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Abstract: We evaluated the association between cardiorespiratory fitness (CRF) and executive func-
tion (EF) in young adults and the mediating effects of GMV on this relationship. This study involved
217 college students. An incremental load exercise program was used to evaluate VO2max. EF
was estimated by the Flanker task, the 2-back task, and the more-odd shifting task, while structural
magnetic resonance and region-based morphometry (RBM) were used to analyze GMV. The high
CRF group had a shorter updating reaction time (RT) (p ≤ 0.05). CRF was positively correlated with
the right orbital part of the middle frontal gyrus (ORBmid.R) GMV (p ≤ 0.05). ORBmid.R GMV was
negatively correlated with updating RT (p ≤ 0.05). Model 4 in SPSS was used to assess the mediating
effects of ORBmid.R GMV between CRF and updating RT. ORBmid.R GMV was established to have a
partially mediating role between CRF and updating RT, which accounted for 19.6% of the total effect
value. These findings indicate that the negative correlation between CRF and EF was significant, and
ORBmid.R GMV played a mediating role in the relationship between CRF and EF, providing new
evidence toward comprehensively revealing that CRF promotes EF performance.

Keywords: cardiorespiratory fitness; executive function; gray matter volume; young adults;
mediation effect

1. Introduction

Throughout life, brain and cognition health among adolescents and young adults can
influence academic achievement and overall health [1,2], which necessitates the identifica-
tion of the predictors and modifiers of brain health at a young age [3]. Due to advances in
the social economy, there has been a growing interest in the influence of lifestyle factors,
such as regular physical exercise, in the promotion of a relatively high level of cardiores-
piratory fitness (CRF) and health (e.g., brain health) [2,4–6]. CRF is operationalized by
maximal oxygen consumption (VO2max) and is correlated with the functions of different
physiological systems [7–9]. It affects the development of executive function (EF). Increas-
ing physical activity levels and improving CRF are beneficial for the healthy development
of EF [10,11]. Low levels of CRF in early adulthood are associated with higher risks of
cardiovascular disease in late life [12–14] and negatively affect psychological functions
(resulting in depression and anxiety) and EF, becoming evident in accelerated cognitive
decline and brain atrophy in later years [15–19].

Physiologically, EF plays a pivotal role in cognitive functions [20], including: (i) inhibi-
tion (i.e., resisting habits, temptations, or distractions); (ii) updating (i.e., retaining and using
information); and (iii) cognitive flexibility [21,22]. Various neuropsychological paradigms,
such as the Flanker task, the 2-back task, and the more-odd shifting task, can be used to
measure the performance of EF. Improvements in CRF have been shown to effectively
enhance children’s working memory, further modifying their cognitive flexibility [23–25]
and optimizing inhibition control among the elderly to slow down the degradation of
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visuospatial memory functions due to aging [26–28]. High CRF and physical activity (PA)
levels have been consistently associated with the maintenance of cognitive functions in
life, including a reduced risk of developing Alzheimer’s disease and a slow progression of
cognitive problems in cognitively impaired patients [29–31].

However, the relationship between CRF and EF among adults has not been conclu-
sively established [32]. Findings from previous studies [33–35] are inconsistent, which
may be due to the big age gap among study participants. Therefore, it is necessary to
comprehensively assess the relationship between CRF and the three sub-functions of young
adults’ EF.

Advances in brain imaging technologies have facilitated the evaluation of underlying
physiological mechanisms involved in the relationship between CRF and EF. Structural
plasticity features of the brain mediate this relationship. At any age, CRF has important
effects on human brain health [36] and acts as a protective factor against gray matter
atrophy among the elderly [32,37–41]. There is a positive association between CRF and
gray matter volume (GMV), especially among the elderly [42–47]. Elevated levels of CRF
are associated with increased hippocampal and prefrontal cortex volume as well as better
cognitive performance among the elderly [48]. CRF and cortical volume (i.e., frontal cortex),
as well as EF (i.e., updating), are positively correlated among children [47,49,50].

College students are in the early adulthood phase in which the GMV in each brain
area gradually increases and can effectively predict the development of its EF. The larger
the GMV in the frontal lobe region, the better the EF [51]. Most studies have focused
on children and older adults, while younger adults have not been assessed [52]. The
relationships between CRF, brain structure, and EF, which have not been fully described in
younger adults, are necessary for the assessment of exercise–cognition interactions [53]. We
hypothesized that GMV plays an intermediary role in the influence of CRF on EF.

Based on the available scientific evidence, our hypotheses are: GMVs are used as
intermediary variables for the effect of CRF on EF to construct an intermediary mode. We
reveal that GMV is a potential neural pathway through which CRF affects an individual’s
EF and provides a new perspective for the comprehensive understanding of the relationship
between CRF and EF.

2. Materials and Methods
2.1. Participants

This study involved 221 freshmen aged between 18–20 years from Yangzhou Univer-
sity. The participants came from comparable sociocultural environments and followed a
commonly prescribed syllabus as well as examination evaluation patterns. Before testing,
participants were only asked to indicate whether they had sports habits rather than specific
sports events and durations in their lives. The inclusion criteria were: (i) no history of
mental or genetic disorders; (ii) test visual acuity or corrected visual acuity > 0.8, no color
blindness or color deficiency; (iii) no serious physical illness, no history of brain trauma or
nervous system disease, and no history of drug and alcohol dependence or other diseases
that may affect the structure and function of the brain; (iv) right-handed; (v) college stu-
dents with abnormal intelligence, as revealed by Raven’s Standard Progressive Matrices
(SPM) test, were excluded; (vi) participants who met the conditions for magnetic resonance
scanning, such as the absence of implanted metals (including metal dentures, etc.) and
electronic, magnetic, or mechanical equipment (such as pacemakers) in the body. According
to the above criteria, 4 participants were knocked out (3 males with MRI data missing and
1 female who exited). Our pooled dataset eventually included 217 participants (including
98 males and 119 females). The experiment was conducted in Yangzhou, China, with
approval from the Ethical and Human Protection Committee of the Affiliated Hospital of
Yangzhou University (2017-YKL045-01). Participants signed an informed consent form. All
study procedures were in accordance with the latest version of the Declaration of Helsinki.
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2.2. Cardiorespiratory Fitness Testing

VO2max was tested using an increasing load exercise protocol [54], i.e., CRF. Elmed
EGT 1000 was used to increase the load, while VO2max was measured using the Cortex
Metalyze R-II benchtop gas metabolism analyzer (Germany). The increasing load exercise
scheme was as follows: starting load was 50 w, treadmill rhythm was 55~60 r/min, and
increment was 50 w every 3 min until exhaustion.

Before the test, all participants completed a physical activity preparation questionnaire
to ensure that they had not performed high-intensity exercises the day before nor taken
drugs or drinks that were stimulating or inhibiting the nerves. They were prepared for 3
to 5 min before the formal test to prevent sports-associated injuries. The basal heart rate
was measured, after which exercises were started when the heart rate returned to a quiet
state. A polar heart rate band was used to monitor changes in heart rate during the exercise.
All participants who met any of the following four indicators achieved VO2max: (i) with
increasing load, oxygen uptake remained unchanged or slightly decreased (1500 mL/min);
(ii) respiratory quotient >1.1; (iii) HR > 180 b/min; (iv) despite repeated encouragement,
participants could not maintain a cycling rate of 55 to 60 r/min. After the completion of
the test, VO2max was recorded, followed by resting for about 5 min. In the case that the
participants’ bodies had no abnormal reactions, they were left alone. CRF was obtained by
multiplying the VO2max value (L/kg/min) by 1000 and dividing it by body weight (kg).

As previously reported [55], participants with CRF < 30% were assigned to the low
CRF group (65 people; 29 males and 36 females), while those with CRF > 70% were assigned
to the high CRF group (65 people; 39 males and 26 females).

2.3. Executive Function Assessment

In this study, the Flanker task, the 2-back task, and the more-odd shifting task were
used to evaluate updating, inhibition, and cognitive flexibility, respectively. The test tool
has high reliability and validity and is unanimously recognized by peer experts [25]. Test
indices were reaction time/ms and accuracy rate/%. The shorter the reaction time, the
higher the operation efficiency of the function. The higher the accuracy rate, the better the
function performance.

2.3.1. Flanker Task

The Flanker task was assessed by modified Eriksen [25]. In brief, a range of English
letters appeared on the screen under congruent or incongruent conditions. Participants
needed to discriminate the letter in the middle of the screen as soon as they could by
pressing the “F” or “L” keys. The two conditions were equally represented and randomly
presented. The test was made of two parts, and each part contained 48 trials, in which the
duration of letter presentation was 1000 ms, the stimulation interval was 2000 ms, and the
maximal reaction time was 2000 ms. If participants did not finish within 2000 ms, the trial
RT was still recorded as 2000 ms.

2.3.2. 2-Back Task

The 2-back task [56–58] was designed to assess updating. Briefly, a series of numbers
would appear on the screen (i.e., 1, 2, 3, and 4). Each 2-back test was composed of 13 figures
in a random sequential lineup. The participants were asked to remember the second and
third numerals in the sequence of appearance. When the fourth stimulus appeared, they
needed to judge whether it was the same as the second by pressing the “A” key for yes or
the “B” key for no with both hands on the keyboard. The stimulation interval was 2000 ms
and the maximal reaction time was 2000 ms. If participants did not finish within 2000 ms,
the trial RT was still recorded as 2000 ms.

2.3.3. More-Odd Shifting Task

The more-odd shifting task was assessed by modified Hambrick [59]. In a nutshell, a
series of numbers from either 1 to 4 or 6 to 9 would appear on the screen. Each more-odd
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shifting task consisted of 3 parts. The A part involved 16 homogeneous trials in which the
numbers were printed on the screen. Participants used their left or right finger to indicate
whether the presented number was greater than or less than 5 by pressing the “F” or “L”
keys, respectively. The B part also involved 16 homogeneous trials in which green numbers
were presented on the screen. Participants used their left or right finger to indicate whether
the presented number was odd or even by pressing the “F” or “L” keys, respectively. The C
part involved 32 homogeneous trials in which the numbers printed on the screen were from
both the A and B trials. Participants needed to identify if the presented number was greater
or less than 5 in black and if the presented number was odd or even in green. Pressing the
wrong button and failing to respond within 150–1000 ms for homogeneous trials or within
300–1500 ms for heterogeneous trials were considered incorrect responses.

The stimulation interval was 2000 ms, and the stimulus-onset asynchrony was 2000 ms.
The shifting index used in this study was the global switch cost, which was calculated as
differences in response time between heterogeneous (i.e., the average of the C parts) and
homogeneous (i.e., the average of the A and B parts) blocks.

2.4. MRI Data Acquisition
2.4.1. T1-Weighted Image Data Acquisition

GE Discovery MR750W 3.0 T magnetic resonance imaging was used for image acquisition.
The T1-MPRAGE sequence structure image scan parameters were: TR/TE = 7.20/3.06 ms,
TI = 450 ms, slice thickness = 1.00 mm, flip angle = 12◦, acquisition matrix = 256 × 256, and
field of view = 256 × 256 mm.

2.4.2. GMV Data Pre-Processing

The MRI data were processed using SPM12 implemented in MATLAB. SPM12 was
originally used to analyze the MRIs obtained from all participants and gross anatomical
abnormalities and to exclude artifacts. The MRIs were artificially adjusted to the anterior
commissure to raise registration. Then, every MRI was divided into 3 parts (i.e., gray matter,
white matter, and cerebrospinal fluid) by employing the toolbox function [56]. Finally,
an 8 mm full-width-at-half-maximum Gaussian kernel was used to smooth the regulated
images and to enhance the quality of the signal-to-noise ratio. The rex plug-in was used to
extract the GMV of significantly changed areas. The threshold was set at p < 0.05, the voxel
threshold at p < 0.01, and the cluster size at >50 voxels with FDR correction.

2.5. Statistical Analysis

The Statistical Package for Social Sciences (SPSS; SPSS Inc., Chicago, IL, USA) version
26.0 for Windows was used for the analyses. The chi-square test and the independent
sample t-test were used to compare differences in the demographic variables and the
CRF and EF of the high and low CRF groups, while a multivariate analysis of variance
(MANOVA) was used to investigate differences between GMVs of the two groups; on this
basis, brain regions with significant differences in GMV were further assessed. Using partial
correlation analysis to control gender, age, and BMI, correlations between CRF, GMV (brain
area with significant differences), and EF were used in process plug-in Model 4 to test the
mediating effects of GMV on the relationship between CRF and EF. The deviation-corrected
percentile bootstrap method was used to estimate 95% confidence intervals of the mediating
effects by sampling 5000 bootstrap samples. p ≤ 0.05 was the threshold for significance.

3. Results
3.1. Demographics, CRF, and EF of the Two Groups

The gender, age, and BMI of college students affect their EF [57,58]. Therefore, we
controlled for the above variables and the gender of the two groups (χ2 = 0.050, p > 0.05). The
independent sample t-test was used to analyze differences in age, BMI, VO2max, relative
VO2max, and EF subdomain. The obtained results indicated that there were significant
differences in BMI (t(128) = 3.443, p ≤ 0.001), VO2max (t(128) = −19.587, p ≤ 0.001), relative
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VO2max (t(128) = −34.014, p ≤ 0.001), inhibition RT (t(128) = 2.356, p ≤ 0.05), updating RT
(t(128) = 2.473, p ≤ 0.05), cognitive flexibility RT (t(128) = 6.514, p ≤ 0.001), and updating
accuracy rate (t(128) = −2.344, p ≤ 0.05) between the two groups. However, there were
insignificant differences in the inhibition accuracy rate (t(128) = −0.798, p > 0.05) and
cognitive flexibility accuracy rate (t(128) = −0.693, p > 0.05), indicating that the high CRF
was only better in updating (Table 1). The Kolmogorov–Smirnov test was used to assess
normal distribution in sub-EF RT (p > 0.05). The numbers over third standard deviations
were regarded as outliers [59]. The split-half reliability test also showed the significant
trustworthiness of the Flanker task (r = 0.964) and the more-odd shifting task (r = 0.666).

Table 1. Participants’ demographics, cardiorespiratory fitness, and executive function (M ± SD).

Variable Low CRF Group High CRF Group

Number 65 (Female 36) 65 (Female 26)
Age 19.307 ± 0.634 19.12 ± 0.516

BMI/(kg × m−2) 22.834 ± 3.869 *** 20.85 ± 2.552 ***
VO2max/(L × kg−1 × min−1) 0.791 ± 0.201 *** 1.75 ± 0.345 ***

Relative VO2max/(mL × min−1 × kg−1) 12.598 ± 2.166 *** 28.43 ± 3.064 ***
Inhibition

RT/ms 19.393 ± 19.531 * 12.66 ± 12.228 *
ACC/% 0.926 ± 0.120 0.943 ± 0.127

Updating
RT/ms 1143.294 ± 300.018 * 1032.98 ± 198.260 *
ACC/% 0.595 ± 0.224 * 0.681 ± 0.191 *

Cognitive flexibility
RT/ms 378.713 ± 114.807 *** 269.954 ± 70.261 ***
ACC/% 0.897 ± 0.079 0.909 ± 0.120

Note: A sample of 217 participants was included in this analysis. Descriptive data are presented as means (Ms)
and standard deviations (SDs). BMI: body mass index, ACC: accuracy, RT: reaction time. * means p ≤ 0.05,
*** means p ≤ 0.001.

3.2. Effects of CRF on the GMV of the Two Groups

The stochastic effect model of SPM12 was used to analyze the GMV of the two groups
and to explore the relationship between CRF and GMV. The obtained results indicated that
there were significant differences in the right frontal-mid-orb (ORBmid.R), right parahip-
pocampal (PHG.R), left caudate (CAU.L), left putamen (PUT.L), right putamen (PUT.R),
left thalamus (THA.L), and right thalamus (THA.R) (Table 2, Figure 1). All results were
corrected by FDR (p = 0.05).

Table 2. Significant changes in GMV between groups.

Regions
Mini Coordinates

Activation Cluster Max t-StatisticX Y Z

Right
ParaHippocampal 19.5 −12 −31.5 116 4.95

Right Frontal-Mid-Orb 27 42 −16.5 315 5.76
Right Putamen 24 −4.5 9 1167 5.83
Left Putamen −22.5 −1.5 9 938 6.30
Left Caudate −3 6 −6 52 5.08

Left Thalamus −3 −22.5 7.5 1003 6.42
Right Thalamus 13.5 −7.5 9 126 4.72

BMI is a covariate that should be included in the assessment of the impact of CRF
on GMV in ROI. A multivariate analysis of variance analysis showed that there were
significant differences (Wilks’ lambda = 0.834, F(8,121) = 3.018, p ≤ 0.05) between the
groups. Between-group analyses revealed significant differences in ORBmid.R GMV (Wilks’
lambda = 0.881, F(2,127) = 8.596, p ≤ 0.05). For multiple corrections, Bonferroni corrections
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were applied (α = 0.014). Based on this analysis, we found that a high CRF increases
ORBmid.R GMV (Table 3).
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Figure 1. Changes in GMV between groups. Note: Numbers in the figure represent coordinates of
this section in the vertical axis (Z-axis); The light band and numbers in the lower right corner show
correspondence between light and dark areas in the brain.

Table 3. Differences in GMV between the groups (M ± SD).

Region Low CRF Group GMV/mm3 High CRF Group GMV/mm3 Cohen’s d

Right ParaHippocampal 0.515 ± 0.036 0.527 ± 0.049 −0.266
Right Frontal-Mid-Orb 0.428 ± 0.043 + 0.456 ± 0.048 + −0.603

Right Putamen 0.524 ± 0.051 0.543 ± 0.059 −0.346
Left Putamen 0.537 ± 0.046 0.550 ± 0.057 −0.247
Left Caudate 0.405 ± 0.037 0.423 ± 0.058 −0.381

Left Thalamus 0.496 ± 0.052 0.506 ± 0.062 −0.172
Right Thalamus 0.542 ± 0.050 0.546 ± 0.060 −0.066

Note: with Bonferroni correction, + means p < 0.025.

3.3. Analysis of CRF, GMV, and EF

Age, sex, and BMI were used as controls for partial correlation analysis of correlations
between CRF, GMV, and each sub-function of ACC and RT. It was found that: (i) CRF was
positively correlated with ORBmid.R GMV (r = 0.230, p ≤ 0.05) (Figure 2A); (ii) ORBmid.R
GMV was negatively correlated with updating RT (r = −0.186, p ≤ 0.05) (Figure 2B); and
(iii) CRF was negatively correlated with updating RT (r = −0.184, p ≤ 0.05) (Figure 2C),
positively correlated with updating accuracy rate (r = 0.202, p ≤ 0.05) (Figure 2D), and
positively correlated with cognitive flexibility RT (r = −0.490, p ≤ 0.001) (Figure 2E).

3.4. Mediating Role of GMV between CRF and Updating RT

There were significant correlations between CRF, ORBmid.R GMV, and updating RT.
Model 4 (simple mediating model) in the Hayes SPSS macro was used to control for sex,
age, and BMI, after which the mediating effects of CRF, ORBmid.R GMV, and updating
RT were assessed. It was found that CRF had significant predictive effects on updating
RT (B = −0.240, t = −2.793, p ≤ 0.05). After the insertion of the mediating variable, the
direct predictive effect of CRF on updating RT was still significant (B = −0.193, t = −2.177,
p ≤ 0.05). The positive predictive effects of CRF and ORBmid.R GMV were significant
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(B = 0.288, t = 3.400, p ≤ 0.05), and the negative predictive effect of ORBmid.R GMV on
updating RT was also significant (B = −0.161, t = −1.814, p ≤ 0.05). The upper and lower
limits of the bootstrap 95% confidence interval for the effects of CRF and updating RT
and the mediating effect of ORBmid.R GMV did not contain 0. This shows that CRF
can directly predict updating RT and can also predict updating RT through the mediating
effects of ORBmid.R GMV. These direct (−0.193) and mediating (−0.047) effects respectively
accounted for 80.4% and 19.6% of the total effect (−0.240) (Tables 4 and 5, Figure 3).
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Figure 2. (A) CRF was positively correlated with ORBmid.R GMV; (B) ORBmid.R GMV was nega-
tively correlated with updating RT; (C) CRF was negatively correlated with updating RT; (D) CRF
was positively correlated with the updating accuracy rate; (E) CRF was negatively correlated with
cognitive flexibility RT.

Table 4. Indirect model test of ORBmid.R GMV.

Regression Equation (n = 130) Simulation Index Coefficient Significance

Result Variables Forecast Variables R R2 F(df ) B t

Updating RT 0.239 0.057 7.802
Gender 0.043 0.486

Age 0.122 1.409
BMI 0.043 0.479
CRF −0.240 −2.793 *

GMV 0.187 0.083 11.558
Gender 0.082 0.946

Age −0.115 −1.341
BMI −0.062 −2.459
CRF 0.288 3.400 *

Updating RT 0.285 0.081 5.616
Gender 0.056 0.644

Age 0.105 1.212
BMI 0.018 0.202

GMV −0.161 −1.814 *
CRF −0.193 −2.177 *

Note: All variables in the model are substituted into the regression equation by the standardized variables. BMI:
body mass index, GMV: gray matter volume, CRF: cardiorespiratory fitness, RT: reaction time. * means p ≤ 0.05.
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Table 5. Decompositions list of total, direct and intermediate effects.

Effect Value
Boot SE

Standard
Error

Boot LLCI
Limit

Boot ULCI
Limit Proportion

Total effect −0.240 0.086 −0.410 −0.070 100%
Indirect effect −0.047 0.025 −0.101 −0.004 19.6%
Direct effect −0.193 0.089 −0.370 −0.018 80.4%

Note: Boot Standard Error, Boot LLCI Limit, and Boot ULCI Limit respectively refer to the standard error of
indirect effects estimated by the partially corrected percentile bootstrap, the lower limit of the 95% confidence.
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Note: The red area is ORBmid.R GMV, while the values are standardized β coefficients for the
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4. Discussion

ORBmid.R GMVs are significant mediators in the link between CRF and updating RT,
which validates our hypothesis. The higher the CRF, the shorter the updating RT, indicating
that CRF has a significant negative predictive effect on updating RT among college students.
The direct effect size was 80.4%. Previous studies on the relationship between CRF and
EF showed that higher CRF tended to higher efficiency in the frontal parietal network.
Meanwhile, higher efficiency in the frontal parietal network was associated with superior
EF. Therefore, the relationship between CRF and EF can be adjusted by having better
efficiencies in the frontal parietal network of people.

This study further used PROCESS to establish the mediating effect based on correla-
tions among CRF, ORBmid.R GMV, and updating. It was established that the ORBmid.R
GMV of college students played a partial mediating role between CRF and updating. First,
higher CRF resulted in bigger ORBmid.R GMV, thereby affecting neural connections in
areas such as the frontal lobe and improving the activities of underlying neural networks,
which might lift the performance of EF. Second, a bigger ORBmid.R GMV exerts direct
effects on their receptors within the prefrontal cortex and hippocampus and improves the
performance of EF, at least in part via those mechanisms. In this study, ORBmid.R GMV
was responsible for 19.6% of the CRF-associated effects on updating. This indicates that
CRF affects updating through ORBmid.R GMV. Therefore, CRF-related ORBmid.R GMV
plays a role in CRF-related updating.

Differently, CRF was positively correlated with motor area GMV (i.e., putamen, cau-
date, thalamus, and parahippocampal regions). However, it was not found that the above
four regions were related to the three sub-functions of EF. The putamen, caudate, and thala-
mus are the most concentrated parts of motor conduction and integration coordination, and
they play an important role in CRF but are less related to EF [60]. The parahippocampal
region may be the only one of four regions associated with EF. Previous research has
reported that compared with the elderly, parahippocampal GMV is positively correlated
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with EF. It is stronger in the elderly than in young adults [61–63]. We have not come to
the same conclusion in this study, which may be related to lower direct correspondence
between the parahippocampal GMV and the EF of college students in early adulthood.

The mediation model was used in our study for the first time to investigate the medi-
ating roles of ORBmid.R GMV in the relationship between CRF and EF, and the potential
neural pathways of this relationship were found. Nevertheless, this study is limited by
several factors. First, despite the large sample size, this study only covers the effects of CRF
on GMV and EF in young and fit healthy adults. Second, the study only collects BMI data;
it is important for us to control for obesity using other indexes such as waist-to-hip ratios in
later life. Finally, the study mainly understands the relationship between CRF and EF from
cerebral cortex development but not by analyzing serum concentration. We look forward
to uncovering the association between CRF and EF from the molecular perspective in the
future. Our findings are consistent with the theory that CRF is important in EF. Several stud-
ies have revealed associations between CRF and EF, implying that enhanced EF promotes
decision-making with regard to exercise, thereby contributing to healthy outcomes.

5. Conclusions

Using a sample drawn from a study of college students, we found that higher CRF
was related to increased ORBmid.R GMV, which was itself related to shorter updating RT.
We examined this potential role and found that ORBmid.R GMV mediated the association
between CRF and EF. CRF-related ORBmid.R GMV may be a new pathway underpinning
the link between CRF and EF. These findings suggest that even in younger adults, CRF
can predict neurological differences leading to structural brain changes, such as greater
volume in the ORBmid.R, which may, in turn, forecast a more active and efficient use of EF.
Therefore, a future study in this area will be essential in developing more effective exercise
programs for the wider population and exploring the causal relationship between CRF
and EF on different levels (e.g., brain, behavior). This may help establish a scientific and
effective theoretical basis and core technology for the formulation of exercise intervention
programs for the coordinated development of “body, mind, and brain”.
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