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Abstract: Background: The severity of white matter hyperintensity (WMH) in patients with acute
lacunar stroke (ALS) may be not completely parallel to cognitive impairment. Controversies persist
about the effects of WMH on cognitive dysfunction. It is vital to explore whether the association
may be affected by certain factors and whether a subsequent subgroup analysis is necessary. The
aim of this study was to evaluate the relationship between WMH and cognitive impairment in acute
lacunar stroke patients and the possible causal factors. Methods: We continuously enrolled patients
with ALS who were hospitalized at the First Affiliated Hospital of Soochow University between
October 2017 and June 2022. The cognitive function of all patients was assessed by using the Montreal
Cognitive Assessment (MoCA) scale 14 ± 2 days after the onset of AIS, and the results were adjusted
to the education level. The MoCA scale was reevaluated at the 6-month (day 182 ± 7) follow-up by
outpatient visit or video. Demographic and clinical data were collected. The manifestations of chronic
cerebral small-vessel disease (CSVD), including the total Fazekas score and total CSVD burden score,
were assessed with an MRI scan. A mismatch refers to an inconsistency between the severity of
WMH and cognitive dysfunction. A Type 1 mismatch refers to cognitive impairment with mild WMH
(total Fazekas score = 0–1), and a Type 2 mismatch refers to severe WMH (total Fazekas score = 5–6)
in patients with normal cognitive function. Results: Among 213 enrolled ALS patients, 66 patients
(31.0%) had cognitive dysfunction, and 40 patients (18.8%) had mismatches. Twenty-seven cases
(12.7%) were Type 1 mismatched, and seventeen cases (8.0%) were Type 2 mismatched. Age, gender,
fibrinogen and cerebral infarction history were independent risk factors for cognitive impairment
in ALS patients. Imaging features, including moderate to severe WMH, deep WMH and the total
CSVD burden score, were also independently associated with cognitive impairment. The patients
in the mismatched group were older, had more severe deep WMH and had a higher occurrence of
depression (p < 0.05). The NIHSS score, depression and microbleeds were significantly different
between the Type 1 mismatched group and the matched group (p = 0.018, p = 0.012 and p = 0.047).
Patients in the Type 2 mismatched group were male (p = 0.04), had a lower level of fibrinogen
(p = 0.005), a lower incidence of CMBs (p = 0.003), a lower total CSVD burden score (p = 0.017),
more severe paraventricular WMH (p = 0.035) and milder deep WMH (p = 0.026). Conclusions: Our
study examined a homogeneous study cohort of recruited patients with symptomatic ALS. We found
heterogeneity between WMH and cognitive function in ALS patients. Despite a similar WMH severity,
some baseline clinical features and other conventional CSVD imaging characteristics may account for
this heterogeneity phenomenon. Our findings provide data for the early diagnosis and prevention
of cognitive impairment in ALS patients and suggest that the severity of WMH is not completely
parallel to cognitive impairment. The white matter microstructural injury and remote WMH effects
may account for the mismatch phenomenon. More attention should be paid to understanding the
underlying mechanisms and finding new imaging markers.
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1. Introduction

Acute lacunar stroke (ALS) accounts for about 25% of all acute ischemic strokes and is
one of the most important subtypes of cerebral small-vessel diseases (CSVDs) [1,2]. The
imaging manifestation of ALS is a recent small subcortical infarct in the supply area of a
small perforating artery [2,3]. Studies have found that 11–23% of patients with lacunar
strokes develop persistent cognitive impairment over time, mainly manifested in the
impairment of attention and executive function [4]. White matter hyperintensity (WMH)
is another important subtype of CSVD and is easily detected in magnetic resonance (MR)
examination in elderly people with or without acute ischemic cerebrovascular disease.

In multiple population-based studies, WMHs were reported to be associated with the
impairment of cognitive function [5–7]. A meta-analysis including thirty-six prospective
studies with 19,040 enrolled patients discovered that WMH at baseline was associated with
a 14% increased risk of cognitive impairment, and periventricular WMH was related to a
1.51-fold risk of the occurrence of dementia [8]. Cross-sectional studies also suggested that
WMHs with higher Fazekas visual grades were correlated with the impairment of specific
cognitive domains, but some studies showed weak evidence of effects [9–15]. Schmidt
et al. found that the WMH load was no longer obviously related to cognitive function
when adding brain volume changes to the regression model [16]. Moreover, Chen et al.
reported a non-linear correlation between WMHs and cognition [17]. Interestingly, different
cognitive states have been observed clinically for the same white matter lesions. Therefore,
exploring whether the relationship between WMH and cognition is affected by certain
factors is crucial, and a further subgroup analysis is warranted. Semi-quantitative visual
ratings such as the Fazekas visual grade are often used to assess the severity of WMH.
However, there is a ceiling effect in the visual assessment, which does not accurately
identify white matter changes [17]. White matter changes are caused by fluid dynamic
changes and gradually develop into WMH in the late stage [18]. Studies have found
that the progression of WMHs but not baseline white matter was significantly related to
cognitive impairment [17,19]. Therefore, more accurate WMH measures are required for
better predicting cognitive impairment.

Studies concerning the heterogeneity phenomenon between WMH severity and cog-
nitive impairment have been rare. Wang et al. reported that chronic CSVD patients who
had the same degree of WMH suffered different outcomes of cognitive impairment and
analyzed the correlated factors [20].

In this study, we aimed to observe the heterogeneity between WMH and cognitive
function in ALS patients, identify the vascular risk factors and imaging features that
contribute to this heterogeneity and analyze their underlying mechanisms.

2. Materials and Methods
2.1. Patients

The present study was a prospective observational study with data collected from the
neurological department of the First Affiliated Hospital of Soochow University between
October 2017 and June 2022. We consecutively recruited patients who were clinically
diagnosed with ALS with imaging-proven lacunar infarction lesions. The exclusion cri-
teria were as follows: (1) cortical lesions and/or subcortical lesions larger than 20 mm
at the axial diameter on diffusion-weighted imaging (DWI); (2) history of other central
nervous system diseases that may lead to WMH, such as encephalitis and multiple sclero-
sis; (3) severe systemic or other diseases that clearly affect cognition, such as Alzheimer’s
disease, hydrocephalus, Parkinson’s disease, etc.; (4) cardioembolic or macroangiopathy
(≥50% intracranial or extracranial large-artery atherosclerosis stenosis shown by carotid
and cerebrovascular ultrasound, CTA or MRA); (5) history of severe depression (17-item
Hamilton Depression Rating Scale score ≥ 24) or other mental illnesses; (6) unable to
complete the neuropsychological evaluation due to, for example, disturbance of conscious-
ness or severe language disorders; (7) unable to undergo MR examination. Demographic
characteristics, laboratory data and imaging information were collected for all patients. The
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study was approved by the ethics committee of the First Affiliated Hospital of Soochow
University (NO. 2020157), and all participants gave written informed consent.

2.2. Data Collection and Baseline Evaluation

Demographic and clinical baseline data were collected within 48 h of admission and
included age, gender, smoking and alcohol consumption, past disease history, education
level, baseline National Institutes of Health Stroke Scale (NIHSS) score and other relevant
laboratory data.

2.3. MRI Imaging

All MR imaging was performed on the same 3.0 T MRI scanner (Philips Healthcare,
Best, The Netherlands). The magnetic resonance sequences were as follows: T1-weighted,
T2-weighted, DWI, T2-FLAIR, 3d-TOF-MRA and susceptibility-weighted imaging (SWI).

2.4. CSVD Imaging Markers

The total CSVD burden score was composed of the following four imaging markers.
WMH refers to the periventricular and deep white matter T2-weighted MRI areas of high
intensity, representing gliosis, axonal loss and ischemic demyelination [21]. One point
was assigned for moderate to severe WMH if periventricular WMH was deep (Fazekas
score = 3), or deep WMH showed early confluence or confluence (Fazekas score = 2 or
3) [21]. An enlarged perivascular space (EPVS) is generally less than 3 mm, and the shape
is linear, round or oval. The signal intensity of EPVS on all MR sequences is similar to that
of cerebrospinal fluid (CSF). A number of EVPS > 10 would allocate a 1-point score [9]. A
lacune is a round or oval cavity of fluid between 3 mm and 15 mm in diameter under the
cortex (signal similar to CSF). Cerebral microbleeds (CMBs) are defined as homogeneous,
circular, low-intensity lesions < 5 mm in diameter on SWI. One point was assigned each for
the existence of any lacunes or CMBs.

We added up the Fazekas scores of both periventricular WMH and deep WMH to
obtain the total WMH Fazekas score. The total Fazekas score (0–6) was used to assess white
matter severity, including mild WMH (total Fazekas score = 0–2), moderate WMH (total
Fazekas score = 3–4) and severe WMH (total Fazekas score = 5–6). A Type 1 mismatch
refers to mild WMH with cognitive impairment, and a Type 2 mismatch refers to severe
WMH with normal cognition [20].

2.5. Neuropsychological Assessment and Follow-Up Visit

The neuropsychological scale was evaluated by two experienced investigators (Yun
Zhou and Shanshan Diao) 14 ± 2 days after stroke onset. The Montreal Cognitive Assess-
ment (MoCA) has high sensitivity and specificity for mild cognitive impairment. According
to the Guidelines from the Vascular Impairment of Cognition Classification Consensus
Study (VICCCS) [22] Chinese Revision Plan, cognitive impairment is scored as follows: no
education, MOCA score ≤ 13; 1–6 years of education, MOCA score ≤ 19; and 7 years of
education or more, MOCA score ≤ 24 points. For example, a patient with a MOCA score of
20 is considered cognitively normal if the years of education are less than or equal to six,
but this individual is considered to have cognitive impairment if the years of education are
seven or more. In addition, the 17-item Hamilton Depression Scale was used for depression
severity assessment, and ≤7 points represented a normal condition [23]. We conducted the
follow-up visit at 6 months (day 182 ± 7) after the onset of stroke by outpatient visit or
video. The items included the neuropsychological scale assessment, mRS score evaluation
and medication situation.

2.6. Statistical Analysis

The SPSS 26.0 software package was used for statistical analysis. Continuous mea-
surement data conforming to a normal distribution were expressed as mean ± standard
deviation (X ± S), measurement data conforming to an abnormal distribution were ex-



Brain Sci. 2022, 12, 1674 4 of 14

pressed as median (interquartile range), and count data were expressed as a percentage
(%). The independent-sample t-test was used for comparisons between two groups of
normally distributed measurement data, a non-parametric test was used for measurement
data that did not follow a normal distribution, and the chi-square test was used for count
data. Variables with p < 0.05 in univariable analysis were included in multivariable logistic
regression analysis. A p value <0.05 was considered statistically significant.

3. Results
3.1. Baseline Clinical Features and MRI Characteristics

The flow diagram of patient inclusion and exclusion is shown in Figure 1. After
screening all 325 ALS patients admitted, 213 patients were finally enrolled in our study
according to the inclusion and exclusion criteria.

Figure 1. Flow diagram of included and excluded patients.

The clinical and MRI characteristics of the patients at baseline are shown in Table 1.
There were 66 patients (31.0%) in the cognitive impairment group with an average age
of 68 years (62–76), and 35 were men. The median age was 62 (53–72) years old in the
non-cognitive impairment group with 68.7% males. The total CSVD burden scores were
2 (1–3) in the cognitive impairment group and 1 (0–2) in the non-cognitive impairment
patients. Moderate to severe WMHs were found in 59.1% of the cognitively impaired ALS
patients and 33.3% of the normal group (Figure 2). Univariate analysis showed that the
differences between the two groups were age, gender, a previous history of ischemic stroke,
the NIHSS scale, hemoglobin, fibrinogen, moderate to severe WMH, lacunes, CMBs, EPVS,
deep WMH and the total CSVD burden score (p < 0.05).
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Table 1. Demographic, clinical and CSVD characteristics of patients.

Total Patients
(n = 213)

With Cognitive
Impairment

(n = 66)

Without
Cognitive

Impairment
(n = 147)

p Value BH-Adjusted p
Values (q Value)

Demographic and clinical characteristics

Age (years) 64 (56–72) 68 (62–76) 62 (53–72) p = 0.001 * q = 0.004 #

Male, n (%) 136 (63.8%) 35 (53.0%) 101 (68.7%) p = 0.028 * q = 0.061 #

Medical history

Cerebral infarction,
n (%) 46 (21.6%) 21 (31.8%) 25 (17.0%) p = 0.015 * q = 0.043 #

Hypertension,
n (%) 159 (74.6%) 53 (80.3%) 106 (72.1%) p = 0.204 q = 0.295

Diabetes mellitus,
n (%) 59 (27.7%) 22 (33.3%) 37 (25.2%) p = 0.218 q = 0.298

MOCA score 22 (19–25) 20 (16–24) 24 (23–26) p < 0.001 * q = 0.001 #

Depression, n (%) 18 (8.5%) 8 (12.1%) 10 (6.8%) p = 0.197 q = 0.295

NIHSS score 3 (1–3) 4 (1–5) 2(1–3) p = 0.018 * q = 0.043 #

Laboratory examination

Thrombocyte
(109/L)

201 ± 58 201 ± 60 202 ± 59 p = 0.793 q = 0.825

LDL-C (mmol/L) 2.64 (2.07–3.14) 2.63 (2.08–3.05) 2.65 (2.07–3.16) p = 0.360 q = 0.446

Hemoglobin (g/L) 134 (124–144) 131 (121–142) 135 (126–146) p = 0.035 * q = 0.070 #

Creatinine
(µmol/L) 71 (57–80) 70 (60–81) 71 (57–80) p = 0.685 q = 0.759

hs-CRP (mg/L) 3.75 (0.76–4.71) 4.21 (0.85–4.97) 3.59 (0.66–4.59) p = 0.136 q = 0.236

Fibrinogen (g/L) 2.72 (2.14–3.13) 1.75 (2.37–3.37) 1.64 (2.00–3.04) p = 0.001 * q = 0.004 #

Imaging features

Infarction lesions

Thalamus 25 (11.7%) 8 (12.1%) 17 (11.6%) p = 0.907 q = 0.907

Basal
ganglia/internal

capsule
82 (38.5) 27 (40.9%) 55 (37.4%) p = 0.628 q = 0.742

Centrum
ovale/corona

radiata
70 (32.9%) 18 (27.3%) 52 (35.4%) p = 0.244 q = 0.317

Medulla/midbrain/
pons/cerebellum 52 (24.4%) 15 (22.7%) 37 (25.2%) p = 0.701 q = 0.759

WMH Fazekas
score (0–6) 2 (0–4) 3 (1–4) 2 (0–3) p = 0.067 q = 0.124

Lacune, n (%) 114 (53.5%) 44 (66.7%) 70 (47.6%) p = 0.011 * q = 0.036 #

Microbleeds, n (%) 52 (24.4%) 28 (42.4%) 24 (16.3%) p < 0.001 * q = 0.001 #

EPVS (N > 10),
n (%) 109 (51.2%) 42 (63.6%) 67 (45.6%) p = 0.017 * q = 0.043 #

Moderate to severe
WMH, n (%) 76 (35.7%) 37 (56.1%) 39 (26.5%) p < 0.001 * q = 0.001 #

Periventricular
WMH 1 (0–2) 2 (1–3) 1 (0–2) p = 0.189 q = 0.295

Deep WMH 1 (0–1) 1 (0–2) 0 (0–1) p < 0.001 * q = 0.001 #

Total CSVD score
(0–4) 2 (1–3) 2 (1–3) 1 (0–2) p = 0.001 * q = 0.004 #

Results are expressed as number (column %), mean ± SD or median (interquartile range). Abbreviations: MOCA,
Montreal Cognitive Assessment; NIHSS, National Institutes of Health Stroke Scale; LDL-C, low-density lipoprotein
cholesterol; hs-CRP, high-sensitivity C-reactive protein; EPVS, enlarged perivascular space; WMH, white matter
hyperintensities; CSVD, cerebral small-vessel disease. * p < 0.05. # q < 0.1.
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Figure 2. Distribution of WMH severity in patients with and without cognitive impairment. CI,
cognitive impairment; mild WMH (Fazekas score = 0–2); moderate WMH (Fazekas score = 3–4);
severe WMH (Fazekas score = 5–6).

3.2. Independent Risk Factors for Cognitive Impairment in ALS Patients

Multivariable logistic regression analysis showed that age, gender, cerebral infarction
history, fibrinogen, moderate to severe WMH and deep WMH were important determinants
of long-term cognitive impairment after ALS. A total CSVD burden score of 4 was also one
of the independent risk factors of cognitive impairment compared to a score of 0 (Table 2).

Table 2. Multivariable logistic regression analysis of risk factors associated with cognitive impairment.

OR 95% CI B p Value

Age(years) 1.044 1.009–1.080 0.043 p = 0.014 *

Male, n (%) 0.379 0.176–0.817 −0.970 p = 0.013 *

NIHSS score 1.124 0.995–1.268 0.116 p = 0.060

Cerebral
infarction

history, n (%)
2.359 1.027–5.419 0.858 p = 0.043 *

Fibrinogen (g/L) 1.810 1.242–2.639 0.594 p = 0.002 *

Moderate to
severe WMH 3.485 1.656–7.333 1.248 p = 0.001 *

Deep WMH 6.037 2.600–14.020 1.798 p < 0.001 *

Total CSVD
score (0–4) p = 0.005 *

0 Ref. Ref. Ref. Ref.

1 0.558 0.189–1.654 −0.583 p = 0.293

2 1.116 0.388–3.211 0.110 p = 0.839

3 1.878 0.598–5.898 0.630 p = 0.281

4 7.309 1.872–28.530 1.989 p = 0.004 *
CI, confidence interval; B, regression coefficient; NIHSS, National Institutes of Health Stroke Scale; WMH, white
matter hyperintensities; CSVD, cerebral small-vessel disease. * p < 0.05.

3.3. Comparison of Clinical Features and CSVD Characteristics between Mismatch and Match Types

Among all patients, 40 patients (18.8%) had mismatches between WMH severity and
cognition, and 115 patients (54.0%) were consistent (Table 3). Figure 3 shows two typical
cases of the mismatch types. The patients in the mismatched group were older, had a higher
occurrence of depression and had a higher Fazekas score of deep WMH (p < 0.05).
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Table 3. Comparison between mismatch and match types.

Mismatch Type
(n = 40) Match Type (n = 115) p Value

Demographic and clinical characteristics

Age (years) 67 ± 10 61 ± 12 p = 0.012 *

Male, n (%) 25(62.5%) 73 (63.5%) p = 0.912

Depression, n (%) 7(17.5%) 7 (6.1%) p = 0.030 *

Medical history

Cerebral infarction,
n (%) 12(30.0%) 22 (19.1%) p = 0.152

Hypertension, n (%) 31(77.5%) 83 (72.2%) p = 0.511

Diabetes mellitus, n
(%) 13(32.5%) 31 (27.0%) p = 0.503

Laboratory examination

Thrombocyte (109/L) 194 ± 45 204 ± 63 p = 0.285

LDL-C (mmol/L) 2.59 (1.91–3.11) 2.65 (2.08–3.10) p = 0.343

Hemoglobin (g/L) 135 (125–145) 134 (125–145) p = 0.864

Creatinine (µmol/L) 72 (59–81) 71 (56–79) p = 0.193

hs-CRP (mg/L) 3.70 (0.79–4.92) 3.77 (0.77–4.47) p = 0.852

Fibrinogen (g/L) 2.55 (2.09–2.91) 2.70 (2.15–3.06) p = 0.422

Imaging features

Periventricular WMH 1 (0–3) 1 (0–1) p = 0.109

Deep WMH 1 (0–2) 1 (0–1) p = 0.038 *

Lacune, n (%) 22 (55.0%) 59 (51.3%) p = 0.724

Microbleeds, n (%) 10 (25.0%) 25 (21.7%) p = 0.690

EPVS (N > 10), n (%) 22 (55.0%) 49 (42.6%) p = 0.190

Total CSVD score
(0–4) 2 (1–3) 1 (0–2) p = 0.082

Mismatch type: cognitively normal but with severe white matter hyperintensity (Fazekas score = 5–6), or
cognitively impaired but with mild white matter hyperintensity (Fazekas score = 0–2). Otherwise, we call it a
match. LDL-C, low-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein; EPVS, enlarged
perivascular space; CSVD, cerebral small-vessel disease. WMH, white matter hyperintensity. * p < 0.05.

Figure 3. The T2-FLAIR sequence of two typical patients who had heterogeneity between WMH
severity and cognition. Case 1: A 51-year-old male patient presented with mild WMHs (A,B) but
had cognitive impairment with MOCA score of 20 (years of education: 12); Case 2: A 60-year-old
female patient had normal cognition but severe WMHs (C,D). The MOCA score was 26 (years of
education: 6).

Among all of the patients with mismatch types, 27 cases (12.7%) had Type 1 mis-
matches, and 13 cases (6.1%) had Type 2 mismatches (Table 4). The NIHSS score, depres-
sion and CMBs were significantly different between the Type 1 mismatched group and
the matched group (p = 0.018, p = 0.012 and p = 0.047). Patients in the Type 2 mismatched
group were male (p = 0.04), had a lower level of fibrinogen (p = 0.005), a lower incidence
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of CMBs (p = 0.003) and a lower total CSVD burden score (p = 0.017). We found that both
periventricular WMH and deep WMH were associated with a Type 2 mismatch (p = 0.035
and p = 0.026). In the Type 1 mismatched group, neither periventricular WMH nor deep
WMH had any statistical significance (p = 0.613 and p = 0.560).

Table 4. Features related to Type 1 mismatch and Type 2 mismatch.

Type 1 Type 2

Mismatch
(n = 27) Match (n = 98) p Value Mismatch

(n = 13) Match (n = 17) p Value

Age (years) 64 (55–73) 59 (51–68) p = 0.081 73 ± 7 73 ± 9 p = 0.971

Male, n (%) 13 (48.2%) 63 (64.3%) p = 0.128 12 (92.3%) 10 (58.8%) p = 0.040 *

NIHSS score 4 (1–4) 2 (1–3) p = 0.018 * 3 (0–3) 2 (0–4) p = 0.915

Depression,
n (%) 6 (22.2%) 6 (6.1%) p = 0.012 * 1 (7.7%) 1 (5.9%) p = 0.844

Medical history

Cerebral
infarction, n (%) 8 (29.6%) 17 (17.4%) p = 0.158 4 (30.8%) 5 (29.4%) p = 0.936

Hypertension,
n (%) 20 (74.1%) 69 (70.4%) p = 0.710 11 (84.6%) 14 (82.4%) p = 0.869

Diabetes
mellitus, n (%) 11 (40.7%) 25 (25.5%) p = 0.122 2 (15.4%) 6 (35.3%) p = 0.222

Laboratory examination

Thrombocyte
(109/L) 195 ± 48 204 ± 63 p = 0.275 191 ± 38 203 ± 66 p = 0.572

LDL-C
(mmol/L) 2.62 ± 1.04 2.64 ± 0.77 p = 0.091 2.54 (2.28–3.12) 2.71 (2.37–3.10) p = 0.967

Hemoglobin
(g/L) 134 (124–143) 135 (126–146) p = 0.477 136 ± 13 129 ± 15 p = 0.184

Creatinine
(µmol/L) 69 (57–78) 71 (56–78) p = 0.732 78 ± 13 72 ± 16 p = 0.287

hs-CRP (mg/L) 3.42 (0.79–3.57) 3.67 (0.67–4.43) p = 0.859 4.26 (0.75–7.23) 4.36 (0.92–4.97) p = 0.706

Fibrinogen
(g/L) 2.85 (2.27–3.14) 2.67 (2.08–3.06) p = 0.339 1.93 (1.36–2.45) 2.89 (2.48–3.11) p = 0.005 *

Imaging features

Periventricular
WMH 1 (0–1) 0 (0–1) p = 0.613 3 (3–3) 3 (2–3) p = 0.035 *

Deep WMH 0 (0–0) 0 (0–0) p = 0.560 2 (2–3) 3 (2–3) p = 0.026 *

Lacune, n (%) 15 (55.6%) 45 (45.9%) p = 0.399 7 (53.8%) 14 (82.4%) p = 0.091

Microbleeds,
n (%) 8 (29.6%) 13 (13.3%) p = 0.047 * 2 (15.4%) 12 (70.6%) p = 0.003 *

EPVS (N > 10),
n (%) 13 (48.1%) 36 (36.7%) p = 0.300 9 (69.2%) 13 (76.5%) p = 0.657

Total CSVD
score 1 (0–2) 1 (0–2) p = 0.184 2 (2–3) 3 (3–4) p = 0.017 *

Type 1 mismatch: mild white matter hyperintensity (Fazekas score 0–2) with cognitive impairment; Type 2 mis-
match: severe white matter hyperintensity (Fazekas score 5–6) with normal cognition. NIHSS, National Institutes
of Health Stroke Scale; LDL-C, low-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein.
EPVS, enlarged perivascular space; CSVD, cerebral small-vessel disease. WMH, white matter hyperintensities.
* p < 0.05.
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4. Discussion

This study primarily showed that there was a mismatch between the severity of WMH
and cognitive impairment, and this mismatch was associated with some baseline clinical
features and other pre-existing CSVD imaging features, such as CMBs, deep WMH and the
total CSVD burden. To our best knowledge, this study was the first study that focused on
the heterogeneity between WMH and cognitive function in ALS patients.

Previous studies have identified that a variety of vascular risk factors are closely
associated with cognitive impairment after stroke, such as hypertension, hyperlipidemia,
diabetes mellitus and a previous history of stroke [24,25]. However, few studies have
specifically targeted patients with ALS. Our study revealed that higher age, female sex,
cerebral infarction history and a higher level of fibrinogen were independently associ-
ated with persistent cognitive impairment after lacunar stroke. Yasumasa et al.’s study
also indicated that age > 75 years old and female gender were independent risk factors
of cognitive impairment in ALS patients [26]. Older age is consistently considered a risk
factor for cognitive impairment after stroke. On the one hand, underlying diseases such
as hypertension, diabetes mellitus and a history of stroke are common in the older popu-
lation, which may damage their cognitive function. On the other hand, the susceptibility
to cognitive impairment in older people may result from the increased formation of total
amyloid beta (Aβ) and Aβ-42 [27,28]. The impact of gender on cognition has not been
systematically explored, and our previous study found the female gender to be an in-
dependent risk factor of post-stroke cognitive impairment [23]. Several cross-sectional
studies have confirmed that elevated fibrinogen was associated with vascular dementia and
Alzheimer’s disease [29–32]. Fibrinogen may reduce blood flow and enhance thrombosis.
Meanwhile, fibrinogen is a biomarker of systemic nonspecific inflammation that medi-
ates CAA-related vascular injury [29]. Low et al.’s study found that elevated fibrinogen
was associated with the increased appearance of CSVD imaging markers, particularly
EVPS and CMBs [29]. Therefore, increased fibrinogen may indicate a poorer cognitive
outcome, mainly manifested in decreased executive function and non-verbal reasoning [31].
Our study also revealed that a higher level of fibrinogen was related to ALS patients’
cognitive impairment.

Concerning the relationship between CSVD imaging manifestations and persistent
cognitive impairment after ALS, we found that WMH severity, deep WMH and the to-
tal CSVD burden were independent risk factors, which are in accordance with previous
research [20,33–36]. However, previous findings have been controversial. For instance,
regarding the total CSVD burden score, the results of Wang et al. indicated that the score
was independently related to cognition in patients with acute or chronic CSVD [20]. Never-
theless, another study suggested that the total burden score was negatively associated with
cognitive impairment in patients suffering from both hypertension and lacunar stroke [37].
Zhi et al. also reported that both the total and modified CSVD scores were not correlated
with cognitive function in patients with acute lacunar stroke [38].

Several studies have focused on the association between WMH and cognition, but
controversies persist [11,12,39–41]. Multiple population-based studies have determined that
a larger volume of WMHs, accompanied by higher Fazekas visual grades, is associated with
cognitive decline [8,13,15,17]. A meta-analysis reflected that WMHs were closely related to
the incidence of cognitive impairment [17]. Specifically, people with WMH had a two-fold
increased risk of dementia compared with healthy people, and a higher risk of cognitive
impairment was associated with more severe WMH [13]. The LADIS study also found
a relationship between WMH and deterioration in several cognitive domains, including
clinical memory, attention, executive function and overall cognition [41]. However, a review
reported that cognitive function in patients with the same WMH volume or visual rating
score could be either impaired or preserved [17], which was also observed in our clinical
exercise. Previous studies have found heterogeneous performance in WMH [20,42,43].
Wardlaw et al. discovered that the white matter lesion volume might increase or decrease
after cerebral infarction, and controlling risk factors could reverse WMH-related brain
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damage [44]. Studies concerning the heterogeneity between WMH severity and cognitive
impairment have been rare. Yilong Wang et al. reported that heterogeneity existed between
WMH severity and cognitive impairment in CSVD patients, with 23.7% of the patients
presenting mismatches [20]. As far as we know, this study was the first study that focused
on the heterogeneity between WMH and cognitive function in ALS patients, and we found
a mismatch existed with a proportion of 18.8%. This mismatch was associated with age,
depression and deep WMH. We further distinguished mismatches of Type 1 and Type 2.
We found that the Type 1 mismatched group had a higher NIHSS score, a higher rate of
depression and a higher incidence of CMBs (p = 0.018, p = 0.012 and p = 0.047). Patients
in the Type 2 mismatched group were male (p = 0.04), had a lower level of fibrinogen
(p = 0.005), a lower incidence of CMBs (p = 0.003), a lower total CSVD burden score
(p = 0.017), more severe paraventricular WMH (p = 0.035) and less severe deep WMH
(p = 0.026). The NIHSS score could reflect the severity of the stroke event [45]. The study of
Einstad et al. also suggested that a higher NIHSS score may increase the risk of cognitive
impairment [46]. Post-stroke depression occurs in approximately 31% of patients with
acute ischemic stroke [47]. Depression was related to neurobiological dysfunction due
to ischemic injury and psychosocial factors [48,49]. Several studies also indicated that
patients with depression suffered more severe cognitive impairment than those without
depression, which is in agreement with our findings [49–51]. The results of Wardlaw et al.
indicated that both periventricular WMH and deep WMH were related to cognition in
elderly people [2]. De Groot et al. reported that severe periventricular WMH could predict
the dynamic change in cognition in elderly adults [52], while deep WMH was associated
with depressive symptoms [53]. In our results, deep WMH rather than periventricular
WMH was found to be associated with cognitive impairment and the mismatch between
WMH and cognitive function in ALS patients. WMH may affect cognition through the
following mechanisms. Firstly, white matter lesions may directly damage subcortical neural
networks [54,55]. Secondly, WMH as a confounder reflects the association between vascular
risk factors and cognitive impairment [56]. Finally, WMHs were shown to be associated
with dementia-related pathological processes, such as cerebral amyloid angiopathy and the
lack of myelin occurring secondary to neuronal loss [8,21,56].

Two mechanisms probably account for inconsistent clinical presentations. Firstly,
focal WMH lesions may progressively impair the surrounding normal tissues and damage
the white matter integrity, which could cause damage to both anatomical structures and
functional networks [17]. One study suggested that the original focal lesion might lead to
abnormal dispersion, even over 200 times the original damage volume [57]. Recently, the
concept of normal-appearing white matter (NAWM) was proposed, which refers to white
matter near the WMH lesion that is observed to be normal on conventional MRI sequences
but has damage to its microstructure [58–62]. Some studies reported that NAWM was
related to cognitive impairment [58,59]. Thus, a change in the microstructure of white
matter may in part explain the mismatch phenomenon. Secondly, focal lesions caused by
WMHs can spread to remote areas through a number of pathophysiological changes [63].
In addition, studies found that WMHs and hippocampal atrophy had a cumulative effect,
and periventricular WMHs were connected to hippocampal atrophy [15,17,35,44]. Taken
together, the heterogeneity between WMH and cognition may be attributed to the white
matter microstructural injury and remote WMH effects.

The presence of WMH on the conventional MRI sequence indicates the injury of cere-
bral small vessels. However, the subtypes of CSVD interact with each other. For instance,
one study showed that the margin of the white matter lesion was usually the preferred site
for lacunar occurrence [64]. Another study showed that CSVD patients had less reduction in
white-matter free water around EPVS than healthy subjects [65]. Moreover, the coexistence
of various subtypes of CSVD in one patient is common. Thus, the heterogeneity between
WMH and cognitive impairment in our study can be partially explained. Nowadays, more
and more evidence is indicating that CSVD should be considered a global cerebral disease,
which implies that focal lesions affect distal brain structures and structural and functional
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network connectivity [63]. The conventional MRI sequence is far from enough to evaluate
the influence of CSVD on the brain, and new imaging technology and imaging signs should
be explored in the future.

In our study, we focused on the mismatch between white matter severity and cognitive
impairment, defined as Type 1 and Type 2 mismatches, and conducted a subgroup analysis.
The main advantage was the homogeneous study cohort of the recruited patients with
symptomatic ALS. Moreover, our longitudinal design allowed an assessment for long-term
cognitive impairment.

However, our study also had several limitations. First, this study was monocentric
with a small sample, and the sampling bias and possible selection bias were considered.
Second, although the MOCA scale has good specificity and sensitivity, more detailed
scales should be carried out for cognitive domain assessment. Third, several patients were
excluded because of aphasia or the disturbance of consciousness, and yet these patients
may suffer from more severe strokes. Therefore, the patients included in our study may
have had a relatively mild stroke attack. Finally, the volume of WMH was not calculated,
and the location of WMH was not recorded in this study, which might be associated with
cognitive function.

5. Conclusions

The severity of WMH was not completely parallel to cognitive impairment. Despite a
similar WMH severity, differences in some baseline clinical features and other conventional
CSVD imaging characteristics may result in different cognitive outcomes. Our findings
suggest nonconformity exists between WMH severity and cognitive impairment in ALS
patients and indicates that new imaging markers should be explored.
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