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Abstract: Resting-state electroencephalography (EEG) microstates reflect sub-second, quasi-stable
states of brain activity. Several studies have reported alterations of microstate features in patients with
schizophrenia (SZ). Based on these findings, it has been suggested that microstates may represent
neurophysiological biomarkers for the classification of SZ. To explore this possibility, machine learning
approaches can be employed. Bayesian optimization is a machine learning approach that selects the
best-fitted machine learning model with tuned hyperparameters from existing models to improve the
classification. In this proof-of-concept preliminary study based on secondary analysis, 20 microstate
features were extracted from 14 SZ patients and 14 healthy controls’ EEG signals. These parameters
were then ranked as predictors based on their importance, and an optimized machine learning
approach was applied to evaluate the performance of the classification. SZ patients had altered
microstate features compared to healthy controls. Furthermore, Bayesian optimization outperformed
conventional multivariate analyses and showed the highest accuracy (90.93%), AUC (0.90), sensitivity
(91.37%), and specificity (90.48%), with reliable results using just six microstate predictors. Altogether,
in this proof-of-concept study, we showed that machine learning with Bayesian optimization can be
utilized to characterize EEG microstate alterations and contribute to the classification of SZ patients.

Keywords: microstate analysis; schizophrenia; optimized machine learning; microstate map correlation;
resting-state EEG

1. Introduction

Schizophrenia (SZ) is a psychiatric disorder whose neurobiological underpinnings
are still largely unknown. One of the most widely used techniques in SZ research is elec-
troencephalography (EEG), which measures electrical activity in the brain. EEG signals
reflect the oscillation and large-scale synchronization of underlying neural populations [1]
and therefore can be used to investigate the synchrony and dynamics of neural circuits in
SZ patients [2,3]. In patients with SZ, EEG abnormalities have been reported from studies
measuring event-related potential paradigms, including face processing and mismatch neg-
ativity [4,5], sleep EEG characteristics [6,7], graph analysis measures of resting state EEG [8],
and EEG power spectra, which are the most commonly computed features [9–11]. Statis-
tical features, such as mean, skewness, and kurtosis were also investigated in SZ [12,13].
However, most of these EEG-based features have failed to take advantage of the EEG
millisecond resolution [14–18].

Microstates are topographic maps of resting state brain activity that exploit the EEG
temporal resolution. Specifically, Lehmann et al. first demonstrated the existence of
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microstates by segmenting EEG at the sub-second level, generating quasi-stable and evenly
patterned data occurring at 80–120 ms intervals [19]. These images do not gradually merge
or overlap in time; instead, a single map abruptly switches to another (i.e., microstates are
quasi-stable periods of single maps) [20]. Microstate changes have been described as “atoms
of cognition” [21] or “building blocks of mentation” [22]. For instance, distinct changes in
EEG microstates have been associated with specific cognitive functions, sensory inputs [23],
and tasks requiring reasoning [20]. Four main microstates (respectively Type A, Type B,
Type C, and Type D) have been described, and the auditory, visual, default mode and dorsal
attention pathways have been shown to relate to these microstates, respectively [24–26].
Several studies have reported microstate alterations in patients with SZ relative to healthy
control subjects [14,15,21,27–29], and based on this increasing body of evidence, it was
recently suggested that EEG microstates features could be used for SZ classification [27,30].

The heterogeneity and complexity of schizophrenia symptoms challenge an objective
diagnosis; thus, a single predictor would likely be affected by such heterogeneity and may
not reach the threshold to be detected by traditional statistical approaches. In contrast,
more complex statistical models, such as those used in machine learning approaches, can
be utilized to evaluate the combination of several predictors for the classification of SZ
concurrently [31]. Although previous studies investigated SZ classification with machine-
learning-based clustering algorithms [32–34], these studies have mostly used univariate or
conventional machine learning methods, rather than optimized multivariate analyses [18].
Choosing optimized SZ classification is challenging and comprises multiple hyperparame-
ters, which are set before the training process and define how the model can best fit the
data [31,35]. There are two main types of hyperparameter selection methods: manual and
automatic search. Manual search requires experienced users, whereas automatic methods,
including grid and random searches, are more user independent [36]. Random search has
solved the expensive cost of exhaustive searching in grid search and has proved to be more
efficient in high-dimensional space, even though it may be unreliable for some complex
models [36]. Choosing the best-fitted model with tuned hyperparameters is an optimiza-
tion problem with black-box objective function, and several recent studies indicated that
Bayesian optimization outperforms other optimization methods [37–39].

A few studies applied machine learning algorithms on SZ microstate predictors [27,30,40,41],
but there is no study that evaluated the optimization multivariate analysis on these mea-
sures. In this study, we hypothesized that using optimized multivariate analysis along
with numerous dependent and independent variables (i.e., microstate features), including
newly computed microstate measures, would contribute to efficiently discriminating SZ
patients from healthy subjects. Thus, we aimed to discriminate between EEG recordings of
individuals diagnosed with SZ and healthy control participants using the Bayesian opti-
mized machine learning approach and the best-fitted model based on the most important
microstate features.

2. Materials and Methods
2.1. Dataset

We used a publicly available EEG dataset, which included 14 schizophrenia pa-
tients (7 males: 27.9 ± 3.3 years, 7 females: 28.3 ± 4.1 years) and 14 healthy controls
(7 males: 26.8 ± 2.9, 7 females: 28.7 ± 3.4 years) from the Institute of Psychiatry and
Neurology in Warsaw, Poland [42,43]. The patients met the ICD10 criteria for paranoid
schizophrenia, according to the International Classification of Diseases (category F20.0). All
participants were given a written description of the protocol and signed a consent form to
participate in the study. A minimum age of 18 was required, as well as an ICD-10 diagnosis
of F20.0 and at least a seven-day medication washout period was required before EEG
was performed. The Warsaw Institute of Psychiatry and Neurology’s Ethics Committee
approved the study protocol. Pregnancy, organic brain pathology, severe neurological
diseases (e.g., epilepsy, Alzheimer’s disease, and Parkinson’s disease), the presence of a
general medical condition, and the first episode of SZ, were all considered exclusion criteria.
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The 14 patients who completed the study were matched in gender and age to the control
group. Fifteen minutes of resting-state EEG eye-closed were recorded from 19 channels
with a sampling frequency of 250 Hz using the international 10/20 EEG system montage.

2.2. EEG Data Pre-Processing

We used EEGLAB [44] to pre-process the EEG dataset before performing microstate analy-
ses. This step was completed based on well-established pre-processing methods [14,15,22,27,45].
Briefly, data were filtered between 2 and 20 Hz and re-referenced to the common average
electrode. Then, EEG signals were segmented into 5-second nonoverlapping epochs. Out-
lier epochs were removed with a variance threshold (i.e., >3 standard deviation). Overall,
2511 artifact-free EEG epochs for schizophrenia patients and 2511 artifact-free epochs for
healthy control subjects were utilized for the microstate analysis (Figure 1).
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Figure 1. Overview of the process for extracting microstate features; SZ: patients diagnosed with
schizophrenia; HC: healthy control subjects.

2.3. Microstate Analysis

The entire EEG signal can be represented by a small set of topographic maps that
alternate at discrete intervals when EEG is viewed as a topography of electric poten-
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tials evolving over time [46]. These topographic maps are named microstates. These
images/topographies do not gradually merge or overlap in time; instead, a single map
dominates for roughly 80–120 milliseconds before abruptly switching to another map
(i.e., microstates are quasi-stable periods of single maps) [19]. To extract the relevant maps,
the root-mean-squared potential differences at all N electrodes (i.e., Vi(t)) from the mean
of instantaneous potentials across electrodes (i.e., Vmean(t)) were computed to characterize
the EEG global field power (GFP) [47].

GFP =

√
∑N

i (Vi(t)−Vmean(t))
2

N
(1)

Topographies of the local maxima of the GFP curve were identified based on the above
equation. We then used a modified K-means clustering approach and global explained vari-
ance (GEV) criteria [27,48,49] by setting the re-run parameter to 20 times, the convergence
threshold at 10−6, and the maximum number of iterations to 1000 [33,44].

We identified four microstates (i.e., A, B, C, and D, Figure 2), which reflected the
activity of the EEG channels with almost 70% of the total topographic variance, and labeled
the topography at each GFP peak as one of these microstates. Five categories of features
were computed for these microstates (Figures 3 and S1): (1) the average number of times per
second that each microstate occurred during the EEG recording (occurrence); (2) the average
amount of time each microstate lasted after it occurred (duration); (3) the percentage of total
recording time in which each microstate was dominant (coverage); [19] (4) the average GFP
during microstate dominance (mean GFP) [28]; and (5) the average correlation between
each labeled GFP peak map (i.e., A) and the corresponding microstate template (microstate
map correlations) [34]. All microstate features are summarized in Table 1.
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Figure 2. Four normalized microstates (i.e., A, B, C, and D) of resting-state EEG recordings were ob-
tained for patients diagnosed with schizophrenia and healthy control subjects; SZ: patients diagnosed
with schizophrenia; HC: healthy control subjects.
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Figure 3. Results of the predictor importance scores for twenty microstate features extracted from
resting state EEG recordings of SZ patients and HC subjects.

Table 1. Description of microstate predictors that were used in this study.

Features Definition Number

Occurrence Occurrence of a microstate per second (Hz) 4
Duration The average duration of a microstate (ms) 4
Coverage Percent of time occupied by a microstate (%) 4
Mean GFP Mean of global field power (uV) 4
Microstate map
correlation (MsMC)

Spatial correlation between topographies
and microstates 4

2.4. Predictors’ Ranking and Classification

We ranked the 20 features/predictors described above using chi-square tests (“fsc-
chi2”) embedded in the Statistics and Machine Learning Toolbox of MATLAB software
(MathWorks, Inc., Natick, MA, USA, 2020) (Figure 3). Then, an optimized machine-learning
approach was applied to classify the combination of ranked microstate features for SZ
classification by adding each feature incrementally. Of note, machine learning classification
can be subject dependent or subject independent. In the subject-independent classification,
the model is tested using unseen subject’s data, (i.e., the data that are used to test the model
are not included in the training phase), while here in the subject-dependent classification,
training and testing sets are randomly split, and EEG-segment data from the same subject
are included in both sets [31]. Because our cohort of SCZ and HC subjects was rather small,
subject-dependent classification was employed. In each run, 80% of the data was utilized
in the training process with a 5-fold cross-validation method to avoid overfitting, and the
remaining data (20%) were used to test for the best-fitted trained model. Histograms of
subject-based features used for this study to show the within-group subject variabilities
of microstate features were also computed (see Figures S5 and S6). Accuracy, area under
the curve (AUC), sensitivity, and specificity were used to assess classifier performance.
Furthermore, we used the leave-one-out validation method by excluding the data of one
individual per group each time to examine the subject-independent design in addition
to the current approach. The trained models on the remaining dataset were tested on
these two individuals, who each time were left out. Our results are comparable in both
designs (output measures in the range of about 90% for subject independent vs. subject
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dependent) in Table S3. The classifier algorithms were selected from a pool of existing
classifiers based on prior EEG studies that highlighted the important application role of
ML as a real-time health monitoring system for stroke prognostics [50], access ischemic
stroke-derived cortical impairment [51] and other biomedical engineering works [50–55].
The Shapley additive explanations (SHAP) or Shapley values of features were computed
using the “shapley” function embedded in the Statistics and Machine Learning Toolbox
of MATLAB2022b, which explains the deviation of the prediction for the query points
from the average prediction, due to the feature (Figure 4). For each query point, the sum
of the Shapley values for all features corresponds to the total deviation of the prediction
from the average [56,57]. The details of the machine learning optimization analysis are
described below.
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2.5. Bayesian Optimization of Classification

To perform Bayesian optimization of machine learning classification, we employed
an algorithm comprising 2 principal steps (Equations (S2) and (S3) in Table S1), where

DATA1:t−1 = {xn , yn}
t− 1
n = 1

defined the training dataset with the t − 1 observation of an

unknown function (Table S1 and Figure S2).
To automatically choose the machine learning algorithm with tailored hyperparam-

eters, the Statistics and Machine Learning ToolboxTM (MATLAB and Release 2020b, The
MathWorks, Inc., Natick, MA, USA) was utilized with the “fitcauto” function [37,38,56]. A
multi-TreeBagger model of the objective function was included in the Bayesian optimization
approach of “fitcauto”. The objective function of this model differed from the Gaussian
process model implemented by other machine learning toolbox functions using Bayesian
optimization, and the next point to be examined was determined by an acquisition function
(i.e., expected improvement). The output of the “fitcauto” algorithm was the point with
the lowest objective function value among the points assessed during the optimization.
This method automatically chose the best machine learning method for training data from
among the most applicable machine learning methods (e.g., discriminant analysis [‘discr’],
ensemble learning [“ensemble”], kernel classifier [‘kernel’], k-nearest neighbor [‘knn’], sup-
port vector machine classifier (SVM), linear classifier [‘linear’], naive Bayes classifier [‘nb’],
neural network classifier [‘net’], and decision tree classifier [‘tree’]). When the optimization
process was completed, “fitcauto” returned the trained model for the entire train dataset to
perform classification [57].
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3. Results

Four microstates were identified: A, B, C, and D that exhibited right-frontal left-
posterior, left-frontal right-posterior, midline frontal-occipital, and midline frontal topogra-
phies respectively. Microstate scalp topographies of patients diagnosed with SZ and healthy
control subjects are shown in Figure 2. We also computed and compared twenty microstate
features, including occurrence, duration, coverage, and microstate correlation maps be-
tween SZ patients and HC subjects. We found that most of the predictors were significantly
different between groups after Bonferroni correction for multiple comparisons (α < 0.008,
Table 2, Figure S1).

Table 2. Univariate analysis results of the microstate predictors.

Features (Occurrence) Type A Type B Type C Type D

Mean ± SD [HC] 3.65 ± 1.17 4.26 ± 1.39 4.13 ± 1.28 4.01 ± 1.26
Mean ± SD [SZ] 4.05 ± 1.23 4.41 ± 1.06 2.34 ± 1.42 4.49 ± 1.09

p-value <0.001 <0.001 <0.001 <0.001
t-value −11.68 −4.28 46.89 −14.41

Observed power >0.999 0.990 >0.999 >0.999

Features (Duration) Type A Type B Type C Type D

Mean ± SD [HC] 67.18 ± 62.08 58.46 ± 15.80 55.91 ± 15.89 65.07 ± 26.78
Mean ± SD [SZ] 56.22 ± 11.90 59.49 ± 13.94 57.29 ± 36.88 79.79 ± 36.43

p-value <0.001 0.015 0.086 <0.001
t-value 8.68 −2.43 −1.72 −16.30

Observed power >0.999 0.684 0.405 >0.999

Features (Coverage) Type A Type B Type C Type D

Mean ± SD [HC] 23.53 ± 17.62 25.75 ± 10.65 23.65 ± 10.49 27.04 ± 13.36
Mean ± SD [SZ] 22.82 ± 8.31 26.22 ± 8.18 15.21 ± 14.37 35.73 ± 15.507

p-value 0.068 0.077 <0.001 <0.001
t-value 1.82 −1.76 23.76 −21.28

Observed power 0.446 0.423 >0.999 >0.999

Features (Mean GFP) Type A Type B Type C Type D

Mean ± SD [HC] 4.61 ± 1.67 4.92 ± 1.75 5.20 ± 2.00 5.40 ± 1.99
Mean ± SD [SZ] 4.90 ± 3.93 5.05 ± 1.67 5.42 ± 2.75 5.61 ± 1.77

p-value 0.001 0.007 <0.001 <0.001
t-value −3.29 −2.70 −3.32 −3.85

Observed power 0.908 0.770 0.913 0.971

Features (Mean MsMC) Type A Type B Type C Type D

Mean ± SD [HC] 0.60 ± 0.05 0.62 ± 0.11 0.64 ± 0.09 0.66 ± 0.11
Mean ± SD [SZ] 0.58 ± 0.07 0.60 ± 0.08 0.59 ± 0.10 0.66 ± 0.08

p-value <0.001 <0.001 <0.001 0.434
t-value 6.86 6.12 15.99 0.78

Observed power >0.999 >0.999 >0.999 0.1222
Bold values indicate significant results.

We then ranked microstate parameters, which indicated that the features from mi-
crostates C and D had the highest predictor importance scores (Figures 3 and 4). Specifically,
Ocurrence_C, Coverage_C, MsMC_C, Duration_C, MsMC_B, and Coverage_D were the
highest ranked parameters. Furthermore, to compare the performance obtained using
ranked microstate features in classifying patients diagnosed with SZ and HC subjects, we
implemented models that incrementally considered ranked features (e.g., model 1 included
only the Occurrence_C feature, and model 2 considered Occurance_C and Coverage_C as
input) The number of features that were fed to the machine learning approach based on the
ranked order is presented in Figure 3. Furthermore, the contributions of the value of the
feature to the difference between the actual prediction and the mean prediction is estimated
as Shapley values in Figure 4. The x-axis indicates the variable name, and the value next to
them is the mean SHAP value. On the y-axis is the SHAP value that indicates how much
the change in features can positively or negatively affect the probability of prediction.

Classification performance using the optimized machine learning approach rela-
tive to the quadratic SVM [27,58] showed that the highest output measure results were



Brain Sci. 2022, 12, 1497 8 of 13

obtained when using 19 ranked features as the input of the optimized ML algorithm
[ACC = 90.93%, AUC = 0.90%, sensitivity = 91.37%, specificity = 90.48%] (Tables 3 and S2,
Figures 5, S3 and S4). Furthermore, comparable results in terms of accuracy, sensitivity,
and ACU were obtained with the optimized ML algorithm by using the first six ranked
features. The best-fitted model selected by the optimized algorithm using 19 features was
SVM with Gaussian kernel and ‘Ensemble’ when using the 6 most important features, while
quadratic SVM was used in the recent study on 19 microstate features.

Table 3. Classification outputs using ranked microstate features obtained from the EEG dataset for
patients diagnosed with SZ and healthy control subjects.

Classifier Accuracy (%) AUC Sensitivity (%) Specificity (%) Best-Fitted Model

Previous study [19 features] [27] 75.64 0.80 71.93 75.50 Quadratic SVM
Previous study [15 features] [27] 76.62 - - - Quadratic SVM

Optimized ML [6 features] 89.04 0.89 88.62 89.47 Ensemble
Optimized ML [19 features] 90.93 0.90 91.37 90.48 Gaussian SVM
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highest output measures when using 19 input features.

4. Discussion

We employed an optimized machine learning approach to microstate measures and
examined their potential for SZ classification. By applying the Bayesian optimized machine
learning approach to ranked microstate measures, we were able to discern resting EEG
recordings of SZ from HC subjects with high sensitivity, specificity, and accuracy (Table 3,
Figures 5 and S2). We also established that with only six features, we could efficiently
classify SZ using microstate analyses (Figures 3–5 and S3). Overall, findings from this proof-
of-concept study show that optimized ML applied to microstate features could contribute
to the identification of patients with SZ relative to HC subjects.

In line with previous studies [18,27,28,30,59], we found four microstates (i.e., A, B,
C, and D) that had a similar topography in SZ and HC groups. These four microstates
explained the global topographic variance and have been suggested to represent distinct
functions of the brain [25,27,48]. Specifically, microstates A and B have been associated
with the processing of different sensory modalities and with the mental visualization of
the situation [60], whereas types D and C have been implicated in attention regulation
and default mode functionality, respectively [27]. Although the types and topographies of
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these microstates were similar between SZ and HC subjects, individual microstate features
differed across groups. For instance, the occurrence of microstate B was significantly in-
creased in SZ vs. HC groups, in line with another study that also reported an association of
this altered microstate parameter with the positive symptoms of patients with SZ [30]. We
also found the mean GFP was significant in SZ vs. HC individuals across all four types
of microstates, likely indicating that SZ patients have a higher level of synchronization
(i.e., increased cortical power) during resting EEG recordings [61]. The MsCM, a new mi-
crostate feature that was calculated for this study showed higher values in HC vs. SZ across
types A, B, and C, thus suggesting that GFP topographies are more consistently repeated
(i.e., less variability in topographic patterns) in HC relative to SZ patients. Besides MsCM,
Type C had reduced occurrence and coverage in SZ vs. HC individuals. These findings
are in line with results from a recent meta-analyses of microstate research [18,30]. Of note,
microstate C has been linked to the functionality of the saliency network, including the an-
terior cingulate, inferior frontal gyrus, and insula [20], and aberrant activity in the salience
network has been consistently reported in SZ [62–64]. Thus, alterations in microstate C
parameters further point to dysfunction in this network in SZ. Here, microstate Type D
showed an increase in occurrence, duration, and coverage, while previous studies reported
a decrease in these parameters [18,27]. Although these discrepancies could be related to
methodological differences as well as medication status [15,65], other microstate studies
reported an increase in these Type D characteristics, consistent with our findings [30,66].
Microstate D features have been linked to flexible aspects of attention because of their asso-
ciation with the frontoparietal attention network [20]. Studies indicated that impairments
of microstates of class D in SZ are associated with deficits in context update, attentional
processes, and executive control, which are often observed in these patients [18,67].

Since we observed alterations in most of the microstate parameters computed, we
wanted to assess whether some alterations were more relevant than others in differentiating
individuals with SZ from HC. We therefore computed the predictor importance score for
each of these 20 parameters and found that features from microstate Type C and D were
ranked the highest. A reduction in the occurrence and the coverage of microstate Type C
were the two top-ranked features, while coverage and duration of microstate D, both of
which were increased in SZ vs. HC, were also highly ranked. Given the implication of
types C and D in default mode and dorsal attention respectively, these findings suggest
that alterations in these domains may be more relevant for SZ classification [20,22]. At the
same time, some microstate B features were ranked high as well, including the MsMC that
was computed in this study for the first time, and therefore these parameters should be
considered and assessed in future studies of SZ. In contrast, Type A microstate features
were ranked lower in our study, a finding in agreement with previous work, showing that
these features were relatively intact in patients with SZ vs. HC [27].

Multivariate analysis based on machine learning algorithms provides an opportu-
nity to understand the SZ classification by analyzing many features simultaneously. A
handful of studies have utilized microstate features and have tested their accuracy and
precision to classify SZ with multivariate patterns and have suggested the efficacy of this
approach [14,27]. Building on this body of evidence, in this study, we used this machine
learning approach to evaluate multiple, ranked microstate features at the same time. As
such, we created a more generalized cross-validated model with increased AUC, sensitivity,
and specificity. In particular, the optimized machine learning approach employed here was
able to achieve greater than 90% efficacy based on the Gaussian SVM using 19 features and
greater than 88% accuracy with the ensemble as the best fitted using just 6 features. Impor-
tantly, a recent study that used the same dataset for SZ classification reported highest output
measures as [Acc = 75.64%„ Sensitivity = 71.93%, and Specificity = 75.50%] with quadratic
SVM [27]. Several factors, including the number of EEG trials, the type and number of
microstate features (i.e., MsMC), and the feature selection method (i.e., feature importance
score calculation) may have contributed to this difference. The accuracy, specificity, and
sensitivity scores reported here are comparable with some deep learning approaches that
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use EEG microstates for SZ classification [68–73]. The fact that findings obtained from our
optimized ML approach were comparable to deep learning methods in terms of perfor-
mance but outperformed in computation and time of processing (i.e., our method [order of
minutes] vs. [order of hours]) potentially provide a more rapid, efficient way to achieve an
optimized SZ classification.

This study has several limitations that should be addressed in future studies. For
example, although the number of epochs was large enough for applying the optimized
classification approach, the sample size of the SZ and HC groups was rather small; thus, we
decided to apply subject-dependent machine learning approach classification on 5-second
segments of data. We also chose this approach to make our results more comparable
to a previous study using the same dataset [27]. Compared to the subject-dependent
method, the subject-independent method may offer greater generalizability regarding
learning the HC vs. SZ labels rather than from the individual’s signature. Therefore, future
work on larger groups of SZ patients is needed to confirm the findings from this proof-of-
concept study on a larger dataset, and also by applying a subject-independent classification.
Nonetheless, in this study, we run a leave-one analysis and found that the main findings did
not change (Table S3). Additionally, even though age and gender were matched, obtaining
enough data to reflect the broader range of ages in both genders is necessary for the
generalization of the trained models. Thus, to increase classification accuracy and develop
an accurate model reflecting the general population, the classification performance of
microstate characteristics should be examined using data from larger cohorts encompassing
the lifespan. This will contribute to establish how specific features of individuals with SZ
vs. HC are captured by the machine learning classification method presented here, in line
with a personalized medicine approach. Furthermore, in the present study, four microstates
were identified which encompassed at least 70% of the global explained variance (GEV)
(Figure S7) [14,15,45,49]. While we found that GEV did not significantly change when the
number of microstates increased, this could still affect classification performance. Future
work should, therefore, also assess whether more than four microstates are identified and
whether a different number of archetypes may affect the classification of SZ. Relatedly, in
the present study, the characteristics of Type C and D microstates were among the highest
ranked features, thus indicating that these parameters may be more reliable diagnostic
features than Type A and B features in schizophrenia classification, which eventually could
have relevant implication in the day-to-day clinical psychiatry practice [20,22]. Of note,
each patient enrolled in this study underwent a medication washout period of at least
seven days before the EEG recordings were performed. Nonetheless, future work should
confirm these findings in medication-naïve patients and/or more thoroughly assess the
possible impact of antipsychotic medications on EEG microstate parameters.

5. Conclusions

By employing for the first time an optimized machine learning approach on microstate
measures of resting EEG recordings we achieved higher accuracy, sensitivity, and specificity
of SZ patients compared to conventional classification methods, even with just six mi-
crostate predictors. Furthermore, our results showed that ranking microstate features was
critical to optimize this process. Further studies should confirm and extend these findings
on datasets involving larger cohorts of SZ patients. Eventually, the novel machine learn-
ing approach employed here may help establish EEG microstates as neurophysiological
biomarkers that contribute to the classification of SZ.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12111497/s1, Table S1: Bayesian optimization workflow for
the training dataset; Table S2: Hyperparameters of the machine learning models; Table S3: Hyperparameters
of the machine learning models for subject independent design; Figure S1: The distribution of twenty
microstate features that were extracted in this study; Figure S2: Flowchart of input data and Bayesian
optimization of ML approach; Figure S3: Results of AUC computed for each model; Figure S4: ROC
curves for the best-fitted models; Figure S5: Subject-based histogram of HC microstate features;
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Figure S6: Subject-based histogram of SZ microstate features; Figure S7: Global explained variance
(GEV) rate for choosing different numbers of archetypes map.
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