [F(2, 130) = 3.48, p < 0.05, η2
p = 0.051] were observed. For the

above two‑way interaction, follow‑up simple effects testing revealed that HA participants had sig‑
nificantly shorter SP latency than LAs for periods a1 (HA: 531.51± 8.05, LA: 579.63± 7.60; p < 0.001)
and a3 (HA: 528.14 ± 8.00, LA: 565.97 ± 7.05; p < 0.01), while no significant effect by group was
observed in period a2 (HA: 538.57 ± 7.27, LA: 560.97 ± 8.69; p > 0.05) (Table 4).
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Table 4. Mean latencies of the SP (ms) (M ± SEM).

Stimulus Period HA Group (n = 35) LA Group (n = 32)

Go
a1 5.02 ± 0.58 6.89 ± 0.45
a2 5.60 ± 0.61 6.56 ± 0.55
a3 5.84 ± 0.69 6.69 ± 0.55

No‑Go
a1 11.39 ± 0.93 13.55 ± 0.87
a2 12.52 ± 0.82 14.80 ± 1.04
a3 13.62 ± 1.00 14.54 ± 0.96

For SP amplitude, the main effects were stimulus type [F(1, 65) = 287.07, p < 0.001, η2
p = 0.815]

and period [F(2, 130) = 5.81, p < 0.01, η2
p = 0.082], as well as stimulus type × period interaction

[F(2, 130) = 5.02, p < 0.01, η2
p = 0.072]. Follow‑up simple effects analysis revealed that both groups

had greater SP amplitude for No‑Go trials during periods a2 (13.61 ± 0.66) and a3 (14.06 ± 0.69)
than period a1 (12.42 ± 0.65; ps < 0.05) for the CPz channels, but not for the Go trials [F(2, 132) = 0.87,
p > 0.05, η2

p = 0.013] (Table 5, Figures 3 and 4).

Table 5. Mean amplitudes of the SP (µV) (M ± SEM).

Stimulus Period HA Group (n = 35) LA Group (n = 32)

Go
a1 5.02 ± 0.58 6.89 ± 0.45
a2 5.60 ± 0.61 6.56 ± 0.55
a3 5.84 ± 0.69 6.69 ± 0.55

No‑Go
a1 11.39 ± 0.93 13.55 ± 0.87
a2 12.52 ± 0.82 14.80 ± 1.04
a3 13.62 ± 1.00 14.54 ± 0.96
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Figure 4. The images represent activity on the scalp at the time corresponding to the maximum
amplitude of each component for each group.

3.4. Time‑Frequency Analysis
3.4.1. Theta

The ANOVA testing performed on the theta power results revealed a significant interaction be‑
tween altitude and period (F(2, 64) = 5.17, p < 0.01, η2

p = 0.139). Comparisons indicated that the theta
power of HAs was significantly higher than LAs at periods a2 (HA: 0.52 ± 0.11,
LA: 0.24 ± 0.08; p < 0.05) and a3 (HA: 0.78 ± 0.16; LA: 0.22 ± 0.09; p < 0.01). In HAs, theta power
increased significantly between periods a1 and a3 (a1: 0.42 ± 0.09; a3: 0.78 ± 0.16; p < 0.05), while
remaining stable with time spent on task in LAs (Table 6 and Figure 5).

Table 6. Mean ERSP values for delta, slow alpha, fast alpha, and beta frequency bands (dB)
(460–700 ms) (M ± SEM).

Stimulus Period HA Group
(n = 35)

LA Group
(n = 32)

theta

Go
a1 0.84 ± 0.15 0.84 ± 0.16
a2 1.07 ± 0.16 0.74 ± 0.16
a3 1.44 ± 0.24 0.88 ± 0.25

No‑Go
a1 −0.01 ± 0.07 −0.19 ± 0.08
a2 −0.03 ± 0.09 −0.27 ± 0.09
a3 0.13 ± 0.09 −0.43 ± 0.09

slow alpha

Go
a1 −0.10 ± 0.05 −0.14 ± 0.05
a2 −0.13 ± 0.05 −0.17 ± 0.05
a3 −0.17 ± 0.06 −0.20 ± 0.05

No‑Go
a1 −0.01 ± 0.08 −0.18 ± 0.07
a2 −0.02 ± 0.11 −0.27 ± 0.07
a3 −0.02 ± 0.10 −0.42 ± 0.04

fast alpha

Go
a1 −0.09 ± 0.05 −0.17 ± 0.06
a2 −0.12 ± 0.05 −0.18 ± 0.06
a3 −0.15 ± 0.06 −0.18 ± 0.06

No‑Go
a1 −0.14 ± 0.07 −0.28 ± 0.07
a2 −0.03 ± 0.09 −0.31 ± 0.09
a3 −0.11 ± 0.08 −0.37 ± 0.08

beta

Go
a1 −0.04 ± 0.02 −0.11 ± 0.02
a2 −0.03 ± 0.02 −0.10 ± 0.02
a3 −0.05 ± 0.02 −0.08 ± 0.02

No‑Go
a1 −0.07 ± 0.03 −0.17 ± 0.03
a2 −0.05 ± 0.04 −0.19 ± 0.04
a3 −0.09 ± 0.03 −0.16 ± 0.03
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3.4.2. Slow Alpha
Regarding slow alpha power, ANOVA revealed the significant main effect of stimulus type

[F(1, 65) = 207.71, p < 0.001, η2
p = 0.762]. Meanwhile, a significant effect from period × stimulus

type× altitude interaction [F(2, 130) = 3.39, p < 0.05, η2
p = 0.050] was observed: the LA group showed

relatively lower slow alpha band activation in the No‑Go trials compared to the HA group in the a2
period (t = −2.28, p < 0.05), whereas similar trends were found in both the Go and No‑Go trials in
period a3 (t = −3.98, p < 0.001; t = −3.21, p < 0.01) (Table 6 and Figure 5).

3.4.3. Fast Alpha
For fast alpha power, the main effects of stimulus type and interaction effect of period × stim‑

ulus type were significant [F(1, 65) = 12.03, p < 0.01, η2
p = 0.156; F(1, 65) = 6.18, p < 0.01, η2

p = 0.162].
Follow‑up simple effects analysis revealed that fast alpha power in period a1 was larger than in
period a3 (a1: −0.12 ± 0.03, a3: −0.18 ± 0.04; p < 0.05). No significant main effects of altitude
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[F(1, 65) = 1.23, p = 0.271, η2
p = 0.019] or interaction between altitude and period [F(2, 130) = 1.27,

p = 0.283, η2
p = 0.019] were found (Table 6 and Figure 5).

3.4.4. Beta
For beta power, ANOVA revealed the significant interaction effect of period × stimulus

type× altitude interaction [F(2, 130) = 6.77, p < 0.01, η2
p = 0.094]. Follow‑up simple effects analysis re‑

vealed that HAs had greater beta activities in theNo‑Go trials than LAs in period a1 (t = 2.62, p < 0.05).
In addition, the same trend was observed in both Go and No‑Go trials in periods a2 (t = 2.20, p < 0.05;
t = 2.71, p < 0.01) and a3 (t = 4.09, p < 0.001; t = 2.64, p = 0.010) (Table 6 and Figure 5).

3.5. Machine Learning
Figure 6 shows the distribution of extracted features by violin plots. Meanwhile, Table 6 shows

the SVM, LR, and DT classifiers’ evaluation criteria, including precision, sensitivity, specificity, F1
score, and AUC for the ERP and ERSP datasets. The performance achieved by SVM increased grad‑
ually across all three periods and reached the highest accuracy of 92.54% in period a3 (Table 7). The
classification accuracy of LR peaked at 95.52% in period a1 and then decreased over time (Figures 7
and 8). Among the three different machine learning algorithms, the classification performance of DT
was the worst, with accuracies for all three time periods falling below 85.00%.
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a1 95.52% (90.57%, 100.00%) 0.96 91.43% 100.00% 0.94 
a2 89.55% (82.22%, 96.88%) 0.90 91.43% 87.50% 0.93 
a3 86.57% (78.41%, 94.73%) 0.87 88.57% 84.38% 0.92 

DT 
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Figure 6. Violin diagrams showed the distribution of extracted features. GO‑beta‑max = Maximum
power value of beta band during Go trials; NoGo‑theta‑max = maximum power value of theta band
during No‑Go trials; NOGO‑alpha1‑max = maximum power value of alpha1 band during No‑Go
trials; Go_mean = average amplitude of SP components during Go trials; Go_Total area = total area
of SP components during Go trials; Go_|mean| = absolute value of the mean amplitude of SP com‑
ponent during Go trials; Go_|latency/mean| = absolute value of the ratio between latency and mean
amplitude of SP components during Go trials; NoGo_mean = average amplitude of SP components
during No‑Go trials; NoGo_Total area = total area of SP components during No‑Go trials; NoGo_
|mean| = absolute value of the mean amplitude of SP component during No‑Go trials;
NoGo_|latency/mean| = absolute value of the ratio between latency andmean amplitude of SP com‑
ponents during No‑Go trials.
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Table 7. Precision, sensitivity, and specificity values achieved for ERPs and EROs by the SVM, LR,
and DT algorithms for the Elman neural network.

Classifiers Periods Accuracy (95%
Confidence Interval) F1 Score Sensitivity Specificity AUC

SVM
a1 86.57% (78.41%, 94.73%) 0.89 85.71% 87.50% 0.90
a2 88.06% (80.3%, 95.82%) 0.88 91.43% 84.38% 0.96
a3 92.54% (86.25%, 98.83%) 0.93 91.43% 93.75% 0.97

LR
a1 95.52% (90.57%, 100.00%) 0.96 91.43% 100.00% 0.94
a2 89.55% (82.22%, 96.88%) 0.90 91.43% 87.50% 0.93
a3 86.57% (78.41%, 94.73%) 0.87 88.57% 84.38% 0.92

DT
a1 80.60% (71.13%, 90.07%) 0.80 85.71% 75.00% 0.69
a2 70.15% (59.19%, 81.11%) 0.68 80.00% 59.38% 0.70
a3 70.15% (59.19%, 81.11%) 0.70 65.71% 75.00% 0.81
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4. Discussion
The present study assessed response inhibition in HA participants in a situation of sustained

attention, by examining their oscillatory componentswithin the time and frequency domains in a sus‑
tained attention Go/No‑Go task. To determine a more efficient method for detecting HA, three clas‑
sification algorithms—SVM, LR, and DT—were evaluated. The following conclusions were drawn
from the results.

Our behavioral performancemeasure to track response inhibition in sustained attentionwas the
omission error rate, which is a widely used assessment of attentional vigilance and is considered sen‑
sitive to a variety of performance results, such as hypoxia [65], aging [66], and sleep deprivation [67].
We found that the HA group had a lower omission error rate than the LA group in sustained atten‑
tion performance across all periods, suggesting that HA participants exhibited increased vigilance
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and a lower level of response inhibition. Similarly, our previous findings suggested that chronic ex‑
posure to high altitudes resulted in overactive performance monitoring [68]. Therefore, it might be
speculated that chronic hypoxic stress provokes a compensatorymechanism, resulting in adaptation
to long‑term exposure to hypoxic environments.

Previous studies by our team have shown that passively induced ERPs are disrupted during
chronic high‑altitude hypoxic exposure [69,70]. This study is the first to demonstrate the utility of
ERPs in tracking the time course of recovery following hypoxia. Our results demonstrated that HA
participants had relatively shorter latency of the SP component over the medial frontal regions in
periods a1 and a3 comparedwith LA individuals. Studies using electrophysiological recording have
noted that SP is a marker of conflict resolution and response selection [71,72]. Therefore, our results
suggest that the latency of the SPwas shorter in theHA group than in the LA group, perhaps because
of increasing vigilance in their responses to conflict resolution and enhanced adaptation to conflict.
This is consistent with the results of previous studies showing that cognitive decrements occurred
only when exposed to high levels of hypoxia [73], while exposure to mild altitude levels (3000 and
4000 m) did not degrade executive function (i.e., Stroop color test performance) [74].

We conducted quantitative analyses of the EEG signal rhythms by estimating the power inten‑
sity of the frequency bands. Midline frontal theta activity is associated with response inhibition [75].
Stronger theta activities in the prefrontal regions during the middle and later periods of sustained
attentionwere observed inHAs comparedwith LAs. In addition, theta band powerwas significantly
enhanced over the three periods in the HA group but not in the LA group. These findings could be a
possible explanation for compensatory cognitive scaffolding in high‑altitude immigrants, accompa‑
nied by an increase in functional engagement in the frontal regions. Second, alpha power is supposed
to be associated with relatively higher internal attention demands [76] and with the suppression of
irrelevant information, allowing themaintenance of attention during task execution [77]. Slow alpha
(8~10.5 Hz) and fast alpha (10.5~13Hz) oscillations have been reported to bemodulated by top‑down
preparations for response control [77] and sensory‑semantic processes, respectively [78,79]. The slow
alpha band oscillation results showed that the HA group invested more attentional resources in de‑
tecting conflict information than the LA group, especially during the middle and later stages of sus‑
tained attention. Although there are differences between slow and fast alpha activities, it is worth
noting that alpha activitywas found to be themost sensitive neuroelectrophysiological indicator that
could be used in detecting fatigue [80]. These results suggest that plateau immigrants aremore likely
to experience cumulative fatigue. Interestingly, the fast alpha rhythms that were associated with the
sensory‑semantic processes during inhibition (No‑Go) [75] were found to not be influenced by high‑
altitude‑induced chronic stress. Third, previous studies have shown that increased prefrontal beta
oscillations indicate enhanced cognitive control [81,82]. The current study implies that increased
adaptation to conflict over sustained attention periods was accompanied among HAs by a greater
need for cognitive resources in the conflict‑processing stage. In accordance with the compensation
hypothesis of neural circuit utilization [83,84], the PFC cortical areas of lowlanders exposed to high
altitude may have been more strongly activated during the GSAT, in order to compensate for de‑
creased oxygen availability on the plain.

To our knowledge, this study is the first to investigate the classification accuracy of ERPs and
EROs underlying sustained attention processes using machine learning. We found that the classifi‑
cation performance of SVM was superior to the other two algorithms (LR and DT), and reached an
accuracy of 92.54% during the last period of the sustained attention process. The F1 score, sensitivity,
specificity, and AUC of SVM also achieved optimal performance during this period, which was con‑
sistent with previous studies, indicating that SVM machine learning can effectively distinguish hu‑
man fatigue under high‑altitude, low‑oxygen conditions compared with control subjects [85]. Com‑
pared to previous studies [55], we achieved good classification performance by using 11 features
from one electrode. The current findings indicate that the SP induced by “Go” and “No‑Go” trials
and the neural oscillations corresponding to the time window contain more sensitive information
and may be helpful for assisting in the identification of oxidative stress, which is associated with
chronic exposure to a high‑altitude environment.

Above all, the present findings support the notion that HA participants display compensatory
activation of cognitive control resource consumption during sustained attention processing. How‑
ever, because of the relatively small sample size of acute hypobaric hypoxia, we could not compare
the different characteristics of response inhibition in oxygen deficiency in migrants to plateaus when
dealing with overcoming habitual responses. This was a limitation of the present study. We are con‑
tinuing to collect data on the high‑altitude hypoxic population described above. In addition, because
of the high trial‑to‑trial variability and the unfavorable ratio between signal (ERP/EROs) and noise,
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implementation classification using ERP and EROs on a single‑trial basis and extracting effective
features for real‑time identification of hypoxia stress at high altitude are also challenging problems.
In future studies, effective feature‑extraction algorithms should be developed to identify chronic
high‑altitude hypoxia.

We should consider several issues in future work. First, the inter‑trial phase locking of neural
oscillations characteristic of hypoxia tolerance is a measure of phase consistency of the neural activ‑
ities, and experimental trails would be a potential way to better understand the neural mechanisms
of human adaptation to high altitudes [86]. Second, because the amplitude of the EEG signal is par‑
ticularly sensitive to noise, a multiple linear regression model of the EEG power spectrum should be
explored in relation to the role of sustained attention in chronic high‑altitude hypoxia. Third, deep
learning should be combined with machine learning, which may bring a key step toward helping
psychologists to classify accurately and reliably chronic high‑altitude hypoxia and plain controls.

5. Conclusions
Our work found that in HA individuals the PFC areas specific to cognitive tasks were activated

to compensate for reduced oxygen availability compared to subjects from low‑altitude areas, which
was reflected in the time‑domain (e.g., SP) and time‑frequency‑domain (e.g., delta, slow alpha, fast
alpha, and beta) datasets. Furthermore, data mining indicated that SVM is a more effective classifi‑
cation method to discriminate between chronic hypoxic exposure and a normoxic baseline at a later
stage of sustained attention, compared with the LR and DT algorithms. These findings not only pro‑
vide novel insights into response inhibition in a situation of sustained attention in chronic exposure
to high‑altitude environments, but also reveal an auxiliary method for identifying chronic plateau
hypoxia at the electroneurophysiological level.
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