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Abstract: Cerebral ischemia impedes the functional or metabolic demands of the central nervous
system (CNS), which subsequently leads to irreversible brain damage. While recanalization of blocked
vessels recovers cerebral blood flow, it can also aggravate brain injury, termed as ischemia/reperfusion
(I/R) injury. Exosomes, nanometric membrane vesicles, attracted wide attention as carriers of
biological macromolecules. In the brain, exosomes can be secreted by almost all types of cells, and
their contents can be altered during the pathological and clinical processes of cerebral I/R injury.
Herein, we will review the current literature on the possible role of cargos derived from exosomes
and exosomes-mediated intercellular communication in cerebral I/R injury. The PubMed and Web
of Science databases were searched through January 2015. The studies published in English were
identified using search terms including “exosomes”, “cerebral ischemia-reperfusion injury”, “brain
ischemia-reperfusion injury”, and “stroke”. We will also focus on the potential therapeutic effects of
stem cell-derived exosomes and underlying mechanisms in cerebral I/R injury. Meanwhile, with the
advantages of low immunogenicity and cytotoxicity, high bioavailability, and the capacity to pass
through the blood–brain barrier, exosomes also attract more attention as therapeutic modalities for
the treatment of cerebral I/R injury.

Keywords: cerebral ischemia-reperfusion injury; exosomes; intercellular communication; stem cells

1. Introduction

Cerebral I/R injury is the sudden onset of cerebral blood circulation disorders, in-
cluding focal cerebral ischemia-reperfusion injury like stroke and global cerebral ischemia-
reperfusion injury like cardiopulmonary resuscitation. Due to its high incidence, morbidity,
and recurrence, it imposes a heavy economic burden on society and the health system [1].
There are two major types of stroke: cerebral ischemia and cerebral hemorrhage, and >87%
of the stroke cases are of the ischemic type [2]. To date, the only therapeutic treatment
for cerebral ischemia, approved by the FDA, is recombinant tissue plasminogen activator
(rt-PA), which is used for recanalizing the blocked vessels [3]. However, its therapeutic
efficacy is limited because of its short therapeutic window [4]. More importantly, there are
also possible complications following revascularization therapy, leading to the failure of
cerebral ischemia therapy. Among which, ischemia-reperfusion (I/R) injury is one of the
most serious and unavoidable clinical issues [5]. Thus, an in-depth study of the mechanism
of I/R injury is extremely important for disease management.

Intercellular communication between neurons, astrocytes, and vascular endothelial
cells is essential for normal function of the brain, while this communication is interrupted
after cerebral I/R injury [6]. Exosomes, nanovesicles with a size distribution between
30–150 nm, are released by the fusion of multi-vesicle endosomes (MVEs) with the plasma
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membrane, which mediates intercellular communication [7]. To date, exosomes are gen-
erated by almost all types of cells in CNS, including neural stem cells/progenitor cells,
neurons, astrocytes, microglia, and oligodendrocytes [8,9]. Moreover, several studies sup-
port the idea that exosomes can act as a messenger of intercellular communication by
being effective transporters of biological material, including nucleic acids, proteins, and
metabolites, which play indispensable roles in brain homeostasis [10]. Over recent years, a
growing number of studies have explored the fact that exosomes are stable in the circulation
and could penetrate the blood–brain barrier (BBB). These properties confer the beneficial
neuro-protective effects of exosome-based therapy following a cerebral I/R injury. [11,12].
In the present review, we mainly investigate the role of exosomes in cerebral repair after
I/R injury and briefly discuss the therapeutic impact and potential applications of these
cellular vesicles for cerebral I/R injury.

2. Characteristics of Exosomes
2.1. The Biogenesis of Exosomes

Exosomes, s extracellular membrane vesicles, originate from endosomes with a size of
30–150 nm in diameter, and their formation can be divided into three stages (Figure 1). The
first step is the formation of “early” endosomes (EEs) via invagination of the cytoplasmic
membrane. During the process, the proteins are transferred from the plasma membrane
(PM) to the surface of the EEs. After that, the EEs sort and recycle the cargos via targeting
to the endocytic recycling compartment, identified by Rab11, or delivery to late endosomes
(positive for Rab7 and Rab9) [13]. For the second stage, intraluminal vesicles (ILVs) are
formed by the inward budding of the endosomal membrane and accumulate in the lumen
of the late endosome, where EEs mature into multivesicular bodies (MVBs) [14]. Finally,
MVBs bind to lysosomes, leading to their degradation and recycling within the cell. In
addition, MVBs also fuse with PM, which results in the release of ILVs to the cell surface as
exosomes [7,10].

Figure 1. Schematic representation of exosome biogenesis. The early endosomes (EEs) are formed
through the invagination of the plasma membrane, in which the transmembrane proteins are sorted to
late endosomes by Rab7 and Rab9. Then, the EEs further generate intraluminal vesicles (ILVs), which
lead to the formation of multivesicular bodies (MVBs). There are two types of molecular mechanisms
involved in the process: Endosomal Sorting Complex Response for Transport (ESCRT)—dependent
or independent pathways. After that, with the help of Rab27, the MVBs dock and fuse with the
plasma membrane to release it as exosomes. Additionally, the MVBs can also fuse with lysosomes for
degradation and recycling. Acronyms: Rab7, Ras-related protein 7; Rab9, Ras-related protein 9; ILVs,
intraluminal vesicles; MVBs, multivesicular bodies; ESCRT, Endosomal Sorting Complex Response
for Transport; Rab27, Ras-related protein 27.
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The molecular mechanisms involved in the biogenesis of exosomes can be divided into
two types that are known as endosomal-sorting complex response for transport (ESCRT)-
dependent or independent mechanisms. For the classical ESCRT pathway, the ESCRT-0
complex initiates the process by engaging the ubiquitinated cargos, subsequently binding
to ESCRT to form the ESCRT-0/ESCRT-I complex. Then, the ESCRT-I worked together
with the activated ESCRT-II complex to create and stabilize the vesicle neck. Finally,
accompanied by the direct interaction with vacuolar protein sorting 25 (VPS25) from
ESCRT-II or ALIX, the ESCRT-III complex is recruited at the ILV biogenesis site, which
drives neck constriction [15]. Another ESCRT-dependent pathway involved in exosomal
biogenesis is the syndecan-syntenin-ALIX pathway [16]. However, the exosomes are still
formed when the ESCRT is knocked down, suggesting that the ESCRT-independent system
is also involved in exosome biogenesis [17,18]. With regard to the two ESCRT-independent
systems, tetraspanins (CD9, CD63, CD81, and CD82) and lipids (ceramide, cholesterol, and
phosphatidic acid) are important for exosome biogenesis [10,19,20].

2.2. Contents of Exosomes

Exosome posse lipid bilayer membrane structures and cargo biological materials
(Figure 2). Specifically, lipids rich in exosomes, such as cholesterol, ceramide, and sph-
ingomyelin, are essential for the membrane structure of exosomes as well as exosome
secretion [21]. In addition, exosomes contain a variety of membrane-associated, high-order
oligomeric protein complexes, including tetraspanins, protein membrane transport fusion
proteins, transmembrane proteins, and heat shock proteins [22,23]. Moreover, exosomes
also contain nucleic acids, such as DNA, mitochondrial DNA (mtDNA), mRNA, microR-
NAs, and other non-coding RNAs, and the transfer of nucleic acids from donor cells can
regulate the biochemical reactions of recipient cells [24,25]. The intercellular communica-
tion mediated by the horizontal transfer of genetic information plays a crucial role during
the development of disease.

Figure 2. Contents of exosomes. As lipid bilayer membrane vesicles, exosomes are rich in choles-
terol, phospholipids, and ceramides. Exosomes contain conserved proteins, such as tetraspanins,
integrins, immune-regulatory molecules, protein membrane transport fusion proteins, as well as
transmembrane proteins (Lamp1, Lamp2). In addition, exosomes contain many biologically active
molecules, including enzymes, DNA, mRNA, and microRNA, etc.
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2.3. Exosomes Uptake in Recipient Cells during Intercellular Communication

Exosome-mediated intercellular communication occurs via direct interaction or in-
direct interaction with recipient cells (Figure 3). Exosomes bind to target cells via ligand–
receptor interactions, including proteins (glycoproteins, integrins, and tetraspanins), sugar
(heparan sulfate proteoglycans), and lipids, facilitating the subsequent endocytosis. For ex-
ample, when the transmembrane protein was degraded after the treatment with trypsin or
proteinase K, exosome uptake by target recipient cells was significantly inhibited, indicating
the crucial role of transmembrane proteins in exosome-recipient cell communication. [26,27].
Once exosomes dock at the surface of the recipient cells, cargos in exosomes are transferred
into recipient cells by endocytosis routes (clathrin-mediated endocytosis [28], caveolin-
mediated endocytosis [29], phagocytosis [30], lipid raft dependent internalization [31], and
macropinocytosis [32], as well as direct fusion with the plasma membrane [33]. Moreover,
exosomes can mediate intercellular communication by indirect interaction. As some ligands
cannot be directly recognized by the membrane receptors, this indirect interaction needs a
further cleavage of ligands on the exosome surface in order to bind to the receptors on the
recipient cell surface. For instance, transmembrane proteins on the surface of exosomes can
be cleaved by proteases to produce soluble forms of protein and subsequently bind to the
receptors on the recipient cell surface [34].

Figure 3. Mechanisms of Exosome Uptake. (A) When exosomes reach the recipient cells, they can
dock at the plasma membrane of the recipient cells through the interaction between exosomal surface
proteins and receptors on recipient cells. (B) After that, the exosomes may be taken up by recipient
cells via the endocytosis route (clathrin mediated endocytosis and caveolin-mediated endocytosis),
phagocytosis micropinocytosis, receptor-mediated endocytosis, as well as by direct fusion with the
plasma membrane, which causes the release of the contents into the cytoplasm.

3. Exosomes Profile Changes after Is Chemia-Reperfusion in Brain

In the brain, exosomes can be released by almost all cell types, including neurons,
astrocytes, oligodendrocytes, endothelial cells, as well as microglia [35]. Recently, numerous
studies have suggested that exosome-mediated cell communications are closely associated
with the physiological and pathological processes in cerebral I/R injury (Figure 4) [23,36].
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Figure 4. Schematic diagram of intercellular communication mediated by exosomes in the central
nervous system (CNS) after ischemia-reperfusion (I/R) injury. Exosomes can be released by almost all
cells in the CNS, including neurons, endothelial cells, astrocytes, oligodendrocytes, and microglia, and
they are involved in the process of cell-to-cell communication. Acronyms: I/R, ischemia-reperfusion;
CNS, central nervous system. CNS. Arrows indicate the direction of transfer.

3.1. Neurons-Derived Exosomes

Neurons are a basic and functional unit of the CNS; neuron-derived, exosome-mediated,
trans-synaptic communication plays an important role in neuronal functions, especially
synaptic activity and neural circuit development [37]. However, under physiological and
pathological conditions, a dynamic change of the contents of neuronal exosomes is reported.
Chiang et al. have found that 45 microRNAs were significantly different in neuronal exo-
somes between normoxic and ischemic reperfusion stimuli. Moreover, as a consequence,
neurons-secreted exosomes could impair neuronal cell viability and reduce neurite out-
growth, compared with exosomes from normoxic conditions [38]. In addition, Men et al.
have confirmed that exosomes secreted by neurons could be internalized into astrocytes to
regulate astrocyte functions under physiological conditions [39]. In the I/R injury model,
miR-181c-3, loaded in neurons and cortical neurons-derived exosomes, internalized into
astrocytes, thereby inhibiting neuro-inflammation in astrocytes via directly downregulat-
ing CXCL1 [40]. Moreover, neuron-derived exosomes enriched with miR-21-5p could be
phagocytosed by microglia, which promoted microglia M1 polarization, thus leading to the
aggravation of neuroinflammation [41].

3.2. Astrocytes-Derived Exosomes

Astrocytes play a pivotal role in the formation of the myelin sheath, structural integrity
of synaptic, synaptic transmission, and neuronal function by actively clearing neurotrans-
mitters in synapses, maintaining the structure of the blood–brain barrier, and releasing
trophic factors to neurons [42]. Following cerebral I/R injury, astrocytes underwent a
significant transformation called “reactive astrocytosis” [43]. In the CNS system, astro-
cytes also communicate with neurons and other glial cells via secreting exosomes. For
example, astrocyte-derived exosomes promoted the proliferation of neurons and alleviated
neuronal injury via transferring miR-34c [44]. Similarly, miR-361 in astrocyte-derived
exosomes elevated cell activity and suppressed neuronal apoptosis in vitro and alleviated
neurological deficits in rats with cerebral I/R injury [45]. In addition, activated astrocytes
could modulate microglial polarization via exosome-mediated cargo transfer, which plays
a vital role in neuroinflammation. Specifically, astrocyte-derived exosomes enriched with
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miR-873a-5p could be taken up by microglia and elicit microglia polarization into a M2
phenotype. As a result, the brain defect area and neurological deficits in the brain injury
model were alleviated via inhibiting neuroinflammation [46].

3.3. Oligodendrocytes-Derived Exosomes

In the brain, oligodendrocytes are the myelinating cells in the CNS, and loss of oligo-
dendrocytes induces demyelination, which leads to impaired neurological function in the
event of a stroke [47]. A previous study has confirmed that secretion of oligodendrocyte-
derived exosomes was initiated by glutamate, which was released by electrically active
neurons [48]. Moreover, researchers found that upon stimulation neurons could uptake
oligodendrocyte-secreted exosomes, thus conferring the enhancement of neuronal stress
tolerance via promoting neuronal survival in the cerebral ischemic model [49,50]. In ad-
dition, oligodendrocyte-derived exosomes could also be specifically and efficiently taken
up by microglia via a micropinocytosis mechanism and then transported to the lysosomes
for degradation, suggesting that microglia are essential for the degradation of oligoden-
droglial membranes via the macropinocytotic clearance process [51]. Based on this obser-
vation, Peferoen et al. have described that the cross-talk mediated by exosomes between
oligodendrocytes and microglia in the CNS system controlled the neuro-inflammation in
neurodegenerative disorders [52].

3.4. Endothelial Cells-Derived Exosomes

In the brain, intercellular communication in neurovascular units (NVUs) was essen-
tial for CNS homeostasis and function. In NVC, endothelial cells maintain the dynamic
balance and form the BBB, which precisely controls the transport of macromolecules and
nutrients [53,54]. Available data indicated that exosomes from endothelial cells could alter
the environment in the NVU after a stroke. For example, Xiao et al. have demonstrated
that exosomes released from endothelial cells protected neurons from I/R injury in vitro
via suppressing the I/R-induced cell cycle arrest and apoptosis, as well as improving
cell proliferation, migration, and invasion [55]. Moreover, in the acute middle cerebral
artery occlusion (MCAO) model, exosomes released from endothelial cells could accelerate
neural progenitor cell (NPC) proliferation and migration and subsequently reconstruct
the NVU [56]. On the contrary, following I/R injury, in response to the release of danger-
associated molecular patterns (DAMPs) from necrotic neurons, the function of endothelial
cells expressing pattern recognition receptors (PRRs) was impaired, leading to increased
vascular permeability [57,58]. After that, endothelial cell-derived exosomes crossed the BBB,
resulting in a detrimental inflammatory cascade and neuronal destruction via recruiting
microglia to the sites of tissue injury [59].

3.5. Microglia-Derived Exosomes

Microglia, gatekeepers of the immune system in the CNS, surveil the cerebral en-
vironment constantly, which plays a key role in maintaining normal brain function and
homeostasis [60]. Microglia adopt distinct and different phenotypes depending on the
extracellular environment and can be roughly distinguished as two subtypes: classically
activated microglia (CAM, M1-like microglia) and alternatively activated microglia (AAM,
M2-like microglia). Generally, M1 microglia secrete pro-inflammatory factors and ex-
acerbate brain tissue damage, while M2 phenotype microglia secrete anti-inflammatory
cytokines and facilitate the recovery following cerebral I/R injury [61].

Recent studies have confirmed that microglia-derived exosomes are deeply involved
in intercellular communication in the CNS system after cerebral I/R injury [62]. Microglia-
derived exosomes can be divided into two types, including M1 microglia-derived exosomes
(defined as detrimental exosomes) and M2 microglia-derived exosomes (defined as benefi-
cial exosomes). In the event of a stroke, miR-383-3p-enriched exosomes from M1 microglia
promoted the necroptosis of neurons via negatively regulating the expression of activat-
ing transcription factor 4 (ATF4) [63]. Moreover, miR-424-5p in M1 microglia-derived
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exosomes could be shuttled to cerebral endothelial cells after ischemic stimuli, which in-
duced cell injury of viability and permeability via suppression of fibroblast growth factor
2 (FGF2)/signal transducers, and activators of the transcription 3 (STAT3) pathway in
endothelial cells [64]. Contrary to M1 microglia, exosomes from M2 microglia exhibit
neuroprotective effects after I/R injury via promoting neuronal survival [65,66] and tube
formation of endothelial cells [67].

4. Effects of Exosomes in Cerebral I/R Injury

Exosomes could transport cell type-specific cargo extracellularly by long-range com-
munication in the CNS. Beside the intercellular communication between different cells
during the process of cerebral I/R injury, the altered exosomal number and contents after
I/R injury may mediate beneficial effects, including neurogenesis, angiogenesis, and im-
mune regulation, which synergistically accelerate the NVU reconstruction and neurological
recovery (Figure 5).

Figure 5. Exosomes-mediated effects in cerebral ischemia-reperfusion (I/R) injury. Exosomes
derived from various cells in the central nervous system (CNS) play a pivotal role in neurogenesis
and angiogenesis following I/R injury. In addition, the inhibition of M1 microglia polarization
or the reprogramming of microglia from M1 to M2, mediated by exosomes, is important for the
suppression of inflammation in cerebral I/R injury. Acronyms: Wnt10b, Wnt family member 10b;
mTOR, mechanistic target of rapamycin; nGDF, nervous growth/differentiation factor; TLRs, toll-like
receptors; NF-κB, nuclear factor-κB; MAPK, mitogen-activated protein kinase.

4.1. Exosomes Effects on Neurogenesis

In cerebral I/R injury models, axons are reduced. Therefore, neurogenesis, or the birth
of new neurons, which is known to be induced in the infarct and surrounding areas, is
beneficial to spontaneous neurologic improvement after I/R injury [68]. Exosomes secreted
by different cells in the NVU regulate both regeneration and repair of central nervous
system circuits. Endothelial progenitor cells (EPCs), with the potential for differentiation
into mature endothelial cells, are essential to repair endothelial damage. Along with the
angiogenesis after cerebral I/R injury, EPC-derived exosomes tend to be internalized by
neurons and promote neurogenesis via suppressing ischemia-injured apoptosis, which
attributes to the enrichment of miR-126. Moreover, the author also demonstrated that
exosomes from miRNA-126-modified EPCs were more effective than those from EPCs in
decreasing ischemic injury in diabetic stroke mice via elevating the expression of vascular
endothelial growth factor receptor 2 (VEGFR2) [69]. As one special type of stem cell, neural
stem cells (NSCs) only exist in the nervous system, and they can differentiate into different
types of nerve cells in the CNS, such as neurons, astrocytes, and oligodendrocytes, with
the ability to compensate for insufficient endogenous nerve cells [70]. Zhang et al. have



Brain Sci. 2022, 12, 1657 8 of 18

highlighted that exosomes derived from inflammatory factor IFN-γ-stimulated neural
stem cells (NSCs) could promote neurogenesis in an ischemic stroke rat model due to the
enrichment of miR-206, miR-133a-3p, and miR-3656 [71]. In addition, the exosomes derived
from microglia were elevated after I/R injury, which are mainly associated with primary
neurons and neurite processes [69]. Moreover, another study has found that nervous
growth/differentiation factor (nGDF) enriched in microglia-derived exosomes exhibited
significant neurotrophic activities to promote nerve regeneration and recovery [72]. Simi-
larly, Song et al. have detected that after exosomal transfer of miR-124 from M2 microglia
to neurons, neuronal survival and neurogenesis were promoted so as to protect the mouse
brain from I/R injury [65]. Additionally, Tassew et al. have found that exosomes released
from fibroblasts could activate the Wnt family member 10b (Wnt10b)-mammalian target of
rapamycin (mTOR) pathway, which subsequently restored the intrinsic neuronal regenera-
tion [73]. In summary, it is worth investigating the neurogenesis effects of exosomes, which
are thus considered as an intervention for ischemic stroke.

4.2. Exosomes Effects on Angiogenesis

Therapeutic angiogenesis is vital in improving vascular functions and maintaining
BBB homeostasis following I/R injury in the brain. Wang et al. have revealed that EPC-
derived exosomes improved angiogenesis in diabetic ischemic stroke mice, and enhanced
therapeutic efficacy was obtained by miR-126 enrichment [69]. Moreover, after the delivery
of miR-132 from neuron-derived exosomes to endothelial cells, an elevation of vascular
endothelial cadherin (VE-cadherin) expression was observed, which could improve the
cerebral vascular integrity and functions after cerebral ischemic injury [74]. Additionally,
delta-like ligand 4 (Dll4) proteins in exosomes obtained from human microvasculars pro-
moted angiogenesis via activation of the Dll4–Notch signaling pathway, which is crucial
for vascular development and angiogenesis [75]. Furthermore, with the treatment of M2
microglia, the brain injury induced by I/R was ameliorated by promoting angiogenesis,
and the beneficial effects relied on the release of exosomes enriched with miRNA-26a [67].
Accordingly, various cell-derived exosomes play a beneficial effect in restoring the angio-
genesis, thus improving cerebral I/R injury.

4.3. Exosomes Effects on Immune Regulation

As one of the critical pathogenic mechanisms in cerebral I/R, inflammation causes
cascade injury to the brain. Microglia are believed to be the most critical immune de-
fense, and the microglial polarization into different phenotypes is closely related to the
inflammation in the cerebral I/R injury model [76]. It has been observed that exosomes
possess miRNA could directly modulate the levels of toll-like receptors (TLRs) or nu-
clear factor-κB (NF-κB). They can inhibit the M1 microglia polarization and subsequently
reduce the level of inflammatory cytokines, which in turn alleviates the cerebral I/R
injury [77,78]. Meanwhile, exosome-mediated M2 polarization could elevate the secre-
tion of anti-inflammatory cytokines, including interleukin-4 (IL-4), interleukin-10 (IL-10),
interleukin-5 (IL-5), transforming growth factor-β(TGF-β), and neurotrophic factors, which
are beneficial to the recovery of brain function and the improvement of the prognosis of
strokes [79–81]. Among them, IL-4 not only elevates microglial phagocytosis via activation
of peroxisome proliferator-activated receptor γ (PPARγ) to enable the effective cleanup
of apoptotic neurons but also produces neurotrophic factors, which are essential for brain
repair [82]. Additionally, compared to mild stroke patients, the IL-5 level is decreased
in severe stroke patients with poor outcomes and may be used as a predictor of edema
and infarct volume [2]. Moreover, IL-5 could inhibit proinflammatory gene expression,
including inducible nitric oxide synthase (iNOS) in microglia, and subsequently suppress
the neuroinflammation in the cerebral I/R model [83]. Apart from microglia, miR-34c
released from astrocyte-released exosomes exerted a protective role against neurological
deficits via inhibiting TLR7 and NF-κB/(mitogen-activated protein kinase) MAPK path-
ways [55]. Moreover, endothelial-derived miR-199a-5p could protect neural cells against
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ER stress-caused inflammation by targeting binding immunoglobulin protein (BIP) [84].
Therefore, inhibition of inflammation is pivotal to protecting the brain against I/R injury,
and it may be beneficial to target specific exosomes related to it.

5. Exosomes-Based Therapy and Application in Cerebral I/R Injury

As a crucial paracrine way of cell therapy, exosomes have attracted wide attention
to treat cerebral I/R injury due to their unique characteristics, including lower immuno-
genicity, minimal oncogenicity, reduced chance of vascular blockage, and capacity to cross
the BBB, and their key role in intercellular communication [36,85]. Moreover, only a few
cells can secrete abundant exosomes, and they can be stored stably [23]. The therapeutic
potential of exosomes is mainly dependent on transferring their cargos to receipt cells in
the CNS, especially microRNAs. Eventually, engineered exosomes carried with modified
microRNAs tend to activate the regeneration of the CNS and the recovery of neurological
function more efficiently [22]. Moreover, 98% of small molecular drugs do not cross the
BBB and effectively arrive at injured sites in the brain, resulting in inefficient targeting, low
release power, and failure to reach therapeutic concentrations in the brain [86]. Exosomes
are used for the delivery of drugs (such as curcumin and enkephalin), which offer signifi-
cant protective effects in cerebral I/R injury [87,88]. Furthermore, surface modification of
exosomes additionally improves exosomal functions, thus further enhancing specific cell
targeting [89,90], in vivo imaging [91], and tracking [92].

Stem cell-based therapies have been confirmed to promote recovery in cerebral I/R
injuries. Numerous studies suggest that stem cell-related therapeutic effects are mainly
mediated via the paracrine mechanisms, among which exosomes are intensively explored.
Moreover, compared with stem cells, stem cell-derived exosomes may be a potential
therapeutic option due to their unique characterizations, including higher biocompatibility,
stable biological properties, and low immunogenicity. Recently, therapeutic benefits of
exosomes released by stem cells, including mesenchymal stem cells (MSCs), NSCs, and
induced pluripotent stem cells (iPSCs), have been reported in the cerebral I/R injury model
(Table 1).

5.1. MSCs-Derived Exosomes

MSCs are pluripotent stem cells with the ability of multilineage differentiation, and
MSC-based therapy has proven potential as an effective therapeutic option for ischemic
strokes [93]. Thorsten et al. have demonstrated that MSC-derived exosomes promote
neurological recovery after strokes, which is similar to the effects of MSCs [94]. Based on
this observation, an increasing number of studies have been performed to investigate the
role of exosomes obtained from MSCs in cerebral I/R injuries. The intercellular exosomes-
mediated communication between MSCs and brain parenchymal cells was observed to pro-
mote neurite growth via transferring miR-133b to neurons and astrocytes [95,96]. Moreover,
MSC-derived exosomes transferred miR-17-92 to recipient cells, which led to improvements
in neurogenesis, neuroplasticity, and oligodendrogenesis in MCAO models via targeting
the phosphatase and tensin homolog (PTEN)/Akt pathway [97]. In addition, MSC-derived
exosomes, with robust angiogenic paracrine factors, promoted endogenous angiogenesis
in the brain via inhibition of the NF-κB pathway [98]. Furthermore, protective effects in
cerebral I/R injury were obtained by MSCs-exosomal pigment epithelium-derived factor
(PEDF), which was dependent on the promotion of autophagy [99]. At the same time,
apart from the neurogenesis and angiogenesis, MSCs-exosomes could elicit M1 microglia
into the M2 phenotype and inhibit the inflammation mediated by the NLRP3 inflamma-
some, thus alleviating the cerebral I/R injury [79,100], suggesting the immune modulation
of MSCs-exosomes. Similarly, miR-223-3p-enriched MSC-derived exosomes suppressed
microglial M1 polarization induced by the cysteinyl leukotriene receptor 2 (CysLT2R)-
ERK1/2 pathway, in mice with cerebral I/R injuries [101]. In addition to the regulation of
microglia polarization, other mechanisms of anti-inflammatory action have also been dis-
covered. For example, MSC-derived exosomal miR-146a-5p inhibited neuro-inflammation
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and neurological deficits by inhibition of the interleukin 1 receptor associated kinase
1 (IRAK1)/TNF receptor associated factor 6 (TRAF6) pathway in ischemic stroke [102].
Moreover, miR-138-5p/LCN2, miR-221-3p/activating transcription factor 3 (ATF3), and
the miR-26b-5p/cholesterol 25-hydroxylase (CH25H) pathway have also been detected,
which contribute to MSCs-exosome conferred inhibition of inflammation in response to
the cerebral I/R injury [77,103,104]. More interestingly, due to the enrichment of some
certain functional proteins in exosomes, exosomes derived from MSCs in I/R brain ex-
tract, oxygen glucose deprivation, or hypoxic pretreatment exerted better neuroprotective
effects [81,105,106].

Recently, coronavirus disease 2019 (COVID-19), a global epidemic pneumonia, pre-
disposed hospitalized patients to cerebral I/R injury, which was closely correlated with a
hypercoagulable state induced by systemic inflammation. Researchers have discovered
that cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
virus could yield exosomes enriched with viral proteins [107,108]. Moreover, spike, a
SARS-CoV-2 product, has the ability to modify the cargo in host cell-derived exosomes. As
a result, along with the cargo transfer to distant uninfected organs, it caused a cascading
inflammatory response within the CNS [108,109]. Due to the immunoregulatory character-
istics of MSCs, MSC-derived exosomes can also be used, at least as supportive treatment,
in COVID-19 patients to protect against the neuroinflammation and subsequent cerebral
I/R injury caused by a cytokine storm or direct CNS infection [110].

5.2. NSCs-Derived Exosomes

NSCs, self-renewing and endogenous multipotent cells in the brain, have the capacity
to differentiate into multiple neural cell types, including neurons, astrocytes, and oligo-
dendrocytes. After brain injury, quiescent NSCs are activated and initiate the self-repair
process. In preclinical and clinical research, NSC-based therapy has shown potential for the
regenerative treatment of cerebral I/R injury [111,112]. For example, NSC transplantation
in the CNS regions could restore brain homeostasis after I/R injury via preservation of
the BBB, suppressing the inflammation, and improvement of the neurogenesis and angio-
genesis [113]. Moreover, numerous animal studies have confirmed that bystander effects
include delivery of NSC-derived therapeutic gene products to regulate the extracellular
microenvironment and promote neuronal circuit plasticity [114]. NSC-derived exosomes
act as an important vehicle to deliver therapeutic agents and show the neuroprotection
effects of cerebral I/R injuries [71]. It has been confirmed that multiple tail vein injections
of NSC-conditioned medium effectively suppressed neuronal apoptosis while maintaining
mitochondrial homeostasis so as to ameliorate cerebral I/R injuries in rats [115]. Pluchino
et al. have revealed that interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) regulated
the phenotype of stem cells, soluble factors secreted from cells, and ultimately altered the
functions of stem cells [116]. Interestingly, without effects on NSC proliferation, IFN-γ
elevated the superoxide dismutase 2 (SOD2) level in NSC culturing, which improved the
therapeutic effects of NSCs in the ischemic stroke model [117]. Beside the altered character-
istics of stem cells, including the phenotype and secreted proteins, IFN-γ preconditioning
further exerted therapeutic effects via carrying specific exosomal miRNA cargos (miR-206,
miR-133a-3p and miR-3656), although the secretion and characteristics of exosomes derived
from NSCs were not affected [71].

5.3. IPSCs-Derived Exosomes

iPSCs were first discovered by Takahashi and Yamanaka in 2006 from adult somatic
cells via integrating four factors (Sox2, Oct3/4, Klf4, and cMyc) [118]. Till date, with
the great capacity of self-renewal and differentiation into all somatic cell types, iPSC-
based cell therapy has been widely investigated, and their potential in the treatment of
neurodegenerative diseases has been studied [119,120]. Rajasingh et al. have compared
human iPSC-derived MSCs (iMSCs) and MSCs and found that iMSCs still maintained
MSC characteristics without any chromosomal abnormalities even at later passages, while
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MSCs started to lose their characteristics at that time, indicating that iMSCs might be an
alternative cell type to MSCs for the treatment of various diseases [121]. According to the
success of MSC-derived exosome therapy against ischemic strokes, Xia et al. have revealed
that in ischemic strokes, iMSC-derived exosomes could improve angiogenesis, potentially
via STAT3 activation-mediated autophagy inhibition [122]. In addition, accumulating
researchers have found that NPC transplantation promoted functional recovery in cerebral
I/R injury. Whereas, the NPCs have mostly been harvested from embryonic stem cells
or fetal tissue, which raises ethical issues. Recent studies have revealed that, compared
with other stem cells, human iPSC-derived neural progenitor cells (iNPCs) are more similar
to cortical neurons in morphology and immunohistochemistry [123]. Moreover, iNPC-
exosome treatment exhibited a neuroprotective effect in a porcine model of ischemic stroke
via promoting neurite outgrowth [124].

Acronyms: MSCs, mesenchymal stem cells; NSCs, neural stem cells; iPSCs, induced
pluripotent stem cells; CH25H, cholesterol 25-hydroxylase; PTEN, phosphatase and tensin
homolog; NF-κB, nuclear factor-κB; IRF5, IFN regulatory factor 5; CysLT2R, cysteinyl
leukotriene receptor 2; IRAK1, interleukin 1 receptor associated kinase 1; TRAF6, TNF
receptor associated factor 6; ATF3, activating transcription factor 3; IL-10, Interleukin
10; TGF-β1, transforming growth factor β1; STAT3, signal transducer and activator of
transcription 3.

Table 1. Studies of stem cell-derived exosomes in cerebral I/R injury.

Stem Cells Contents Mechanism Function Refs

MSCs

miR-26b-5p CH25H Microglial M1
polarization [77]

miR-133b N/A Neurite outgrown [95,96]
miR-17-92 PTEN/Akt Neural plasticity [97]

N/A NF-kB Angiogenesis [98]
PEDF Autophagy neuronal apoptosis [99]

miR-22-3p IRF5 Microglial M1
polarization [100]

miR-223-3p CysLT2R Microglial M2
polarization [101]

miR-146a-5p IRAK1/TRAF6 Neuro-inflammation [102]

miR-138-5p lipocalin 2
Proliferation of

astrocytes
Inflammation

[103]

miR-221 ATF3 Inflammation
Neuronal apoptosis [104]

NSCs
N/A Bcl-2

Apoptosis
Mitochondrial
ultrastructure

[115]

N/A IL-10, TGF-β1 Inflammation [117]

iPSCs
N/A STAT3 Angiogenesis [122]
N/A PTEN/Akt neurite outgrowth [124]

5.4. The Limitations of Exosomes-Based Therapy in Cerebral I/R Injury

To date, a clinical trial related to the use of exosomes as a stroke treatment has been
carried out, in which miR-124-enriched MSCs-exosomes were administered to patients
with acute ischemic strokes (ClinicalTrials.gov: NCT03384433). However, there are still
some problems that need to be conclusively solved in this field. Firstly, exosome cargos
depend on donor cells, culture conditions, and the methods of exosome separation. Thus,
efficient separation technology, a quality control standard for clinical-grade exosomes,
and the characterization of exosome cargos endowing therapeutic potential is warranted.
Secondly, the dosage, frequency, and administration routes of exosome delivery still do
not have concise agreement, so further investigation is necessary. Thirdly, bioengineered

ClinicalTrials.gov
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ligands or modifications of exosomes to extend the half-life of exosomes and improve their
targeting ability in vivo need to be performed. Lastly, at present, the potential adverse
effects of exosomes in patients are unknown. Therefore, long-term and large-scale clinical
trials are needed to allow the translation of exosome therapy into clinical practice.

6. Conclusions and Prospect

Cerebral I/R injury is one of the main causes of morbidity and mortality in the world.
Exosomes have attracted considerable attention due to their unique biological properties.
As a communication substance and transport carrier, exosomes play important roles in
cerebral I/R injury, such as neurogenesis, angiogenesis, and immune regulation, which
coordinately promote NVC reconstruction and neurological recovery. Recent reports have
focused on the application of exosomes as a potential drug delivery approach in cerebral
I/R injury. In this review, we highlight the biological roles of exosomes and exosome-
mediated intercellular communication in cerebral I/R injury. In spite of the critical role
of exosomes during the pathologic processes of cerebral I/R injury, exosomes have been
reported as a biomarker for diagnosis in brain-related diseases, which was limited in this
review. To date, the exosome study remains in its initial stages, particularly for cerebral
I/R injury, and not enough information is available to translate exosome treatment into
clinical practice. In summary, exosome-based therapy has great potential when it comes to
alleviating brain damage following I/R injury, which is worthy of further investigation.
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