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Abstract: Research on visual encoding models for functional magnetic resonance imaging derived
from deep neural networks, especially CNN (e.g., VGG16), has been developed. However, CNNs
typically use smaller kernel sizes (e.g., 3 × 3) for feature extraction in visual encoding models.
Although the receptive field size of CNN can be enlarged by increasing the network depth or
subsampling, it is limited by the small size of the convolution kernel, leading to an insufficient
receptive field size. In biological research, the size of the neuronal population receptive field of high-
level visual encoding regions is usually three to four times that of low-level visual encoding regions.
Thus, CNNs with a larger receptive field size align with the biological findings. The RepLKNet model
directly expands the convolution kernel size to obtain a larger-scale receptive field. Therefore, this
paper proposes a mixed model to replace CNN for feature extraction in visual encoding models.
The proposed model mixes RepLKNet and VGG so that the mixed model has a receptive field of
different sizes to extract more feature information from the image. The experimental results indicate
that the mixed model achieves better encoding performance in multiple regions of the visual cortex
than the traditional convolutional model. Also, a larger-scale receptive field should be considered in
building visual encoding models so that the convolution network can play a more significant role in
visual representations.

Keywords: visual encoding models; deep neural networks; receptive field; a large convolution kernel;
RepLKNet; fMRI

1. Introduction

Understanding the brain’s information perception and information processing mecha-
nisms when receiving stimuli is an important topic in traditional neuroscience research.
Such information processing mechanisms are also crucial to artificial intelligence [1]. In neu-
roimaging research, researchers often use functional magnetic resonance imaging (fMRI)
to construct a human visual encoding model [2,3]. fMRI uses a non-invasive method for
research work that captures brain activities and encodes information about visual stim-
uli [4–6]. In such a visual encoding model, all non-linear characteristics are concentrated
in the feature space, and a linear model can describe the relationship between the feature
module and the subsequent voxel response [7]. The feature space model occupies an impor-
tant position in the visual encoding model and is an essential factor in the final encoding
performance.

From the perspective of modern neurological research, the population receptive field
(PRF) in different visual areas of the brain is different, and the PRFs in low-level visual
areas are generally fewer than those in high-level visual areas [8]. In 2007, Serge et al.
proposed a method that can quantitatively calculate the PRF size of the visual cortex [8].
They found that the size increased four times between V1 (the primary visual cortex [9])
and V3 (the extrastriate cortex [9]). The size increased five to six times between V1 and LO
(lateral occipital) [8]. It can be concluded that the PRFs of the higher visual cortex (HVC) of
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the brain are much larger than those of the lower visual cortex (LVC). In other words, the
structure of the feature space in the encoding model with a large-scale receptive field is
very suitable for actual biological discoveries.

Early research on visual neural encoding models mainly built the feature space with
hand-made non-linear features. The article [10] published by Hubel et al. in 1962 suggested
that the receptive field size of the low-level visual units of the cerebral cortex is small,
illustrating the characteristic that the voxels in this area are very sensitive to low-level
features. Moreover, the primary visual area was simulated by the Gabor wavelet model
by setting different parameters such as position and orientation. Kendrick N. Kay et al.
proposed a low-level visual area encoding model based on Gabor in 2008 [11]. Theoretically,
the encoding model obtains better encoding performance when technical means are used
to increase the corresponding RF area in the visual encoding model according to the trend
from LVC to HVC.

Neural networks have been widely used by many researchers in different applications
such as face recognition, medical applications, manufacturing, and economics [12]. The
researchers from Oxford University proposed the VGG network model in ILSVRC (Ima-
geNet Large Scale Visual Recognition Challenge) 2014 [13]. The VGG model proves that
increasing the depth of the network can significantly improve the model’s performance.
However, blindly increasing the network depth will bring problems such as gradient dis-
appearance, gradient explosion, and performance degradation. To solve these problems,
He et al. proposed the ResNet network model in 2015 [14], which uses batch normalization
and shortcut connections. The addition of these two techniques made ResNet achieve first
place in ILSVRC (ImageNet Large Scale Visual Recognition Challenge) 2015. The VGG and
ResNet model illustrates that the application of CNN in computer vision is very successful.
Based on this, more researchers are trying to apply CNN in visual encoding.

The visual encoding based on the features of the deep learning model mainly uses
the feature data of the image extracted by the deep learning model as the medium to
map between the natural image stimuli and the visual cortex voxel response. In 2014,
Agrawal et al. [15] exploited a pre-trained CNN model to build a visual encoding model.
The CNN model is pre-trained on ImageNet through the image classification task. In this
approach, the pre-trained CNN model has strong image feature extraction ability, making
the model perform well in visual encoding. Since this modeling approach usually separates
image feature extraction and stimuli-to-voxel mapping, it is called a “two-step” model.
Additionally, researchers are working on a unified optimization scheme from image feature
extraction to the subsequent relationship mapping. In 2020, Qiao et al. [16] proposed an
end-to-end model. Although the model only uses three convolutional layers and one
fully connected layer, the end-to-end model performs better in low-level visual encoding.
Since the model can encode the entire visual area at once instead of encoding for voxels, it
achieves high encoding efficiency.

A key factor for the outstanding encoding performance of CNN models in visual
encoding is that the CNN model can expand the effective receptive field (ERF) area by
increasing the network depth and adopting other non-intuitive approaches [17–21]. Unlike
the fully connected neural network model, where each unit value depends on the entire
input, a unit in the convolutional network depends on only one region of the input. This
area is the ERF of the unit. As a fundamental concept of CNN, ERFs are essential for
understanding and diagnosing the working depth of CNNs. Since any location in the input
image outside a unit’s ERF does not affect the value of the unit, it is necessary to carefully
control the ERF to ensure that it covers the entire relevant image area [22]. However, the
traditional deep learning model is inadequate to expand the receptive field by increasing
the depth.

Ding et al. proposed a RepLKNet network model [23] that expands the ERF size
by increasing the convolutional kernel size based on structural reparameterization. The
new model enlarges the traditional convolution kernel size to that of a large-scale con-
volution kernel. The article by Ding et al. reveals that large-scale convolutional kernel
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networks are still effective in events. RepLKNet adopts methods such as structural reparam-
eterization [24–28] to improve the performance of large convolution kernel networks for
downstream tasks. The researchers demonstrated that directly using several large kernels
instead of many small kernels can more effectively generate a larger effective receptive
field and improve the performance of CNNs.

The previous description indicates that the visual encoding model can be realized
with small convolution kernels, but its ERF area is small, which leads to its defects in
acquiring image features; In modern biological research, the PRFs of HVC are much larger
than those of the LVC; The RepLKNet model improves the ERF area by increasing the size
of the convolution kernel, which is intuitive and efficient. Based on these observations,
this paper formulates a hypothesis that when the receptive field of the convolutional layer
in the encoding model has a larger size, the model can meet the physiological needs of a
larger receptive field in HVC, and the model can capture more information, thus improving
the performance of the model in visual encoding tasks. In the experiment, the encoding
effect of the model with a large-size convolution kernel is better than that of the small-size
convolution kernel model, which demonstrates that our hypothesis is true.

Therefore, this paper proposes a mixed model based on a large convolution kernel
model and a traditional CNN model to optimize the feature space of the visual encoding
model. By introducing the large convolution kernel model into the traditional CNN model,
the mixed model expands the ERF size and obtains richer information than the CNN model.

The contribution of this paper is to introduce convolutional neural networks with
larger convolution kernels into visual encoding tasks to improve the performance of visual
encoding models. The coexistence pattern of ERFs brought about by the cooperation of
large and small convolution kernels is more consistent with the fact that each visual area
of the brain includes receptive fields of different sizes. Our model focuses on explaining,
comparing, and analyzing the performance of the encoding model from the ERF perspective,
which provides new perspectives (e.g., the convolution kernel size) for future research.

2. Methods
2.1. The Overview of the Mixed Visual Encoding Model

This paper uses a mixed model based on RepLKNet and VGG16 models to construct a
visual encoding model. The specific methods are described as follows:

Initially, the visual encoding model uses a pre-trained large convolution kernel model
and a pre-trained small convolution kernel model to extract image feature data from the
training and test sets. The mixed model then mixes the feature data extracted by the two
pre-trained models into one feature map. Subsequently, a linear regression model mapping
image features to visual voxel responses is established for each visual region, and the linear
regression model is trained with the training set. Next, the linear regression model is used
to infer the voxel responses of the image features in the test set. Finally, the correlation
between predicted voxels and actual voxels is calculated. By comparing the correlations,
the encoding ability of different encoding models can be evaluated. The whole procedure
of the mixed visual encoding model is shown in Figure 1. In Sections 2.1 and 2.2, the feature
space composed of mixed models and the linear mapping algorithm will be introduced
in detail.

2.2. The Mixed Model

It can be seen from Figure 1 that the mixed model is the core part of the mixed encoding
model to accomplish the image feature extraction task. This paper proposes a mixed model
based on a larger convolution kernel and a smaller convolution kernel. The main reason
for this design is that the larger convolution kernel has a wider receptive field, while the
smaller convolution kernel has good performance in capturing texture features. Therefore,
combining the advantages of the two types of convolution kernels is a natural approach.
The process of creating a mixed model is shown below.
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Figure 1. The mixed visual encoding model. (a) Images; (b) The feature maps from the pre-trained
mixed model; (c) The voxel activities; (d) Information processing of the visual cortex in the brain.
When the brain’s visual cortex processes external images, fMRI can measure activity responses.
Meanwhile, the linearized visual encoding methods extract image features from pre-trained mixed
models. The visual encoding model uses the fMRI and image feature data in the training set as
input to train the linear regression model. Then, the linear model obtains the inferred fMRI voxel
by inputting the image feature map from the test set. Finally, the visual encoding model calculates
the correlation.

The image dimension of our input model is 3 × 224 × 224 (channel × width × height).
First, the RepLKNet [23] model consists of one stem, four stages, and several transition
blocks in the middle of each main stage. Among them, the stage involves a large-scale
convolution kernel module, which is a crucial part of the RepLKNet model. Therefore, the
outputs of the four stages are taken as a part of the feature output of RepLKNet. Meanwhile,
it was found through experiments that adding a regularization layer after the output results
can improve the model’s performance. So far, the outputs of four stages and the outcomes
after regularization have been selected to form five-layer feature data. The dimensions
of each layer of data are 125 × 56 × 56, 256 × 28V28, 512 × 14 × 14, 1024 × 7 × 7, and
1027 × 7 × 7. This type of data is called R features, which is the result of feature extraction
by RepLKNet.

The VGG16 [13] model consists of 13 convolutional layers (hidden layers) and three
FC layers. Among these convolutional layers, the combination of two 64-channel 3 × 3 con-
volutional layers is called Block A, the combination of two 128-channel 3 × 3 convolutional
layers is called Block B, the combination of three 256-channel 3 × 3 convolutional layers is
called Block C, the combination of three 512-channel 3 × 3 convolutional layers is called
Block D, and the combination of three 512-channel 3 × 3 convolutional layers is called
Block E. The 13 convolutional layers are divided into five blocks. The outputs of these
five blocks and the output of Block E after passing through the maxpool layer are taken as
the feature output of the VGG16 model. These six layers of features are called V features,
and the dimensions of the V feature are 64 × 224 × 224, 128 × 112 × 112, 256 × 56 × 56,
512 × 28 × 28, 512 × 14 × 14, and 512 × 7 × 7, respectively.
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A hybrid operation is performed on the V and R features. When features are mixed, a
stacking or merging strategy can be adopted. Since the dimensions of the V and R features
are not the same, the stacking strategy cannot be applied directly, and the merging method
is the best choice in this case. When the V feature and the R feature are merged, the resulting
new feature is called the M feature.

The whole procedure of the mixed model is shown in Figure 2.
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Figure 2. The mixed model. The RepLKNet model is adopted to extract the feature data of the images
in the dataset, which are called R features. Similarly, the image data extracted by the VGG16 model
are called V features. The R feature and the V feature are then mixed to obtain mixed feature data
with different receptive field sizes, called M features.

2.3. Voxel-Wise Linear Regression Mapping

In Figure 1, linear mapping realizes the transformation from feature data to voxel
responses, so it is an important block in the visual encoding model.

Linear regression models are built for each voxel according to the following mathe-
matical formula:

V = Fw + b (1)
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where, V is a m × 1 matrix representing the inferred voxel value, and m indicates the
number of samples. F is a m × (n + 1) matrix representing the image feature data of the
mixed model, n describes the feature number, and b is a constant. w is a (n + 1)× 1 matrix
obtained from model training, and it represents the linear model weight. The feature
number n is generally larger than the number of samples m, indicating that the feature
contains a certain noise. Consequently, the features are not all useful for encoding the
model, and some processes need to be undertaken to regularize the feature. Initially, the
image features are reduced into m − 1 dimensions through Principal Component Analysis
(PCA), and the default parameters of the PCA function in MATLAB are used. For the input
of image features with a dimension of m × n, the data processed by PCA has a dimension
of m × (m − 1). In the m − 1 principal components of each data, the proportion of the
data analyzed by each principal component is not far from the difference. Therefore, the
data with a dimension of m − 1 are chosen, and sparse regularization will be applied to
the feature data after PCA. Subsequently, the ROMP algorithm (Regularized Orthogonal
Matching Pursuit) is adopted to fit the voxel responses and feature data in the training
dataset to obtain a sparse linear regression model. After the model is trained, it can infer
the voxel response from the test set.

3. Experimental and Results
3.1. Experimental Data

Experimental design. The public dataset published by Kamitani et al. [29] is used
in this paper. The dataset involves two types of experiments: an image presentation
experiment and an imagery experiment. This paper only uses the data generated from
the image presentation experiment. In this experiment, the researchers collected densely
sampled functional MRI (fMRI) data from five participants (one female aged 23–38). The
images viewed by the subjects were from the ImageNet database. The image presentation
experiment consists of training data and test data, and each involves 24 and 35 fMRI runs
(9 min and 54 s per run), respectively. Each run contains 55 blocks, including 50 blocks
with different images and five randomly distributed repeating blocks that present the same
image as the previous block. There are 33-s and 6-s rest periods before and after each run.
The image is placed at the center of the display, blinking at 2 Hz for 9 s.

Data Sets. In the training set, 1200 images covering 150 categories (eight images per
category) are shown. In the test set, 50 images covering 50 types (one image per category)
are presented, and the test set images are presented 35 times. Differing from the training
images, the test images are of different classes, and the order in which the stimuli are
presented is random.

Data preprocessing. First, to ensure a stable magnetization state of the collected data,
the first 8-s scans for experiments (retinotopy experiment) in each round were removed.
Similarly, the first 9-s scans for other experiments were discarded. Head motion correction
was then performed on the EPI imaging data using SPM5. Next, the functional image data
were registered with the high-resolution structural image data. Finally, the registered data
were interpolated by using 3 × 3 × 3 mm3 voxels, and the voxels within each run were
normalized over time for experimental data from image presentations.

ROI selection. A retinotopy experiment was conducted to delineate the boundaries
between each visual cortex to identify V1–V4 regions in the subjects. Next, a localizer
experiment was conducted to divide the LOC, FFA, and PPA regions. The experiment
defines the voxel set from V1 to V3 as LVC; the LOC, FFA, and PPA voxels are defined as
HVC. LVC, V4, and HVC are collectively defined as VC (visual cortex).

A detailed introduction to this data can be found in reference [29].
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3.2. Experimental Configuration
3.2.1. The Pre-Trained Model

The RepLKNet model pre-trained on ImageNet is adopted, and specific parameter
settings during training are presented in Table 1. In our experiments, nine graphics cards
(Nvidia TITAN RTX) in a single node are used for pre-training operations.

The pre-trained model is available at https://pan.baidu.com/s/1gspbbfqooMtegt_
DO1TUeA?pwd=lknt, accessed on 27 November 2022.

Ross Wightman from Canada established the timm library on GitHub to help re-
searchers to obtain standard neural network models. The information about the timm
library is available at https://github.com/rwightman/pytorch-image-models, accessed on
27 November 2022. The VGG16 pre-trained model is also included in timm as a common
CNN model. Therefore, the ‘’create_model” function in the timm library is used, and
the pre-trained parameter in the function is set to true to obtain the pre-trained model.
The pre-trained VGG16 model can be downloaded from https://download.pytorch.org/
models/vgg16-397923af.pth, accessed on 27 November 2022.

Table 1. The parameters of the RepLKNet model during the training phase.

Parameters Value

Batch size 32
Drop path 0.1

LR 4 × 10−3

Warmup epoch 5
Epoch Number 90

3.2.2. Comparison Models

To more comprehensively compare the performance difference of the feature space
in the encoding model, several convolutional models and the RepLKNet model are taken
for comparison.

Comparison Methods Group 1: Baselines. Group 1 is a traditional visual encoding
model. Traditional convolutional models, mainly VGG16 and ResNet50, are used as
the image feature extractor. Subsequent operations include training a linear regression
model, predicting voxel values, and calculating the correlation between predicted and true
voxel values.

From these descriptions, it can be seen that this baseline model only differs from our
model in feature extraction, and the other steps remain the same.

Comparison Methods Group 2: RepLKNet. With the RepLKNet model proposed
by Ding et al. [25], the large-scale convolution kernel model has received the attention of
researchers again. It has been demonstrated that directly using larger convolution kernels
instead of stacking small convolution kernels can obtain larger ERFs, thereby improving
CNN performance.

To compare with Group 1, RepLKNet is used as a feature extractor for visual encoding
models in our experiments, and other operations are the same as those in Group1.

Comparison Methods Group 3: End-to-End Model. Although the above two models
use different network models when extracting features, their essence is the same. The
end-to-end model is a brand-new visual encoding model.

By integrating the image representation model and the voxel regression model, the end-
to-end training method proposes an end-to-end convolutional regression network-based
visual encoding model (ETE-CRNVEM). ETE-CRNVEM includes two parts, where the
convolutional layer (conv) in front of the network is used for image representation (i.e., the
S2F module), and the final fully connected layer (FC) is used for voxel regression (i.e., the
F2V module). In the training process of the end-to-end model, the feature extraction
process is no longer separated from the voxel mapping process, but the parameters of
the two-in-one model are unified for optimization. Consequently, the end-to-end model

https://pan.baidu.com/s/1gspbbfqooMtegt_DO1TUeA?pwd=lknt
https://pan.baidu.com/s/1gspbbfqooMtegt_DO1TUeA?pwd=lknt
https://github.com/rwightman/pytorch-image-models
https://download.pytorch.org/models/vgg16-397923af.pth
https://download.pytorch.org/models/vgg16-397923af.pth
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can learn the complete process from image stimuli to voxel regression. In this way, the
image representation module and the voxel regression module can cooperate during the
optimization process to extract image features that better match the voxel responses and
achieve better encoding performance. Please refer to references [16,30] for more details.

3.3. Evaluation Strategy

For the visual encoding model, the prediction correlation is adopted to evaluate the
model performance, and the accuracy of the method is calculated as follows:

Pcc = cor(v, v̂) (2)

where, Pcc represents the Pearson correlation coefficient (PCC) [31,32], and its value falls
between the actual voxel v and the forecasted voxel v̂ for all image features in the test set.
There is a positive correlation between the Pcc value and the model encoding performance.
In this paper, voxels with correlation values greater than 0.41 are defined as valid predicted
voxels [8].

3.4. PCC Results for Different Models

In this paper, feature collection and voxel mapping operations are performed on five
subjects for ResNet50, VGG16, end-to-end models, and integrated models, respectively,
and the performances of those models are finally obtained.

Table 2 shows the top 100 voxel correlation values of subject 3. It demonstrates that
the mixed model achieves better performance than the VGG16, ResNet50, and End-to-End
models. For example, in the V1 region, compared with VGG16 and ResNet50, our model
significantly improved the performance in predicting voxel correlations.

Table 2. The ROI-level encoding performance of VGG16, ResNet50, End-to-End, and our models of
subject 3. Bold fonts mark our data results.

Areas Models

VGG16 ResNet50 End-to-End RepLKNet Ours (Mixed Model)
V1 0.620 0.650 0.683 0.741 0.743
V2 0.617 0.645 0.644 0.740 0.746
V3 0.576 0.557 0.559 0.647 0.650
V4 0.569 0.547 0.300 0.521 0.582

LOC 0.573 0.566 0.311 0.490 0.589
PPA 0.590 0.546 0.233 0.545 0.601
FFA 0.601 0.589 0.320 0.512 0.624

Figure 3a,b show the comparison results of the encoding performance of each brain
region between different models for subject 3 in the fMRI dataset. In Figure 3, the encoding
performance of VGG16, ResNet50, and the mixed model is compared through a scatter
plot. The scatter plot directly selects the predicted correlation value of a single voxel as
the drawing target so that the difference between different models can be observed in
the figure. For example, in the V1 map of Figure 3a, it can be seen that the red points
are significantly greater than the blue points, indicating that the mixed model has better
encoding performance.

Similarly, the encoding results of different models in the brain regions of subject 3
are listed in Table 1. It can be seen from this table that the mixed model has obvious
advantages in all brain regions, and our model has an average of 20% encoding performance
improvement in different brain regions compared to the traditional model. This result is
also confirmed in Figure 3a,b. In the scatter plot, the red points are about 10–30% more than
the blue points. From the above table and scatter plot, it can be concluded that the mixed
model has a better encoding effect than the traditional convolutional neural network.



Brain Sci. 2022, 12, 1633 9 of 13

Brain Sci. 2022, 12, x FOR PEER REVIEW 9 of 14 
 

also confirmed in Figure 3a,b. In the scatter plot, the red points are about 10%–30% more 
than the blue points. From the above table and scatter plot, it can be concluded that the 
mixed model has a better encoding effect than the traditional convolutional neural net-
work. 

 
Figure 3. (a) Comparison of the encoding performance between the mixed model and VGG16. (b) 
Comparison of the encoding performance between the mixed model and ResNet50. The horizontal 
and vertical axes in the scatterplot represent the correlation values of the voxels predicted by the 
traditional convolution model and the correlation values of the voxels predicted by the mixed 
model, respectively. The red points represent the points at which the correlation of the voxels pre-
dicted by the mixed model is higher than the traditional model. The blue points represent the points 
at which the correlation of the voxels predicted by the traditional model is higher than that of the 
hybrid model. The black points represent the points at which the voxel correlation predicted by the 

Figure 3. (a) Comparison of the encoding performance between the mixed model and VGG16.
(b) Comparison of the encoding performance between the mixed model and ResNet50. The horizontal
and vertical axes in the scatterplot represent the correlation values of the voxels predicted by the
traditional convolution model and the correlation values of the voxels predicted by the mixed model,
respectively. The red points represent the points at which the correlation of the voxels predicted
by the mixed model is higher than the traditional model. The blue points represent the points at
which the correlation of the voxels predicted by the traditional model is higher than that of the hybrid
model. The black points represent the points at which the voxel correlation predicted by the two
models cannot reach a valid value. The green line in the scatterplot represents the threshold for valid
predicted voxels (i.e., 0.41).
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4. Discussion
4.1. The ERF and the Convolutional Kernel Size

Based on the experimental data, it can be found that the mixed model that mixes
RepLKNet and VGG16 achieves better encoding performance than ordinary VGG16 or
ResNet. The possible reasons are discussed and analyzed as follows.

The ERF size of traditional CNN networks can be increased in several ways. One
option is to stack more layers and make the network deeper, thus theoretically increasing
the size of the receptive field linearly. This is because with each additional layer, the
receptive field size increases with the convolution kernel size. Meanwhile, subsampling
increases the receptive field size multiplicatively. The VGG model [13] and ResNet [14]
combine the above techniques to enlarge the ERF size. However, the ERF obtained in this
way is not as large as that obtained by directly expanding the convolution kernel size in
the RepLKNet model.

To show the difference between traditional CNN and RepLKNet in ERF more in-
tuitively, quantitative methods are exploited to calculate the ERF size. This approach
calculates the contribution score of the input image’s feature map to the last layer of the
convolutional model. These scores are then displayed as a heatmap, which can be shown
as the ERF size of the CNN in Figure 4. See [22] for details. Based on this algorithm, an
image that intuitively shows the difference in ERF between different models is obtained.
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It can be seen from Figure 4A–C that although the depth of the ResNet model gradually
increases from 18 layers to 101 layers, the ERF range shown in the green part of the figure
does not increase significantly. The same result can be observed in the VGG16 and VGG19
models, as shown in Figure 4D,E. However, in Figure 4F, the receptive field of RepLKNet
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is vast compared to VGG and ResNet, indicating that the ERF of the RepLKNet model is
more significant than that of the traditional CNN model.

From Figure 5, it can be concluded that the ERF size of visual encoding models using
traditional convolutional neural networks is insignificant. To address this issue, a large
convolution kernel model represented by RepLKNet is introduced into the traditional
convolution model, and the mixed model is proposed. The mixed model enables traditional
models to obtain a “huge” receptive field range to improve the ability to obtain feature
information and ultimately improve encoding performance.
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Table 1 indicates that for the original VGG16 and ResNet50 models, the top 100 Pcc
values of the two models for the seven brain regions are basically the same. For our
mixed model, the top 100 correlation values for the seven brain regions are improved to
varying degrees.

Meanwhile, it can be seen that in visual encoding, introducing a larger ERF into
traditional CNN models is a crucial process, which is in line with biological research
findings. This method can ensure that the model has texture bias due to the traditional
convolution kernel and obtains a larger receptive field to ensure the acquisition of more
information (such as shape bias).

Thus, introducing a larger ERF into traditional CNN models guarantees that the mixed
model achieves better encoding performance in experiments.

4.2. V1 Area Performance and Advanced Area Performance

As mentioned earlier, high-level visual areas have larger receptive fields than LVC.
Therefore, theoretically, the encoding effect of the mixed model in the HVC should be better
than that in the LVC, but this is inconsistent with the previous theory according to the
experimental results. This phenomenon is discussed below.

Generally, there are two processing procedures within 100 ms [33] when subjects
perform picture stimulation. These two information procedures are often referred to as
“top-down processing” and “bottom-up processing” [34]. When the researchers collected
data on the subjects, the MRI equipment’s repetition time (TR) was set to 3 s, indicating that
the subjects’ visual areas underwent 30 such information processes in one cycle. Specifically,
the fMRI response data includes data from several areas of the visual cortex. According
to neuroanatomy and physiology studies [29,34], the primary visual cortex receives and
processes information from the visual information relay station LGN, then transmits the
information to V2 and V3 for processing, and then transmits the processed information to
V4 and higher-level visual areas. V2 receives the feedforward information from V1 and
passes it to higher-level brain areas such as V3, V4, etc., and it also has feedback connections
to V1. V3 is in front of V2, and it receives information from V1 and V2 and projects the
information to the posterior parietal cortex. V4 is located in front of V2 and receives the
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information from V2 and V3. V4 also receives input from V1, especially the central part. In
the ventral visual pathway, the visual information flows via V1 to V2 or V4 and then to
higher-level visual areas, such as the LO. The specific connection relationship is presented
in Figure 5.

It can be seen from Figure 5 that the V1, V2, and V3 regions in the LVC can all obtain
information from the HVC through neural pathways. This is one of the reasons why the
encoding performance of the LVC is better.

4.3. Limitations and Future Work

Although our mixed model can improve the visual encoding performance of each
visual area, it still has shortcomings. In the design of the mixed strategy, RepLKNet and
VGG16 are combined through the merge method, and the weights of these models are the
same. This paper fails to discuss the difference caused by different weight values. In future
research, our work will focus on optimizing the weights of the two models and designing a
more efficient model mixing strategy.

5. Conclusions

This paper proposes a mixed model that mixes the RepLKNet with VGG16. The
proposed model improves the receptive field size of the CNN model used for feature
extraction in previous visual encoding models. Meanwhile, it ensures good performance
in the brain’s visual areas by accumulating information from the large receptive field
while retaining the performance advantage of traditional convolutional networks. The
experimental result confirms that expanding the receptive field of the convolution kernel
can effectively improve the encoding performance of the model. The mixed model focuses
on improving the encoding model’s performance from the ERF perspective, which provides
a new approach for future visual encoding studies.
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