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Abstract: Early rehabilitation with the right intensity contributes to the physical recovery of stroke
survivors. In clinical practice, physicians determine whether the training intensity is suitable for reha-
bilitation based on patients’ narratives, training scores, and evaluation scales, which puts tremendous
pressure on medical resources. In this study, a lightweight facial expression recognition algorithm
is proposed to diagnose stroke patients’ training motivations automatically. First, the properties of
convolution are introduced into the Vision Transformer’s structure, allowing the model to extract both
local and global features of facial expressions. Second, the pyramid-shaped feature output mode in
Convolutional Neural Networks is also introduced to reduce the model’s parameters and calculation
costs significantly. Moreover, a classifier that can better classify facial expressions of stroke patients is
designed to improve performance further. We verified the proposed algorithm on the Real-world
Affective Faces Database (RAF-DB), the Face Expression Recognition Plus Dataset (FER+), and a
private dataset for stroke patients. Experiments show that the backbone network of the proposed
algorithm achieves better performance than Pyramid Vision Transformer (PvT) and Convolutional
Vision Transformer (CvT) with fewer parameters and Floating-point Operations Per Second (FLOPs).
In addition, the algorithm reaches an 89.44% accuracy on the RAF-DB dataset, which is higher than
other recent studies. In particular, it obtains an accuracy of 99.81% on the private dataset, with only
4.10M parameters.

Keywords: facial expression recognition (FER); vision transformer (ViT); convolutional neural
networks (CNNs); stroke; rehabilitation

1. Introduction

The incidence, mortality, and disability of stroke in China have been higher than those
in developed countries such as the United Kingdom, the United States, and Japan in the
past 15 years [1]. Most stroke survivors cannot normally live because of suffering from
sequelae such as hemiplegia, limb numbness, swallowing disorders, and depression. Brain
neurobiology suggests that early training, at the right intensity, will aid recovery [2].
However, physicians need to be aware of patients’ feelings in real-time during early
rehabilitation to determine whether the training matches their physical recovery, then tailor
the most rehabilitation-friendly training for each patient. This existing manual monitoring
mode in clinical practice, which causes an enormous burden on medical resources, urgently
needs to be improved and optimized.

Deep learning, as one of the powerful medical assistance technologies, has been widely
applied in the medical field [3]. These applications include but are not limited to automatic
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diagnosis of breast cancer based on whole slide imaging [4], accurate measurement of
morphological changes in intervertebral discs based on axial spine Magnetic Resonance
Image (MRI) [5], detection of fundus lesions based on fundus imaging [6], and segmenta-
tion of brain tumors based on T1-weighted MRI [7]. These studies show that deep learning
dramatically reduces the heavy and urgent workload of physicians and improves the
efficiency of medical care. In particular, deep learning and machine learning also play an
important role in stroke prediction, prognostics, and management. Iqram and Se proposed
a real-time health monitoring system for stroke prognostics [8] and a cardiac monitoring
system for stroke management [9]. These studies provide technical support for early stroke
prognostics and have medical practice implications for predicting acute stroke. In addition,
emotion classification techniques for stroke patients based on electroencephalography
(EEG) [10–12] and facial electromyography (EMG) [13] also provide physicians with mean-
ingful assessment information to replace traditional clinical methods based on observation
or scoring.

However, these physiological signal-based approaches to stroke prognostics inevitably
require contact with the patient’s skin to capture the information. For stroke rehabilitation,
wearable devices are likely to interfere with patients’ training. In contrast, the facial
expression recognition (FER) technique based on computer vision can acquire the state of
patients in training without contact, which is more suitable for stroke rehabilitation. At
present, although the application of the FER technique in the field of stroke rehabilitation is
less than that of other medical fields, such as Down syndrome prediction [14], depression
diagnosis [15], and autism spectrum disorder identification [16], it is significantly improving
stroke management and quality of stroke care [17,18].

Few studies have published facial expression datasets and FER algorithms for stroke
patients because of their privacy and sensitive nature. However, FER for healthy people
is one of the mainstream tasks in computer vision. The relevant datasets contain a large
number of samples, such as the Facial Expression Recognition 2013 dataset (FER2013,
35,886 images) [19], the Static Facial Expression in the Wild (SFEW, 1766 images) [20],
the Real-world Affective Faces Database (RAF-DB, 29,672 images) [21], and AffectNet
(400,000 images) [22]. In terms of algorithms, Convolutional Neural Networks (CNNs),
such as Visual Geometry Group (VGG) [23], Google Inception Network (GoogleNet) [24],
and Residual Network (ResNet) [25], are the most commonly used structures in this field
because of their excellent robustness to changes in face position and image scale. With
Attention [26] proposed, many studies used it to replace part of CNNs or combine them to
improve performance while the model’s overall structure remained unchanged [27–29]. In
2020, Vision Transformer (ViT) did not use convolution and outperformed state-of-the-art
CNNs on mainstream small- and med-sized image classification datasets [30]. Moreover,
in recent years, improved algorithms based on Transformer have continuously surpassed
the previous algorithms in performance [31,32]. Fayyaz et al. [33] showed that ViT is
more robust than CNNs in handling occluded images, feature transformation, and token
reorganization. Nevertheless, the proposers of ViT also illustrated that ViT outperforms
ResNet only when trained on enormous datasets (14–300 million images). To address
this problem, some studies have combined CNNs and Transformers to model both local
and global dependencies for image classification [34,35]. However, these algorithms are
designed to achieve higher accuracy, inevitably requiring huge parameters, computational
cost, and Giga Floating-point Operations Per Second (GFLOPs), which make them hard to
embed into rehabilitation medical equipment.

We aim to design a lightweight FER algorithm for stroke rehabilitation in clinical
practice, so as to assist physicians in determining whether the training intensity of stroke
patients matches their physical rehabilitation and whether patients are active or focused
during training. The key contributions of this paper can be summarized as follows:

• We propose a lightweight FER algorithm named Facial Expression Recognition with
Patch-Convolutional Vision Transformer. It requires less memory and computation for
model training/inference while ensuring high accuracy.
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• The proposed algorithm effectively combines the local perception ability of CNN and
the advantages of ViT in extracting global features, which makes the algorithm achieve
the highest accuracy on the RAF-DB dataset.

• We treat emotion features as the weighted sum of neutral and V-A-like emotion
features at different scales and design a unique classifier, which has been verified
that more detailed facial emotion information of stroke patients has been extracted
for classification.

2. Materials and Methods
2.1. Data Sources and Data Preprocessing

There are three datasets used in this study: (1) two public datasets for healthy people,
RAF-DB [21] and FER+ [36]; (2) a private dataset for stroke patients. Table 1 describes the
sample properties of three datasets in detail.

Table 1. Properties of three datasets with data.

Class
FER+ RAF-DB Private Dataset

Simple Size Proportion (%) Simple Size Proportion (%) Simple size Proportion (%)

happy 5165 24.41 5957 38.84 141 10.83
surprised 3963 18.73 1619 10.55 62 4.76

sad 3765 17.79 2460 16.04 78 5.99
angry 2594 12.26 867 5.65 44 3.38

neutral 4748 22.44 3204 20.89 509 39.09
fearful 633 2.99 355 2.31 - -

disgusted 145 0.69 877 5.72 - -
contempt 148 0.70 - - - -
painful - - - - 85 6.53
strained - - - - 298 22.89

tired - - - - 85 6.53

Min/Max
sample size 0.0281 - 0.0596 - 0.0864 -

SUM 21,161 100 15,339 100 1302 100

• RAF-DB dataset

The Real-world Affective Faces Database (RAF-DB) contains a single-label subset
with 15,339 images, which can be divided into seven basic emotional classes: happy, sad,
surprised, angry, fearful, disgusted, and neutral. These samples are of significant variability
in subjects’ age, ethnicity, head poses, lighting conditions, occlusions (e.g., glasses, facial
hair, or self-occlusion), and post-processing operations (e.g., various filters and effects) [21].
These diverse differences make the trained models have better generalization.

• FER+ dataset

The Face Expression Recognition Plus dataset (FER+) contains 35,887 images of size
48 × 48 that can be divided into 10-class emotions. Only 21,161 images/8 emotions are
used in this experiment: happy, sad, surprised, angry, fearful, disgusted, neutral, and
contempt.

• Private dataset

The inclusion criteria were as follows: (1) patients aged 18–85 years old; (2) diagnosed
with stroke confirmed by computed tomography (CT) and/or magnetic resonance imaging
(MRI); (3) ≥2 weeks post-stroke; (4) upper limb of the healthy or affected side can use
the upper limb rehabilitation robot for training; (5) patients signed the informed consent.
The exclusion criteria were: (1) patients with unstable cerebrovascular disease; (2) patients
with sensory aphasia or motor aphasia, and those who were unable to cooperate with
assessment and testing; (3) Montreal Cognitive Assessment (MoCA) score ≤ 25; (4) patients
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with severe organ dysfunction or with malignant tumors; (5) House–Brackmann (H-B)
grade ≥ III.

There were 42 participants in the experiment, of which 37 patients with stroke (25 men
and 12 women, 31–87 years old) were confirmed cases from the Shanghai Third rehabilita-
tion hospital and 5 healthy controls (4 physicians and 1 student). All subjects signed an
informed consent form before the experiment.

In this study, four basic emotions (happy, sad, surprised, and angry) were used
as biomarkers to assess the patient’s concentration, and four special emotions (painful,
strained, tired, and neutral) were used as biomarkers to determine whether the current
training intensity is suitable for the patient. There were two schemes for collecting emo-
tional videos. First, we guided patients to express these four basic emotions through videos
and pictures. Second, these four special emotions were collected while patients were train-
ing with the upper limb rehabilitation robot. In addition, we asked patients to repeatedly
lift the upper extremity and gradually increase the range of motion to capture these desired
emotions. In this experiment, each patient participated in collections of two emotions at
least, which ensured that each subject’s sample had positive and negative labels.

After collecting the emotional videos, data preprocessing is an indispensable step,
mainly sampling images, correcting faces, and labeling samples. The DB Face [37], a face
detection algorithm, was used to predict the anchor boxes of faces and corresponding
confidence scores in emotional videos automatically. Then, we removed face images with
low confidence and incomplete from numerous video slices containing facial expressions.
These preserved facial images were adjusted by rotating so that the line connecting the
eyes’ feature points detected by the DB Face algorithm was in the horizontal direction, with
the midpoint of the line as the center of rotation. The line’s rotation angle θ is calculated by
Equation (1). The transformation matrix M of all pixels in the original image is defined as
Equation (2). The coordinates of all original pixels can be transformed into the corrected
coordinates using Equation (3).

θ = tan−1 yr − yl
xr − xl

(1)

A =

[
cos θ sin θ
− sin θ cos θ

]
, B =

[
(1− cos θ)·xc − sin θ·yc
sin θ·xc + (1− cos θ)·yc

]
, M =

[
A B

]
(2)

[
x′

y′

]
= A

[
x
y

]
+ B = M

x
y
1

 (3)

where (xl , yl), (xr, yr), and (xc, yc) are the feature coordinates of the left eye, the right eye,
and the midpoint of the line connecting eyes in the original image, respectively. (x′, y′) is
the corrected coordinate.

We labeled the face-aligned images using the Facial Action Coding System (FACS) [38].
First, the emotional label of each sample was initially determined based on the content
of the corresponding emotional video of the sample. Then, these images were annotated
again according to FACS definitions of eight expressions. Table 2 shows FACS definitions
of eight expressions in this experiment. In addition to the five expressions of happy, sad,
angry, surprised, and neutral, the other expressions required for this experiment must be
clearly defined by FACS. Referring to the PSPI [39], FACS features of painful expressions
include lowered brow (AU4), raised cheeks (AU6), tightened lid (AU7), wrinkled nose
(AU9), raised upper lip (AU10), and closed eyes (AU43). By comparing the facial features
corresponding to each AU, we defined that FACS features of strained expressions are
lowered brow (AU4), raised cheeks (AU6), tightened lips (AU23), pressed lips (AU24), and
sucked lips (AU28); FACS features of tired expressions are closed eyes (AU43) and downed
head (AU54), as shown in Figure 1.
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Table 2. FACS definitions of eight expressions.

Emotions Code *

painful AU4 + (AU6/AU7) + (AU9/AU10) + AU43
strained AU4 + AU6 + (AU23/AU24/AU28)

tired AU43 + AU54
neutral /
happy AU6 + AU12

sad AU1 + AU4 + AU15
surprised AU1 + AU2 + AU5 + AU26

angry AU4 + AU5 + AU7 + AU23
* AU1: Inner Brow Raiser; AU2: Outer Brow Raiser; AU4: Brow Lowerer; AU5: Upper Lid Raiser; AU6: Cheek
Raiser; AU7: Lid Tightener; AU9: Nose Wrinkler; AU10: Upper Lip Raiser; AU12: Lip Corner Puller; AU15:
Lip Corner Depressor; AU23: Lip Tightener; AU24: Lip Pressor; AU26: Jaw Drop; AU28: Lip Suck; AU43: Eyes
Closed; AU54: Head down.
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Figure 1. FACS features of strained and tired expressions: (a) the strained expressions spontaneously
appeared by patients when their limb muscles were tense during training; (b) the tired expressions
occurred when the patients were resting or undergoing prolonged passive training.

After labeling and collation, the private dataset contains 1302 samples/8 categories,
with no sample crossover and duplicates. Some samples of the private dataset are shown
in Figure 2.
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Figure 2. Partial samples of the private dataset: (a) these four basic expressions are used to assess
training attention and positivity of stroke patients; (b) these four special expressions are used to
determine whether the training intensity is proper for the patient.

2.2. Model Building

In order to occupy fewer computing resources to identify eight facial expressions
of stroke patients accurately, we propose a lightweight FER model shown in Figure 3,
named the Facial Expression Recognition with Patch-Convolutional Vision Transformer
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(FER-PCVT). The FER-PCVT designed with ViT as the baseline mainly consists of three
modules: the Convolutional Patch Embedding (CPE), the Pyramid Transformer (PTF), and
the Valence-Arousal-Like Classifier (V-ALC). The first two modules combine to form the
backbone network, Patch-Convolutional Vision Transformer (PCVT). The V-ALC is an
expression classifier designed based on the Valence-Arousal (V-A) emotion theory [40].
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of the Block Scaling, the Conv-TF Encoder, and the Pyramid Transformer, respectively. HA: happy;
SA: sad; AN: angry; SU: surprised; NE: neutral; TI: tired; ST: strained; PA: painful.

2.2.1. Convolutional Patch Embedding

Compared with the direct processing of pixel information of images using the trans-
former encoder of ViT, the accuracy will be further improved by using CNNs to extract
the feature information from images and then processing them with the transformer en-
coder [35,41]. Based on this, the convolutional patch embedding module is implemented
as a pixel-to-sequence mapping module to extract the feature sequences as the input of the
Conv-TF Encoder of the pyramid transformer module. Specifically, the feature information
extracted from the image by the convolutional layer and pooling layer is reduced to the
patch size by the Block Scaling module. The Block Scaling module, consisting of two
convolutional layers (size 2 × 2, stride 2, and size 1 × 1, stride 1), is applied to adjust the
dimensions of feature maps entered into the Conv-TF Encoder by varying the number of
repetitions. That is, the length and width of the sequence will be shortened to 1/2r of the
original size after repeating r times. This method of introducing convolutions into ViT
achieves feature mapping from pixel to sequence while preserving the position information
between patches. The detailed structure is shown in Figure 4a.
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2.2.2. Pyramid Transformer

ViT requires the input and output sequences in the transformer encoder to have the
same dimensions. However, the length of sequences output by CNNs is reduced as the
network deepens. This pyramidal output mode in the CNNs, significantly reducing the
computational cost, has been shown to be beneficial in extracting feature information at
different scales [42]. Thus, the PTF designed by introducing this output mode aims to
reduce the storage, parameters, and GFLOPs required for computation. Details of the PTF
are shown in Figure 4b. We use convolutional mapping instead of the linear mapping in the
transformer encoder of ViT to extract the three feature matrices: Q, K, and V. Then, they are
fed into the Multi-Head Self-Attention to be given different weights. In the Feed-Forward
module, a bottleneck structure is formed by two convolutional layers with output channels
di/2 and di, respectively, which compresses the channel dimension in the model. The
activation function GeLU between the two convolutional layers is used to make the model
fit data faster, and its expression is Equation (4).

GeLU(x) =
1
2

x
(

1 + er f
(

x√
2

))
(4)

where er f (·) is the Gauss Error Function. In the Block Combined Pooling module, d0
convolution kernels (size 3 × 3) expand the channel dimension of the input feature map,
followed by downsampling with a max pooling window (size 3 × 3, stride 2). The module
allows feature maps to be resized from di × hi ×wi to d0× hi/2×wi/2, gradually reducing
the feature output, like a pyramid.

In addition, the layer normalization constrains the outputs of the Conv-TF Encoder
module and the Feed-Forward module to avoid the vanishing gradient. The inputs and
outputs of the above two modules are connected by residual connections to prevent the loss
of feature information extracted by the model. At the same time, the batch normalization
regularizes the output of the Block Combined Pooling module.

2.2.3. Valence-Arousal-Like Classifier

FACS defines the neutral expression as no AU, meaning that no facial muscle move-
ment can be used as a biomarker. It makes neutral expressions more challenging to identify
than other expressions. Especially neutral expressions of some stroke patients are different
from those of ordinary people when all facial muscles are completely relaxed. The V-A
emotion theory [40] suggests that each emotion is a mixture of arousal and valence in dif-
ferent proportions. Referring to the theory, we design the V-ALC as an expression classifier,
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considering emotion as a weighted sum of neutral and V-A-like features. Details of the
V-ALC are shown in Figure 5.
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Figure 5. Details of the Valence-Arousal-Like Classifier (V-ALC).

We adopt the pixel shuffle method to reshape low-resolution feature maps into high-
resolution ones. That is, the length and width of the input feature map are up-sampled
by 12 times, and the result is condensed using a convolution kernel of size 12 × 12. These
compressed sequences are grouped into the Channel Mean and the Batch Sharing to
obtain the V-A-like and neutral features with one dimension, respectively. The result of
multiplying the neutral feature with the adaptive weight wAD is added to the V-A-like
feature to output a complete feature map of emotion. Among them, wAD is a parameter
learned by the model from many training samples. The Channel Mean means averaging the
values of different channels in the same batch, thereby reducing the channel dimension. The
Batch Sharing refers to averaging the values in different batches on the basis of the Channel
Mean, which aims to extract the most appropriate characteristics of neutral emotions from
batches. Their expressions are Equations (5) and (6).

Channel Meal (xb) =
1
c

c

∑
i=1

xbi (5)

Batch Sharing (x) =
1
bc

b

∑
j=1

c

∑
i=1

xij (6)

where x is the input feature tensor, xb is the feature sequence of different batches in the
input tensor, i is the ith channel, j is the jth batch, c is the total number of channels, and b is
the total number of batches.

After outputting a complete feature map of emotion, considering that emotion may
be a composite state, we normalize these sequences using the Sigmoid function to avoid
mutually exclusive results using the Softmax function. Finally, the prediction confidence of
each category is output, where the expression with the highest confidence is the final result
of the model’s prediction.

3. Results
3.1. Setup

Table 3 shows the training settings in this experiment, including the selected optimizer,
the loss function, and some specific hyperparameters. Table 4 shows the detailed structural
parameters for each module combined in this experiment.
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Table 3. Training parameter settings.

Parameter Setting

optimizer AdamW [43] 1

loss function the Cross Entropy Loss
batch size 120

epoch 200
learning rate 0.0003

exponential LR 0.99
1 The optimizer selected AdamW from the Adam series commonly used in training ViT [44].

Table 4. Structural parameters for each module.

Module Structural Params Internal Params Input Size Output Size

CPE r = 1 patch size 1 = 8 3 × 128 × 128 64 × 16 × 16
PTF1 2 l = 2 d0 = 192, heads 3 = 8 64 × 16 × 16 192 × 8 × 8
PTF2 2 l = 4 d0 = 576, heads 3 = 4 192 × 8 × 8 576 × 4 × 4
V-ALC - dclass = 7 576 × 4 × 4 1 × 7

1 The patch size is the size of each patch when the image is split into patches. 2 The PTF module is repeated twice
in the model’s overall structure, i.e., nt f = 2, so the PTF1 and PTF2 refer to the first and second times, respectively.
3 The heads are the setting of the Multi-Head Self-Attention in the PTF module.

3.2. Performance Evaluation of PCVT Based on Public Datasets

We evaluate the learning capabilities of CvT [35], PvT [42], ResNet18 [25], ResNet18*,
and PCVT on the RAF-DB dataset, focusing on accuracy and resource consumption. Among
them, both CvT and PvT are hybrid variant networks formed by introducing convolution
into ViT, which are of the same type as this study. ResNet 18 is the most commonly used
convolutional neural network for image classification, and ResNet18* is a pre-trained model
of ResNet18. CvT, PvT, ResNet18, and PCVT are retrained from scratch using the same
computer to obtain experimental results that are not affected by the device conditions. For
ResNet18*, we further trained it using this emotion dataset on top of the parameter weights.

As shown in Figure 6, the iterative curves of these five networks trained and validated
on the RAF-DB dataset show that the PCVT proposed in this study performs better on the
validation data than other models except for ResNet18*. It means that PCVT has better
generalization than PvT, CvT, and ResNet18. Admittedly, as a pre-trained model, ResNet18*
predictably shows the best classification ability from the beginning of the iteration. Compare
the parameters, GFLOPs, and accuracy of the above five networks on the RAF-DB dataset,
as shown in Table 5. The accuracy of PCVT is 84.22%, second only to that of ResNet18*
(86.28%). Meanwhile, PCVT has the fewest parameters and GFLOPs.

3.3. Performance Evaluation of FER-PCVT Based on Public Datasets
3.3.1. Comparison with State-of-the-Art Methods

The proposed FER-PCVT is compared with the state-of-the-art methods on RAF-DB
and FER+ datasets. As shown in Table 6, two FER-PCVT models without pretrained
weights trained from scratch on two public datasets achieved 89.44% and 88.21% accuracy,
respectively. The FER-PCVT learned on the RAF-DB achieves the highest accuracy, while
the FER-PCVT learned on FER+ performs lower than other models.

3.3.2. Analysis Based on Confusion Matrix

The detailed performance of FER-PCVT for each class on the RAF-DB and FER+
datasets is analyzed based on the confusion matrix. As shown in Figure 7, FER-PCVT
is sensitive to whether the dataset is balanced. There is no significant deviation in the
predicted results on the RAF-DB dataset. However, the model shows significant bias on
the FER+ dataset. As shown in Figure 7b, the model’s predictions have extreme errors
in the “disgust” and “contempt” classes with small samples; conversely, the model has
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highly accurate for the “happy” and “neutral” classes. Moreover, V-ALV determines
the expression baseline based on the features of neutral expressions in the batch, so the
imbalance of dataset affected the expression baseline generation. In addition, the Precision,
Specificity, Sensitivity, F1-Score, and G-mean of FER-PCVT are also analyzed based on the
confusion matrix, as shown in Table 7. We set the Precision and Recall to the same weight
to obtain the F1-Score of FER-PCVT for each emotional category. On the RAF-DB dataset,
the F1-Score values of FER-PCVT for surprised, fear, disgust, happy, sad, angry, and neutral
are 84.2%, 73.3%, 67.9%, 94.5%, 86.7%, 80.4%, and 92.4%, respectively. However, on the
FER+ dataset, FER-PCVT only performs well for categories with many samples, such as
surprised (86.4%), happy (89.4%), sad (69.1%), and neutral (73.6%). G-mean reflects the
contribution of each category to the model’s accuracy. Although the model’s accuracy
reaches 88.21% on the FER+ dataset, the G-mean values of both disgust and contempt are
0%, which means that the accuracy depends on surprised (89.8%), fear (72.3%), happy
(94%), sad (75.8%), angry (78.8%), and neutral (86.5%). In contrast, the G-mean values of all
categories are higher than 90% in the RAF-DB dataset, and the order from high to low is
neutral (96.8%), happy (95.6%), sad (92.1%), surprised (89.4%), anger (85.2%), fear (81.1%),
and disgust (81.1%).

Brain Sci. 2022, 12, x FOR PEER REVIEW 10 of 20 
 

  
(a) (b) 

  
(c) (d) 

Figure 6. Iterative curves of CvT, PvT, ResNet18, ResNet18*, and PCVT on the RAF-DB dataset. (a) 

Loss plots of these five networks on the training data of RAF-DB. (b) Loss plots of these five net-

works on the validation data of RAF-DB. (c) Accuracy plots of these five networks on the training 

data. (d) Accuracy plots of these five networks on the validation data. * It represents a pretrained 

model. 

Table 5. Training results of five networks on the RAF-DB dataset. 

Model Params (M)  GFLOPs Accuracy (%) 

ResNet18 11.20 0.29 81.52 

ResNet18 * 11.20 0.29 86.28 

CvT 19.55 0.66 81.45 

PvT 6.25 0.14 77.80 

PCVT(Ours) 2.46 0.12 84.22 

* It represents a pretrained model. 

3.3. Performance Evaluation of FER-PCVT Based on Public Datasets 

3.3.1. Comparison with State-of-the-Art Methods 

The proposed FER-PCVT is compared with the state-of-the-art methods on RAF-DB 

and FER+ datasets. As shown in Table 6, two FER-PCVT models without pretrained 

weights trained from scratch on two public datasets achieved 89.44% and 88.21% accu-

racy, respectively. The FER-PCVT learned on the RAF-DB achieves the highest accuracy, 

while the FER-PCVT learned on FER+ performs lower than other models. 

Table 6. Performance comparison of FER-PCVT and recent FER models. 

Figure 6. Iterative curves of CvT, PvT, ResNet18, ResNet18*, and PCVT on the RAF-DB dataset.
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works on the validation data of RAF-DB. (c) Accuracy plots of these five networks on the training data.
(d) Accuracy plots of these five networks on the validation data. * It represents a pretrained model.
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Table 5. Training results of five networks on the RAF-DB dataset.

Model Params (M) GFLOPs Accuracy (%)

ResNet18 11.20 0.29 81.52
ResNet18 * 11.20 0.29 86.28

CvT 19.55 0.66 81.45
PvT 6.25 0.14 77.80

PCVT(Ours) 2.46 0.12 84.22
* It represents a pretrained model.

Table 6. Performance comparison of FER-PCVT and recent FER models.

Model Tags Year
Accuracy

FER+ RAF-DB

SPWFA-SE [45] CNN 2020 - 86.31%
RAN [29] ResNet 2019 89.16% 86.90%

Ad-Corre [46] CNN 2022 86.96%
DACL [28] ResNet 2021 - 87.78%
VTFF [34] ViT 2022 88.81% 88.14%
SCN [47] CNN 2020 89.35% 88.14%

FER-VT [48] ViT 2021 90.04% 88.26%
PSR [49] VGG-16 2020 - 88.98%
RUL [50] ResNet 2021 - 88.98%

LResNet50E-IR [51] ResNet 2020 89.257% 89.075%

FER-PCVT(Ours) ViT 2022 88.21% 89.44%
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Table 7. Precision, Specificity, Sensitivity, F1-score, and G-mean of FER-PCVT on the Raf-DB and
FER+ datasets.

Class
RAF-DB FER+

Precision Specificity Sensitivity F1-Score G-Mean Precision Specificity Sensitivity F1-Score G-Mean

surprised 0.877 0.987 0.81 0.842 0.894 0.912 0.982 0.82 0.864 0.898
fear 0.824 0.996 0.66 0.733 0.811 0.555 0.987 0.53 0.542 0.723

disgust 0.688 0.982 0.67 0.679 0.811 0 1 0 0 0
happy 0.941 0.962 0.95 0.945 0.956 0.861 0.951 0.93 0.894 0.940

sad 0.864 0.974 0.87 0.867 0.921 0.835 0.975 0.59 0.691 0.758
angry 0.895 0.995 0.73 0.804 0.852 0.462 0.886 0.70 0.557 0.788

neutral 0.882 0.966 0.97 0.924 0.968 0.632 0.851 0.88 0.736 0.865
contempt - - - - 0 1 0 0 0

The above parameters for evaluating performance are calculated using the standard
formulas shown in Equations (7)–(11):

Precision =
TP

TP + FP
(7)

Speci f icity =
TN

TN + FP
(8)

Sensitivity = Recall =
TP

TP + FN
(9)

F1− Score =
2× Precision× Recall

Precision + Recall
(10)

Gmean =
√

Recall × Speci f icity (11)

where TP, TN, FP, and FN mean the true positive, the true negative, the false positive, and
the false negative, respectively.

3.3.3. Visualization of Clustering Ability

The clustering ability of FER-PCVT on the RAF-DB dataset is visualized by the t-SNE
plot based on the inputs and outputs of the last linear layer of V-ALC. As shown in Figure 8,
the boundaries between the various categories are clear and intuitive, which means that
FER-PCVT can distinguish and cluster the seven emotions well.

3.4. Performance Evaluation of FER-PCVT Based on the Private Dataset
3.4.1. Accuracy Comparison and Impact of Pretrained Weights

We compare FER-PCVT with ResNet18 and the structure combining PCVT with
the Multi-layer Perceptron (MLP) on the private dataset, focusing on the accuracy and
parameters of these models with and without pretrained weights. Figure 9 shows the
training and validation accuracy curves of ResNet18, PCVT+MLP, and FER-PCVT on the
private dataset. As shown in Table 8, the structure formed by PCVT combined with MLP
exhibits the worst precision on the private dataset, although it has the lowest number of
parameters. FER-PCVT has similar accuracy to ResNet18 on the private dataset with or
without pre-trained weights. However, the algorithm proposed in this experiment has only
4.10M parameters, about one-third of the parameters of ResNet18.
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Figure 9. Training and validation accuracy curves of ResNet18, PCVT+MLP, and FER-PCVT on the
facial expression dataset of stroke patients. (a) Accuracy curves for models with pretrained weights
on the basic dataset; (b) accuracy curves for models without pretrained weights on the basic dataset;
(c) accuracy curves for models with pretrained weights on the special dataset; (d) accuracy curves for
models without pretrained weights on the special dataset. Among them, “Train” means training, and
“Val” means validation, and the bold font indicates the algorithm proposed in this study.
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Table 8. Accuracy comparison on the facial expression dataset of stroke patients.

Model Params (M) Pre-Training
Accuracy (%)

Basic Categories 1 Special Categories 2 AVG

ResNet18 11.19
7 98.72 99.66 99.19
4 99.58 99.72 99.65

RCVT+MLP 4.06
7 88.46 97.22 92.84
4 98.64 99.21 98.93

PCVT+V-ALC
(Ours) 4.10

7 99.15 99.42 99.29
4 99.89 99.72 99.81

1 The basic categories include surprised, happy, sad, and angry expressions. 2 The special categories include tired,
neutral, strained, and painful expressions.

3.4.2. Visualization of Clustering Ability

To visualize the model’s ability to classify the eight facial expressions of stroke patients,
we plot the t-SNE of FER-PCVT on the private dataset. As shown in Figure 10, the model
can cluster the four basic expressions and four special expressions of stroke patients
well. Especially in special categories, the distribution of neutral expressions with other
expressions is similar to that of the V-A emotion theory.
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performance of FER-PCVT for five basic expressions; (b) Visualization of the clustering performance
of FER-PCVT for four special expressions. SU: surprised; HA: happy; SA: sad; AN: angry; NE: neutral;
PA: painful; TI: tired; ST: strained.

3.5. Visual Analysis

We perform a global visual analysis of models to find the regions that models focus
on for classification. The Grad-CAM [52] is used to visualize ResNet18*. For ViT and FER-
PCVT, visualization is achieved by stacking the attention weights of each layer in order.
ResNet18*, ViT, and FER-PCVT have different focus points when identifying the facial
emotions of stroke patients, as shown in Figure 11. The part covered in red is the region
of the model’s most concern when classifying and recognizing expressions. ResNet18*
focuses on localized facial regions, while ViT extracts information globally. Although the
red regions in the visualization images of ViT appear more on the periphery of the image,
ViT also pays attention to the details of the facial features. However, FER-PCVT can focus
more on muscle changes due to different expressions while extracting global information.
For example, for strained expression, a common emotion when muscles are tense during
training, FER-PCVT notices more changes in areas such as eyebrows, eyes, and lips than in
other models. Moreover, the facial features of neutral expressions extracted by FER-PCVT
are more specific than those of other models. In addition, FER-PCVT also showed a better
ability to extract emotional features for these four basic expressions.
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4. Discussion

Experienced physicians can determine stroke patients’ intervention strategies by
observing their emotional changes [13]. Similarly, stroke rehabilitation systems based on
deep learning/machine learning can also sense the patients’ emotions and provide training
suggestions according to emotional changes. Currently, more researchers use the patients’
physiological signals as the information source of perceived emotion [10–13]. Few studies
have designed FER algorithms for stroke rehabilitation. To assist physicians in analyzing
the degree of physical recovery and adjusting the training intensity of stroke patients, we
use eight common emotions of patients during rehabilitation as biometrics and design a
lightweight FER algorithm. By detecting the positive emotions of stroke patients during
rehabilitation, such as happy, surprised, and strained, patients’ training motivation and
interest will be provided to physicians. When painful emotions are detected, it means that
the training intensity exceeds the patient’s muscle tolerance, and the intensity should be
adjusted in time to avoid secondary injuries. In addition, if negative emotions are detected
frequently, such as sad, tired, and angry expressions, physicians must pay attention to
patients’ mental health.

The FER algorithm proposed in this study is an automated assessment technology
for stroke rehabilitation, which acquires the training status of patients in a non-contact
way. ViT is the basic framework for algorithm design since the global modeling of images
using ViT is critical to the emotional classification task, as shown in Figure 11. However,
CNNs structures are better at extracting local and detailed information in expression
images than ViT. Therefore, introducing the characteristics of CNNs into the ViT structure
can improve performance and robustness while maintaining high accuracy and memory
efficiency. ViT converts the pixel information (2D) in the patch into the feature sequence
(1D) required by the encoder through linear projection and Patch Embedding. The position
relationships between patches need to be learned through the Position Embedding module.
However, the sequence extracted by convolution contains position information, which is
the inductive bias property of convolution. Thus, the CPE module containing convolutional
layers and pooling layers is designed to replace the linear projection, the Patch Embedding,
and the Position Embedding in ViT. There are some studies that have also introduced
convolution into ViT. For example, VTFF [34] extracts the information from the original
and local binary pattern images using two ResNet18. Then, it flattens and linearizes feature
information to obtain patches with features instead of patches with image blocks in ViT.
This network achieves an accuracy of 88.14% on RAF-DB while containing a large number
of parameters (51.8M). However, the algorithm proposed in this study performs better on
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RAF-DB with 1.3% higher accuracy than VTFF. CvT [35] divides transformers into multiple
stages, constituting the transformers’ hierarchy. A convolutional token embedding module
is added at the beginning of each stage, which is implemented as a convolutional projection
to replace the linear projection before each self-attention in ViT. The algorithm proposed
in this paper mainly realizes the convolutional mapping between pixels to sequences
by combing convolution and pooling instead of linear projection in ViT. At the same
time, the location information between patches is preserved. In contrast, we incorporate
convolutional features in ViT more concisely. According to the experimental data in Table 5
and Figure 6, PCVT proposed in this study has higher accuracy and lower parameters than
CvT on the RAF-DB dataset.

In addition, high accuracy and low parameters are necessary for a model to run
well in rehabilitation equipment with less computing power than professional computers.
Therefore, we designed the PTF module that introduced a pyramidal feature output mode
to reduce parameters and GFLOPs, inspired by PvT [42]. PvT is proposed as a backbone
model to serve downstream tasks in various forms, such as image classification, object
detection, and semantic segmentation. Similar to this study, both PvT and FER-PCVT
have reduced the sequence length of the transformer output as the network deepens,
significantly decreasing computational overhead. Regarding implementation details, PvT
splits the image/feature map into many patches (size of Pi × Pi, where i is the ith stage), and
then feeds each patch into the linear projection to obtain many feature sequences whose
dimensions are Pi times shorter than the input. However, we mainly down-sample the
feature map by combining convolutional and pooling to get a feature map that the size is
reduced by half each time. Validated by the experiments shown in Figure 6 and Table 5, the
proposed algorithm has higher accuracy and requires about 3.79M lower parameters than
PvT in model training/inference.

Furthermore, considering that some stroke patients have different facial expressions
due to impaired facial muscles, we designed a classifier that is more suitable for the emotion
classification of stroke patients to improve the accuracy further. We designed the V-ALC
classifier based on the V-A emotion theory, treating emotion as the weighted sum of V-
A-like and neutral features. The addition of V-ALC improves the model’s accuracy from
84.22% to 89.44%, as shown in Tables 5 and 6. According to Table 8, the structure obtained
by PCVT splicing V-ALC performs better than that obtained by PCVT splicing MLP in
classifying the emotions of stroke patients.

We also visually analyze models to find the attention regions of ViT, ResNet18*, and
FER-PCVT in classifying emotions and verify that FER-PCVT combines the advantages of
the other two structures well. As shown in Figure 11, ResNet18, a typical CNNs structure,
focuses on the facial regions that best represent emotions, similar to the areas humans
notice when recognizing the emotions of stroke patients. For example, the tightened and
open lips when angry, the wrinkled eyebrows when sad, the raised cheeks when strained,
and the relaxed eyes and mouth when tired. Unlike ResNet18, ViT extracts global features
while also paying attention to some facial regions located inside the image, especially for
surprised and painful expressions. FER-PCVT extracts information globally like ViT but
perceives more detailed facial regions than ViT, which means more details about emotions
can be captured by FER-PCVT.

However, the algorithm proposed in this study recommends using a dataset with
better balance for training, since the designed classifier sums neutral emotion features with
weights with other emotion features for classification. Unbalanced sample sizes will affect
the model’s ability to extract an unbiased emotion baseline. The RAF-DB dataset is more
balanced than the FER+ dataset, so the proposed method achieves the highest accuracy on
the RAF-DB dataset, as shown in Table 6 and Figure 7. However, its performance on the
FER+ dataset is weaker than other FER algorithms, such as RAN [29], VTFF [34], SCN [47],
and FER-VT [48].

To summarize, the proposed method has several advantages: (1) It achieves higher
recognition accuracy than other existing FER algorithms on the RAF-DB dataset. (2) The
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network structure successfully combines the local perception of CNNs and the global
extraction capability of ViT, which effectively improves the ability of the model to extract
feature sequences used to classify patients’ emotions. (3) It has fewer parameters and
GFLOPs than other algorithms, making it easier to embed in medical rehabilitation equip-
ment with poorer computing performance than professional computers. Although the
proposed method has shown lower consumption and better effectiveness on both public
datasets and the private dataset, there are still some problems to be improved: (1) The
algorithm performs better on the balanced dataset. Therefore, it is necessary to balance
the sample size of each category in order to obtain unbiased prediction results. (2) The
sample size of the private dataset used in this study is insufficient compared to public
datasets, especially for painful and tired expressions. We hope to collect more clinical data
to improve the model’s generalization. (3) This study only conducted a qualitative analysis
of emotions and did not further classify each emotion. For example, painful emotions are
divided into severe, moderate, and slight pain in detail. It is hoped that future research can
bring more specific and quantitative rehabilitation recommendations for the early training
of stroke patients.

5. Conclusions

This study proposes a lightweight FER algorithm, FER-PCVT, which is more con-
ducive to embedding in medical rehabilitation equipment to determine whether the current
training intensity received by a stroke patient is most suitable for his physical recovery. To
verify the performance of FER-PCVT, we collect and annotate a private dataset of stroke
patients containing 1302 samples, which can be divided into 8 classes: painful, strained,
tired, neutral, happy, sad, angry, and surprised. This algorithm is compared with other
FER algorithms on two public datasets (FER+ and RAF-DB) and a private dataset. The
experimental results show that: (1) PCVT, the backbone network of FER-PCVT, achieves
an accuracy of 84.22%, parameters of 2.46M, and GFLOPs of 0.12 on the RAF-DB dataset,
which is better than CvT, PvT, and ResNet18. (2) FER-PCVT achieves 88.21% and 89.44%
on the FER+ and RAF-DB datasets, respectively. Its performance exceeds that of other
existing expression recognition algorithms on the RAF-DB dataset. (3) FER-PCVT achieves
an accuracy of 99.81% on the private dataset, with only 4.10M parameters. (4) FER-PCVT
effectively combines the local perceptual ability and the feature output mode of the CNNs
and the global extraction capability of ViT, which significantly reduces the parameters and
ensures recognition accuracy. This method has excellent performance on public and private
datasets, providing an intuitive and efficient automated assessment technique for stroke
patients to receive more suitable early training.
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