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Abstract: Dysfunctional brain networks have been found in patients with major depressive disorder
(MDD). In this study, to verify this in a more straightforward way, we investigated the intrinsic
organization of brain networks in MDD by leveraging the resting-state functional near-infrared
spectroscopy (rs-fNIRS). Thirty-four MDD patients (24 females, 38.41 ± 13.14 years old) and thirty
healthy controls (22 females, 34.43 ± 5.03 years old) underwent a 10 min rest while their brain activity
was recorded via fNIRS. The results showed that MDD patients and healthy controls exhibited similar
resting-state functional connectivity. Moreover, the depression group showed lower small-world
Lambda (1.12 ± 0.04 vs. 1.16 ± 0.10, p = 0.04) but higher global efficiency (0.51 ± 0.03 vs. 0.48 ± 0.05,
p = 0.03) than the control group. Importantly, MDD patients, as opposed to healthy controls, showed a
significantly lower nodal local efficiency at the left middle occipital gyrus (0.56 ± 0.36 vs. 0.81 ± 0.20,
pFDR < 0.05), which predicted the level of depression in MDD (r = 0.45, p = 0.01, R2 = 0.15). In sum,
we found a more integrated brain network in MDD patients with a lower nodal local efficiency at the
occipital hub, which could predict depressive symptoms.

Keywords: depression; cortical networks; fNIRS; resting state; connectome

1. Introduction

Major depressive disorder (MDD) is a disabling disease associated with profound func-
tional impairment [1]. According to the World Health Organization, before the COVID-19
pandemic, approximately 350 million people worldwide were suffering from depression [2].
Estimates put the rise in both anxiety and depressive disorders at more than 25% during
the first year of the pandemic [3]. In addition to the core emotional symptom, cognitive
subdomains, such as learning and memory, executive functioning, processing speed, and
attention and concentration, are significantly impaired in patients with MDD [4]. However,
due to the lack of specific diagnostic methods for depression and its various manifestations,
accurate and reliable diagnosis of MDD mainly depended on the subjective assessment and
clinical experience of the clinicians. Thus, the accuracy of reaching a diagnosis, relying on
past experience remains debated [5]. Biomarkers offer a conceivable target for assisting in
diagnosis and identifying predictors of response to various interventions [6]. Brain imaging
techniques are powerful tools for tracking biomarkers, and thus have been used as an
adjunct to help clinicians diagnose MDD in recent years.

Functional near-infrared spectroscopy (fNIRS) is a non-invasive, functional neuroimag-
ing technique that could assess cerebral function by quantifying cerebral oxygenation [7–10].
This type of spectroscopy, fNIRS, penetrates organic tissues by using light sources with a
spectral window of 650 to 1000 nm. The variance in absorbance is then used to compute
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variations in oxygenated hemoglobin (HbO) using the modified Beer–Lambert law. This
noninvasive method can measure the hemoglobin’s level of cortical oxygenation [5] This
technology has extended to the clinical field of psychiatry as one of the objective modalities
for probing psychoses [11]. Its applicability, safety, low cost, ecological validity, tolerance
to movements, and non-involvement of nonionizing radiation make fNIRS advantageous
for scientific research and clinical applications [8]. Some researchers suggested that some
features in fNIRS could serve as candidate biological markers for aiding the diagnosis
of psychosis spectrum in routine settings [12–14]. The similarity in cortical activity in
schizophrenia and bipolar disorder, compared to healthy controls pointed to a possible neu-
robiological convergence of schizophrenia and bipolar disorder in underlying impairments
of social cognition [15]. Meanwhile, a combined index of two task-evoked features in HbO
changes during a VFT could differentiate individuals with psychiatric disorders or mood
disorders from healthy controls [16]. Patients with affective disorders, including major
depressive disorder and bipolar disorder, exhibited significantly reduced intra-regional
and symmetrically interhemispheric connectivities in the prefrontal cortex when compared
to healthy controls [17]. Some researchers found lower activity in individuals with bipolar
disorder in the depression phase during cognitive tasks. They suggested the single-trial
symbol check task to be helpful for the diagnosis of bipolar depression [18]. Disrupted
prefrontal cortex activity was found in patients with bipolar disorder and borderline per-
sonality disorder and is more extensive in borderline personality disorder [19].

As a common psychosis, depression also presents abnormalities on brain activity,
as measured by fNIRS. The application of fNIRS consistently demonstrated attenuated
cerebral hemodynamic changes in those with depression, compared to healthy individuals
when utilizing the verbal fluency task (VFT) as the active paradigm [5,20]. The fNIRS
measurement of the cerebral cortex under emotional- or cognitive-related tasks is suggested
to serve as a supplementary test to support the diagnosis of MDD [21,22]. The task-based
decrease in oxygenated hemoglobin (HbO) concentration was related to the severity of
depression [23–25]. In addition, the distinct pattern of activation of the cortex on regional
changes in oxy-Hb may reflect specific functional abnormalities within different subtypes
of depression [26], and it may help to distinguish MDD from other mental disorders,
such as bipolar disorder [27,28], generalized anxiety disorder (GAD) [29], and borderline
personality disorder [30]. The majority of the fNIRS studies adopted protocols of tasks
to distinguish the depressed from the healthy [5]. However, task-based studies may be
impacted by confounds, such as levels of motivation, fatigue, and disinterest [31].

The non-task (i.e., doing nothing) is a resting state that is easy to implement. The
spontaneous brain activity during the non-task period can be used as a baseline reference
for brain activation [32,33], which was associated with a variety of neuropsychiatric disor-
ders [34]. When considering the magnitude spectrum and average power of the cerebral
hemoglobin fluctuation, the non-task may not be sufficient to separate major depression
or combined anxiety and depression from healthy controls [35]. Resting-state functional
connectivity (RSFC), an inherent feature of the brain that consists of slow spontaneous
oscillations during rest or sleep, has been utilized to study neurological disorders [17].
RSFC in the default mode network (DMN) was decreased in depressed subjects, compared
to non-depressed subjects—an effect that is partly associated with the process of mind-
wandering and state/trait rumination [36]. Notwithstanding, the intrinsic organization of
RSFC based on resting-state fNIRS (rs-fNIRS) in MDD remains incompletely investigated.
Furthermore, relationships between networks are altered in depression, in addition to
the connectivity patterns within the core resting-state connectivity networks [37,38]. The
disrupted topological architecture of functional brain networks was observed in MDD
using resting-state functional MRI (rs-fMRI) [39]. Whether this abnormity could be detected
by rs-fNIRS in a more straightforward way was not clear.
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Hypotheses

The first hypothesis is that the dysfunction of the brain network in patients with MDD
can be detected by rs-fNIRS. Thus, we sought to perform an rs-fNIRS based functional
connectivity analysis to investigate the intrinsic organization of brain networks in MDD.
Moreover, we have the second hypothesis that the disrupted topological architecture of
the brain network can be found in patients with MDD using rs-fNIRS, which could help
distinguish patients from healthy people. Therefore, we calculated graph theory-based
connectivity metrics to quantitatively characterize functional connectivity in each group,
expecting to find some brain indices that helps differ MDD to healthy individuals.

2. Methods
2.1. Participants

A total of 64 adults, including 34 participants (24 females, mean age ± SD = 38.41 ±
13.14 years old) in the depression group and 30 participants (22 females, 34.43 ± 5.03 years
old) in the healthy control group, participated in the current study. All patients were in-
patients who volunteered to take part in this study and provided their consent forms, and
their admission dates ranged from 25 February 2021 to 31 August 2021. The patients with
depression were recruited from the Hangzhou Seventh People’s Hospital, while the healthy
controls were recruited through advertisements. All the patients with depression met the
American Psychiatric Association DSM-IV diagnostic criteria of depression, and healthy
controls were interviewed using the Structured Clinical Interview for DSM-IV, nonpatient
edition. Age and sex were matched between the two groups (age: t = 1.56, p = 0.12; sex:
χ2 = 2.08, p = 0.20). In the non-depressive sample, 6.67% (n = 2) of people had a doctorate
degree, 23.33% (n = 7) had a master’s degree, 63.33% (n = 19) had a university degree, and
6.67% (n = 2) had an associate degree. A total of 17.65% (n = 6) of the depressed sample has
a university degree, 11.76% (n = 4) had an associate degree, 20.59% (n = 7) had a high school
diploma, and 50% (n = 17) had a middle school degree. A total of 61.76% (n = 21) of the
clinical sample had a generalized anxiety disorder; 14.71% (n = 5) of all depressive patients
were diagnosed with non-organic sleep disorders and other comorbidities, such as sleep
apnea syndrome (5.88%, n = 2), obsession (5.88%, n = 2) and panic attacks (5.88%, n = 2).
Hamilton Depression Rating Scale (HAMD) [40] was used to assess the depression level in
both groups (depression vs. control, 22.55± 1.27 vs. 6.66± 1.51, t = 17.09, p < 0.001, Cohen’s
d = 11.39). The study procedure was carried out following the Declaration of Helsinki and
approved by the ethics committee of local hospital (No. 2021024). All participants gave
their written informed consent before the experiment.

2.2. NIRS Data Acquisition

We collected our resting-state data using a multi-channel functional near-infrared spec-
troscopy (fNIRS) optimal imaging system (NirScan-900A, Huichuang, China), equipped
with 15 detectors and 19 sources, resulting in 39 measurement channels in total to cover
prefrontal, central, and posterior cortices (see Figure 1 for the locations of measurement
channels). The distance of source-detector separation was approximately 3 cm. The absorp-
tion of near-infrared light at three wavelengths (730, 808, and 850 nm) was recorded with
a sampling rate of 50 Hz. The light absorption data were converted into concentrations
of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) using a modified Beer–Lambert
law [41], with a differential pathlength factor of 6 [42]. We focused on HbO signals given
the higher signal-to-noise than HbR [43]. For each participant, the rs-fNIRS data were
collected for 10 min, during which the participants were instructed to keep relaxed, keep
their eyes open, and remain awake.
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Figure 1. Overview of resting-state functional near-infrared spectroscopy (rs-fNIRS) channel locations
and analytical pipeline. RSFC, resting-state functional connectivity. SVR, support vector regression.

2.3. NIRS Data Preprocessing

We used the Homer 2 toolbox and custom codes in MATLAB 2022a to preprocess
rs-fNIRS data [44]. Standardized preprocessing entailed the following steps. First, bad
channels were identified (i.e., default values in HoMER2: optical density < 0 or > 1 × 107,
or signal-to-noise < 2) and pruned (function enPruneChannels). Next, motion artifacts were
identified and corrected by a cubic spline interpolation method (function hmrMotionAr-
tifactByChannel) with input parameters: tMotion = 0.5, tMask = 1, STDEVthresh = 30,
AMPthresh = 0.5 [45]. The data were band-pass filtered (0.01–0.08 Hz) to extract sponta-
neous neural activity. A wavelet-based denoising method was used to remove superficial
physiological noise and its related spurious connectivity [46]. Preprocessed signals were
entered into subsequent analyses.

2.4. Network Construction

Network construction encompassed two steps. First, in accordance with previous stud-
ies [47], Pearson correlation coefficients were used to quantify the relationships among time
courses of every pair of channels, resulting in a 39 × 39 correlation matrix. We zeroed all
the negative correlation coefficients because of their ambiguous biological meanings [48,49].
We restricted following analyses to only positive correlations. All correlation coefficients
were subjected to Fisher’s z-transformation to improve normality.

Second, we binarized the correlation matrix according to sparsity-based threshold [50,51].
The correlation matrix was thresholded over a range of sparsity (from 20% to 40%, with
1% step size) in order to investigate the relationship between sparsity and the network
properties. Specifically, each functional connectivity matrix Zij can be converted to a
binarized matrix Bij, where Bij is 1 if the value of the z value in matrix Zij is greater than a
given sparsity threshold and 0 otherwise [52]. Consistent with recent recommendations [52],
we also adopted a single sparsity (25%) to normalize the network metrices, thereby allowing
the comparison of group differences under the same topological organizations.

2.5. Network Analysis

In the current study, we used the GRETNA toolbox [53] in MATLAB 2022a to assess
the topological measures, including global network metrics (small-world Gamma, Lambda,
Sigma, global efficiency, and local efficiency) and regional nodal metrics (global nodal
efficiency and local nodal efficiency) for the brain network.
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2.5.1. Global Network Metrics

Small world. We focused on two key properties of the small world in a graph G: the
cluster coefficient (Cp) and the characteristic path length (Lp) [54]. Cp is the average of
cluster coefficients over all nodes in the network. One-node cluster coefficient refers to the
number of existing edges between that node and its neighbors, divided by the number of
all theoretically possible edges [55]. For a given graph G with n nodes and K edges, the Cp
of the graph G is computed as follows [54]:

Cp =
1
N ∑

i∈G

Ei
Di(Di − 1)/2

where Di is the number of edges connected to node i. Ei denotes the number of edges in the
subgraph. Cp reflects the local interconnectivity and cliquishness of a brain network [47].

The Lp refers to the average of the shortest path lengths between all pairs of nodes
in the network, whereas the shortest path length is defined as the minimum edges that
link arbitrary nodes [55]. The Lp of a graph G is defined as the average of the shortest path
lengths between all pairs of nodes in network [52,54]:

Lp =
1

N(N − 1) ∑
i 6=j∈G

dij

where dij represents the shortest path length between node i and node j. Therefore, Lp
reflects the ability of serial information propagation within the network [55].

To examine the small-world attributes of a network, the normalized Cp (referred to as
Gamma) and normalized Lp (referred to as Lambda) were calculated. Gamma and Lambda
were computed as the ratio of the values to random rewired networks [56]:

Gamma =
Creal

p

Crand
p

, Lambda =
Lreal

p

Lrand
p

Creal
p and Lreal

p denote the clustering coefficient and the characteristic path length of a
real network, whereas Crand

p and Lrand
p are the means of the same parameters derived from

1000 matched random networks. The random network has the same number of nodes and
edges and the same distribution of degrees as the real one. The ratio of Gamma to Lambda
is defined as Sigma [57]:

Sigma =
Gamma
Lambda

A small-world network is typically characterized as Lambda ≈ 1, Gamma > 1, and
Sigma > 1 [58].

Efficiency. We also computed two properties of network regarding its efficiency, i.e.,
global efficiency and local efficiency. Global efficiency is defined as the inverse of the
harmonic mean of the shortest path lengths between two arbitrary nodes in the entire
network [55]. Global efficiency is calculated as follows:

Eglob =
1

N(N − 1) ∑
i 6=j∈G

1
dij

where dij represents the shortest path length between node i and node j. Global efficiency
reflects parallel information transformation at the global level in a network [50].

Local efficiency is computed as the average efficiencies of all nodes [55], wherein
one given node and its direct neighbors compromised a sub-network. Local efficiency is
calculated as follows:

Eloc =
1
N ∑

i∈G
Eglob(i)
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where Eglob is the global efficiency of Gi, which is the subgraph of the neighbors of node i.
According to its definition, local efficiency can be regarded as a measure of information
transfer within the immediate neighborhood of each node [50].

2.5.2. Regional Nodal Metrics

Complementary to global network metrics, we assessed nodal global efficiency and nodal
local efficiency to provide measures for efficiency at regional level. For an indexed node,
nodal global efficiency (also known as nodal efficiency) is defined as the inverse of the
harmonic mean of minimum path length between that node and all other nodes in the
network [50,59]:

Enod(i) =
1

N − 1 ∑
j 6=i∈G

1
d(i, j)

where d(i,j) denotes the shortest path length between node i and node j. It measures how
well a sub-group is integrated in the whole network and reflects the ability of information
exchange of the node itself [60].

The nodal local efficiency is measured as follows:

Eloc(i) =
1

NGi

(
NGi − 1

) ∑
j 6=i∈Gi

1
d(i, j)

where Gi is the subgraph that includes node i and all its direct neighbors. Nodal local
efficiency measures the communication ability of a sub-network consisting of the node
itself and its direct neighbors [60].

The node of high efficiency is important for information integration and distribu-
tion [61]; in this study, the nodes with higher values in nodal efficiency (at least 1 SD larger
than the average of all nodes in the brain network) were defined as brain hubs that are
typically assumed to play critical roles in the functional integrity of whole networks [52].
BrainNet Viewer was used for visualization of regional nodal properties [62]. Channel-wise
independent-sample t-tests were conducted to compare the group differences in nodal
global efficiency and nodal local efficiency, with the false-discovery-rate (FDR) method
accounting for the multiple comparisons [63].

2.6. Support Vector Regression

To explore whether it is possible to predict depression level (as assessed by HAMD
scores) based on brain network metrices, we used the epsilon-support vector regression
(ε-SVR, [64]). The radial basis function was utilized to construct the non-linear SVR model.
We employed a grid search-based approach for hyperparameter optimization to determine
the optimal regression parameters (i.e., C, γ, and ε). A nested cross-validation method was
implemented [65], with the outer leave-one-out cross validation (LOOCV) estimating the
generalization performance of the model and inner 10-fold CV estimating and selecting
the optimal hyperparameters. The prediction accuracy was estimated using the Pearson
correlation coefficient between the predicted and actual values [66]. The coefficient of
determination (denoted by R2) was also reported. We used the libsvm toolbox and custom
codes in MATLAB to perform SVR analyses [67].

3. Results
3.1. Resting-State Functional Connectivity

The RSFC pattern at the group level for patients with depression and healthy controls
were illustrated in Figure 2. To explore whether there were significant differences in
RSFC between the two groups, a series of independent-sample t-tests were conducted.
Interestingly, the results showed that patients with depression (M ± SD, 0.32 ± 0.06,
Pearson correlation coefficients) and healthy controls (0.31 ± 0.06) exhibited similar RSFC.
Thus, RSFC analysis was insufficient to discriminate between the two groups in this study.
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3.2. Global Network Properties

To further investigate the intrinsic organization of cortical networks, we next analyzed
global network properties, including small-world parameters (Gamma, Lambda, and
Sigma) and global and local efficiencies, for the two groups. Figure 3 shows the profiles of
five global network properties as functions of the sparsity thresholds (ranging from 20% to
40%, with 1% step size). We observed that the depression group showed lower small-world
Lambda but higher global efficiency than the control group.
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In accordance with recent studies [52], we adopted a single sparsity (i.e., 25%) to
normalize all of the networks to explore the group differences in the same-size network
topological organization. We measured lower Lambda in the depression group (1.12± 0.04),
as relative to the control group (1.16 ± 0.10, t = 2.11, p = 0.04, Cohen’s d = 0.53). We also
found that the depression group (0.51 ± 0.03) showed higher global efficiency, compared to
the control group (0.48 ± 0.05, t = 2.19, p = 0.03, Cohen’s d = 0.73; Figure 4).
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and Sigma, respectively. The lower two panels (D,E) refer to global and local efficiency. * p < 0.05.

3.3. Regional Nodal Properties

Having established the group differences in global network properties, we then tested
the differences between the depression and control groups in terms of their regional nodal
properties. Regarding nodal global efficiency, we found no hub in the depression group,
but detected two central hubs (channels 26 and 30) in the control group (Figure 5A,B).
Concerning nodal local efficiency, we found three frontal hubs (channels 3, 15, and 16) and
three central hubs (channels 25, 31, and 39) in the depression group and six central hubs
(channels 22, 25, 28, 29, 30, and 33) and one occipital hub (channel 36) in the control group
(Figure 5C,D). Critically, the depression group (0.56 ± 0.36) compared to the control group
(0.81 ± 0.20) showed a significantly lower nodal local efficiency at channel 36 (t = 3.38,
pFDR < 0.05, Cohen’s d = 0.86), which roughly corresponds to the left middle occipital
gyrus [68]. As a robustness check, we additionally ran a one-way ANCOVA on the nodal
local efficiency at channel 36, with HAMD scores and medication usage as covariates. The
results showed that the group effect was still significant (F = 10.87, p = 0.0017, ηp

2 = 0.16).
There were no significant effects for the covariates (F = 0.98, p = 0.37 for HAMD score and
F = 0.24, p = 0.62 for medication usage). No significant group differences in nodal global
efficiency were found (all pFDR > 0.05).

3.4. Prediction of the Depression Level

Finally, we sought to test whether it is possible to predict the depression level based
on intrinsic organization of cortical networks in the depression group. To this end, we
constructed ε-SVR models with nested cross-validation (Figure 6A). We extracted global
and local network properties, respectively, for each participant as predictors. The depres-
sion level, as measured by the HAMD scores, was the outcome variable. A data-driven
method was used to search for the best predictor for the prediction analyses (one type of
network properties as the predictor each time). We found that only when the occipital hub
(i.e., channel 36) was derived from the nodal local efficiency and used as a predictor, was
the correlation between actual and predicted HAMD scores significant (r = 0.45, p = 0.01,
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R2 = 0.15) in the depression group (Figure 6). These results indicate that it is possible to
infer the depression level based on patients’ nodal local efficiency in the occipital hub.
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4. Discussion

In the present study, we performed functional connectivity-based comparisons be-
tween patients with depression and healthy controls. The results showed that patients
with depression and healthy controls exhibited similar RSFC. However, the depression
group showed lower small-world Lambda and higher global efficiency than the control
group. The depression group compared to the control group showed a significantly lower
nodal local efficiency at the occipital hub (i.e., channel 36), which roughly corresponds to
the left middle occipital gyrus. When the occipital hub (channel 36) was derived from the
nodal local efficiency and used as a predictor, the correlation between actual and predicted
HAMD scores was significant in the depression group.

Resting-state functional MRI (rs-fMRI) revealed reduced nucleus accumbens functional
connectivity in default mode network (DMN) in patients with recurrent major depressive
disorder [69]. However, the decreased DMN functional connectivity was related with
medication usage but not with MDD duration, as it was not found in first-episode drug-
native MDD [70]. In this study, our results did not support our first hypothesis. The MDD
patients were not drug-naïve, and it is possible that the drug usage in our patients might
explain why their RSFC is similar to the healthy controls.

Our second hypothesis was verified. In this study, a more integrated brain network
(lower Lambda and higher global efficiency) was found in MDD patients despite some
negative results (Gamma, Sigma, and local efficiency). A review using non-invasive neu-
roimaging data and graph theoretical approaches for psychiatric disorders found that
patients with depression did not display consistent alterations in small-world proper-
ties [71]. However, a significant increase in Gamma and Sigma despite the increase in
Lambda was found in patients with MDD after electroconvulsive therapy [72]. It suggested
that the Lambda may be a more stable trait biomarker of depression, despite the treatment.
Some researchers detected a decreased global efficiency within MDD patients [39,73,74],
which may be related to negative affective processing [75]. Other studies found no signifi-
cant differences between MDD and healthy controls in terms of global efficiency [76,77],
or generally higher global efficiency in MDD individuals [78]. Increased local efficiency,
which associated with high HAMD score, was found in individuals with depression symp-
toms [79,80]. That indicated excessively high network segregation which might increase
the brain’s overall wiring cost [81]. Aforementioned studies were based on fMRI or EEG,
while the present study was based on fNIRS, which found a different topological change in
the brain network of MDD patients. It is likely that the metric of global efficiency might be
sensitive to subtypes of depression, which deserves future investigations.

Crucially, this study found the MDD patients had significantly lower nodal local effi-
ciency at the occipital gyrus that could predict HAMD scores. Our results echo a previous
study that indicated aberrant nodal efficiency and centrality of regional connectivity in the
occipital cortex [82]. Regional homogeneity (ReHo) was found to be lower in the occipital
gyrus among MDD patients, which could even help to discriminate patients with melan-
cholic MDD from patients with non-melancholic MDD [83]. In addition, MDD patients
had abnormal local intrinsic gray-matter connectivity in the occipital cortex, which was
associated with some symptoms of depression [84]. These results might help explain the
aberrant topological properties of brain functional connectivity at the occipital hub we
found in MDD patients. Researchers found a smaller gray matter volume in the left occipi-
tal middle gyrus in MDD patients, compared with controls [85,86]. As for white matter,
fractional anisotropy in the left middle occipital gyrus was reduced in MDD patients [87].
Meanwhile, MDD patients had decreased cerebral blood flow in the left middle occipital
gyrus, especially in those with acute phase and medication-free [88]. These results might
be a structural basis of the lower nodal local efficiency at the left middle occipital gyrus.
However, the abnormal activity in the left middle occipital gyrus may be state-specific
in current and remitted MDD patients [89]. That may help explain some inconsistent
results [90].
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Our findings at the occipital hub could also be interpreted from an “information
processing” perspective [91]. A recent study found that the amplitude of low-frequency
fluctuations in the left middle occipital gyrus decreased within patients with MDD, com-
pared to healthy controls; the researchers argued that the left middle occipital gyrus may
be involved in the processing of cognitive biases of MDD in resting states [92]. Consistent
with this research, decreased nodal local efficiency at the middle occipital gyrus bolstered
the notion that processing bias in MDD may be initiated as a perceptual visual bias. Biased
information from the occipital hub could then spread through the brain due to the higher
global efficiency in MDD patients. As the DMN hyperactivity was related to negative
rumination in depression [93], the biased information initiated from the occipital hub may,
eventually, cause a series of cognitive and affective symptoms of MDD.

Limitations and Strengths

There were some limitations in our study. Firstly, the MDD patients were not medication-
naïve in this study. Thus, we could not exclude the possibility that these drugs affected
the current results. Secondly, the sample was inadequate in looking for a differential effect
across depressive subtypes. Thirdly, fNIRS has a penetration limit into the superficial gray
matter of the cortex of around 2 cm. Therefore, we could not detect subcortical changes.
Nevertheless, the topology of the cortex in MDD patients did show some abnormities. The
main strength of this study is that we used a more convenient way of rs-fNIRS combined
with graph theory to distinguish patients with MDD from healthy people.

5. Conclusions

In conclusion, we found a more integrated brain network with lower Lambda and
higher global efficiency in MDD patients. Meanwhile, MDD patients had a lower nodal
local efficiency at the occipital hub, which could predict depressive symptoms. These
results may provide a new method in assisting the clinical diagnosis and help to elucidate
the brain mechanism of MDD. Future studies could verify these results in subgroups of
MDD patients, such as untreated patients, patients in remission stage, male and female
patients, young and old patients, and so on. In addition, the other regions or areas should
be explored.
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