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Abstract: Glioblastomas are incurable primary brain tumors harboring a heterogeneous landscape of
genetic and metabolic alterations. Longitudinal imaging by MRI and [18F]FET-PET measurements
enable us to visualize the features of evolving tumors in a dynamic manner. Yet, close-meshed
longitudinal imaging time points for characterizing temporal and spatial metabolic alterations during
tumor evolution in patients is not feasible because patients usually present with already established
tumors. The replication-competent avian sarcoma-leukosis virus (RCAS)/tumor virus receptor-A (tva)
system is a powerful preclinical glioma model offering a high grade of spatial and temporal control
of somatic gene delivery in vivo. Consequently, here, we aimed at using MRI and [18F]FET-PET to
identify typical neuroimaging characteristics of the platelet-derived growth factor B (PDGFB)-driven
glioma model using the RCAS-tva system. Our study showed that this preclinical glioma model
displays MRI and [18F]FET-PET features that highly resemble the corresponding established human
disease, emphasizing the high translational relevance of this experimental model. Furthermore, our
investigations unravel exponential growth dynamics and a model-specific tumor microenvironment,
as assessed by histology and immunochemistry. Taken together, our study provides further insights
into this preclinical model and advocates for the imaging-stratified design of preclinical therapeutic
interventions.

Keywords: glioblastoma; RCAS-tva; rodent glioma models; metabolism; multiparametric PET/MR
imaging; model characterization; PDGFB

1. Introduction

A glioblastoma is one of the most aggressive primary tumors in the central nervous
system. Despite multimodal therapy approaches, glioblastomas still have a devastating
prognosis, with a median overall survival in the range of 1.5 years [1–5]. Standard of care
therapy outside of clinical trials consists of maximal safe resection followed by a combi-
nation of radiation therapy, alkylating chemotherapy, and tumor-treating fields [1,3,6–8].
Still, tumor progression is inevitable in most patients. Re-resection can be considered if
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the whole contrast-enhancing tumor volume can be removed without new neurological
symptoms [7,9,10]. Furthermore, alkylating chemotherapy or other systemic therapies are
considered in interdisciplinary tumor boards [7,9–11].

Comprehensive genetic sequencing efforts over the last decades have revealed a com-
plex network of mutations in human cancer entities [12]. Multi-omic approaches and
extensive bioinformatic clustering analysis have enabled the definition of progressively
sharper subsets of different cancer entities [13–16]. This scientific progress contributed
to the better understanding of its biology and of potential treatment targets in some enti-
ties [14,17]. Furthermore, molecular profiling enables reverse translation approaches to
design more accurate preclinical models [18,19]. In glioblastomas, genetic alterations are
clustered into three subtypes: classical, proneuronal, and mesenchymal [14,16,20]. Besides
genetical alterations, metabolic adaptation and the reprogramming of cancers cells have
been defined as an additional hallmark of cancer [21,22]. In fact, immunosuppressive
reshaping of the glioma-associated microenvironment by the release of oncometabolites
and a distinct landscape of metabolomic alterations in human glioma have highlighted
the importance of metabolic fine tuning for human glioma [23,24]. In vivo imaging us-
ing [18F]FET-PET is a strong diagnostic tool in neuro-oncology when assessing tumor
metabolism on a molecular level and has become a standard tool in clinical neuroimag-
ing [25]. [18F]FET-PET is an amino acid radiotracer that is taken up by proliferating tumor
cells and has been associated with L-type amino acid transporters (LAT) [26]. PET/MRI
plays an important clinical role in the evaluation of metabolically active regions and thereby
in differentiating therapy-associated pseudoprogression from real tumor progression [7,25].
In particular, [18F]FET-PET improves sensitivity, specificity, and accuracy in differentiating
glioma from non-neoplastic tissue [27–29]. [18F]FET-PET/MRI has a value in the differenti-
ation between tumor progression and so-called pseudoprogression [30–33]. Furthermore,
contrast-enhanced MRI can evaluate blood brain barrier (BBB) permeability with high sensi-
tivity, and pseudoquantification can be performed [34,35]. Moreover, it has been correlated
with tumor infiltration and associated with tumor vascularity, as well as progression-free
survival [36,37].

Preclinical models recapulating the genetical and metabolic alterations of human
gliomas are urgently needed for dissecting potential vulnerabilities during glioma evolu-
tion in preclinical in vivo settings [38]. In this regard, somatic gene transfer systems that
offer the spatial and temporal control of gene delivery are of high scientific and transla-
tional value [39,40]. One retrovirus-based system that displays these characteristics is the
replication-competent avian sarcoma-leukosis virus (RCAS)/tumor virus receptor-A (tva)
system [41]. As illustrated in Figure 1A, the RCAS virus offers a multicloning site for the
insertion of genetic information with a maximum of 2.5 kilobase (kb), which is controlled
by the viral LTR promoter [42]. Viral replication solely takes place in cells expressing the
tva receptor, which is essential for viral entrance. Unlike mammalian cells, avian cells,
such as the chicken fibroblast long-term cell line DF-1, naturally express the tva receptor
(Figure 1B).

The establishment and breeding of immunocompetent, transgenic mice expressing the
tva receptor under the control of tissue-specific promoters allows the orthotopic induction
of diverse tumor entities using a broad range of oncogenic drivers (example shown in
glioma setting in Figure 1C). For instance, mouse models using the RCAS-tva delivery
system are available for glioma, ependymoma, pancreatic cancer, hepatic cancer, and
ovarian cancer research [41–45]. Additionally, rodent crossbreeding offers large genetic
combination possibilities. Examples are the implementation of luciferase-dependent in vivo
imaging as well as the combination of existing gene editing systems, such as the widely
used cre-lox or CRISPR-Cas9 editing systems for inducing chromosomal translocation or
gene fusions [42,46–48].

A platelet-derived growth factor B (PDGFB)-driven glioma model using the RCAS-tva
system has been used to test a wide range of novel therapeutic targets [49–51]. It comprises
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genetic features of the proneuronal glioma subtype by combining PDGFB amplification
with the lack of cell cycle regulator Cdkn2a (Figure 1) [14,16,46,52,53].

The aim of the study was to investigate (i) the growth dynamics with a special focus
on identifying neuroimaging characteristics of the PDGFB-driven glioma mouse model
using clinically relevant imaging methods, i.e., preclinical [18F]FET-PET/MRI, and (ii) to
study features of the glioma-associated microenvironment by immunohistochemistry.
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Figure 1. Schematic overview of the PDGFB-driven glioma mouse model using the RCAS-tva
delivery system. (A) Schematic overview of the RCAS plasmid including a PDGFB amplification.
This vector is transfected into DF-1 cells. (B) Viral replication takes place after cellular entry via tva
receptor binding. (C) Implantation of 5 × 104 transfected DF-1 cells into genetic engineered animals.
Tissue-dependent expression of the tva receptor is ensured by expression of tva controlled by the
nestin promoter in mice. This leads to the infection of only the nestin-positive cell population (red).
Subsequently, the PDGFB amplification is integrated retrogradely into the host genome. Together
with the systemic deletion of the cell cycle regulator Cdkn2a, intracerebral tumor formation occurs.
Created with BioRender.com.

2. Materials and Methods
2.1. DF-1 Cell Transfection

DF-1 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Ther-
moFisher, Waltham, MA, USA) at 39 ◦C with 5% CO2 atmosphere [54]. Cells were seeded
24 h before transfection. An amount of 2.5 µg of the RCAS-PDGFB or RCAS-GFP plasmid
was dissolved in 150 µL DMEM, together with 25 µL SuperFect® Transfection Reagent
(Qiagen, Venlo, The Netherlands), and incubated for 7 min at room temperature (RT) to
form complexes [41,46]. Next, 1 mL of DMEM was added, and the solution was transferred
to the seeded DF-1 cells and incubated for 3 h at 39 ◦C 5% CO2. Afterwards, cells were
washed and cultured with DMEM. Transfection control was assessed by fluorescence mi-
croscopy. The GFP signal of RCAS-GFP-transfected DF-1 cells was evaluated starting at
day 5 post transfection. Pictures were taken with an Axiovert 200M imaging system (Zeiss
Microscopy, Oberkochen, Germany).

2.2. Transfected DF-1 Cell Implantation into Immunocompetent (129S.Tg(NES-TVA)-Cdkn2a−/−) Mice

Animal experiments were conducted in accordance with the local authorities and the
German laws regulating the appropriate use of laboratory animals. Described procedures



Brain Sci. 2022, 12, 1426 4 of 16

and experimental settings were approved by The Institute of Animal Welfare and the
Veterinary Office at the University of Tubingen and the Regional Council Tuebingen. We
used a PDGFB-driven glioma mouse model using the RCAS-tva somatic gene transfer
delivery system as originally established and described by Hambardzumyan et al. [46].
Fifty thousand RCAS-PDGFB transfected DF-1 cells were implanted intracranially in the
same manner as described previously [55–57].

In brief, adult mice (male and female) (129S.Tg(NES-TVA)-Cdkn2a−/−) [53] were
anesthetized with a 3-component anaesthetic (fentanyl, midazolam, and medetomidine).
Then, the anatomical injection site, the right striatum, was located using a stereotactic
device (Stoelting, Wood Dale, IL, US). Next, 5 × 104 transfected DF-1 cells resuspended
in 1 × PBS, in a volume of 2 µL were injected into the mice using a Hamilton syringe
(Hamilton Bonaduz AG, Bonaduz, Switzerland). Intracranially implanted mice were
carefully monitored and longitudinally imaged as outlined in Section 2.3. Tumor-bearing
mice were euthanized at the appearance of moderate clinical signs, which were regularly
assessed according to a predefined, previously described scoring system shown in detail in
Supplementary Table S1 [57–60].

2.3. MRI and [18F]FET-PET Measurements

PET and MRI acquisitions were performed longitudinally over a period of 42 days in
tumor-bearing mice (n = 8), starting 6 days after implantation as outlined in Section 3.1.
Isoflurane with a 2.5% induction and 1–1.5% maintenance using room air at a flow rate
of 1.5 L/min was used as an anesthetic during the measurements. A constant body
temperature of 37 ± 0.5 ◦C was maintained throughout the acquisitions, using temperature
regulated bed systems for MRI (Bruker Biospin, Ettlingen, Germany) and PET (Medres,
Cologne, Germany).

MRI scans were performed using a 7T Clinscan small-animal MR scanner equipped
with a whole-body transmitter coil and a volume coil that completely covered the mouse
head (Bruker Biospin, Ettlingen, Germany). Respiratory rate and gating for MRI sequences
were performed using a breathing pad. T2 weighted images (T2W) were acquired using a
2D-spoiled turbo RARE spin echo sequence (256 × 256 matrix, 20 × 20 mm2 field of view
(FOV), repetition time (TR) = 2500 ms, echo time (TE) = 33 ms, slice thickness = 0.7 mm,
18 slices, averages = 2). T1-weighted images were acquired with increasing flip angles using
the following parameters: 129 × 129 matrix, 25 × 25 mm2 field of view (FOV), repetition
time (TR) = 10 ms, echo time (TE) = 1.34 ms, slice thickness = 0.2 mm, flip angles = [2,9,27],
80 slices, averages = 2. For contrast enhancement, T1-weighted images were measured
using the above-mentioned parameters approximately 4 min after the intravenous contrast
agent injection of Gadobutrol (Gadovist® 1 mmol/mL, Bayer Schering Pharma, Berlin,
Germany) diluted to a concentration of 0.2 mmol/mL at a dosage of 25 mmol per kg of body
weight. Relaxometry T1-maps were calculated by linearly fitting the T1-weighted images
voxel-wise, as previously described using Matlab (Matlab 2013b, The MathWorks, Natick,
MA, USA) [34,61]. To further validate the T1-maps and quantify gadolinium concentrations
in the brain, we acquired T1-weighted images of a phantom containing linearly increasing
concentrations of Gadobutrol. PET acquisitions were performed using brain-dedicated beds
using an Inveon small-animal PET scanner (Siemens Healthineers, Erlangen, Germany). A
bolus of 11.6 ± 0.74 MBq of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) was injected in the
catheterized tail vein and measured using PET through a dynamic acquisition of 50-min in
list-mode. The data were histogrammed in a 10-min time frame and reconstructed using an
iterative ordered subset expectation maximization (OSEM3D) algorithm. For attenuation
correction, a 10-min transmission acquisition using a 57Co source was acquired for every
PET measurement.

2.4. MR Image Analysis

The acquired PET and MRI images were realigned and co-registered using Pmod
Software v3.2 (Bruker Biospin, Ettlingen, Germany). Regions of interest (ROI) were drawn
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in agreement with two experienced neuroimaging scientists using the contrast enhanced
T1-weighted images. The ROI masks were used to extract data from the T1-relaxometry
maps and dynamic PET image data.

2.5. Scoring of Experimental Animals and SMA560&VM/Dk Mice

After transfected DF-1 cell implantation, the animals were closely examined, and
the clinical and neurological symptoms were evaluated according to a well-established
scoring scheme (Supplementary Table S1) [58]. The endpoint of the experiments was set
at a moderate physical burden. As soon as clinical endpoints were met, the experimental
animals were euthanized as defined by the responsible governmental authority (Regional
council Tuebingen).

Described IHC images in Section 3.3 were taken from either transgenic mice after
DF-1 cell implantation or immunocompetent mice of the orthotopic SMA560/VM-Dk
model [62]. In brief, 5 × 103 SMA560 cells were implanted in the same manner as described
in Section 2.2. Mice were part of an experiment previously published [57]. Shown mice
belonged to the control group, which received an isotype control antibody (MOPC-21)
intraperitoneally once per week (30 mg/kg). The isotype control was provided by Roche
Diagnostics (Penzberg, Germany). Treatment started at day 7 post-tumor cell implantation.
The experiment was closed at day 18 post-tumor cell implantation.

2.6. Immunohistochemistry of Murine Tumor Samples

The following antibodies were used: CD3, CD4, CD8, CD11b, CD19, CD20, CD45R,
CD163, Ki67, NCRI (Abcam, Cambridge, UK), CD204 (ThermoFisher, Waltham, MA, USA),
CD31 (BD Biosciences, Heidelberg, Germany), PD1, and PD-L1 (ProSci, Poway, CA, USA).
After reaching the predefined experimental endpoint, animals were perfused with ice cold
PBS, and brains were snapped frozen. Then, 8 µm thick sections were cut using a Leica
CM3050S cryostat (Leica, Wetzler, Germany). Brain slices were stored at −80 ◦C.

First, brain sections were dried at room temperature for 10 min, and fixation was per-
formed either with ice-cold acetone at −20 ◦C for 10 min or 4% PFA for 15 min. Endogenous
peroxidase activity was blocked by Bloxall (Vector Laboratories, Peterborough, UK). Next,
brain sections were incubated with 10% bovine serum albumin (BSA) in PBS-Tween 0.3%
for 1 h at RT. The primary antibody was incubated overnight at 4 ◦C. After several washing
steps with PBS, slides were incubated for 1 h at RT, with respective biotinylated secondary
antibodies diluted in 2% BSA PBS-Tween 0.05%. Vectastain® ABC Kit as a signal amplifier
and Vector NovaRED (Vector Laboratories) as a detection kit were used. Counterstaining
with Hematoxilin (Sigma-Aldrich, St. Louis, MO, USA) was performed. Finally, slides were
dehydrated and were mounted in DPX medium (VWR, Radnor, PA, USA). Stained tissue
sections were analysed under a Carl Zeiss Axioplan2 Imaging brightfield microscope (Zeiss
Microscopy, Oberkochen, Germany) with the Axio Vision 4.0 software.

2.7. Statistics

In vivo symptom-free survival was evaluated with Kaplan–Meier survival fractions, p
values were generated, and the Log-rank test (Mantel–Cox) was performed. Additionally,
the Tukey-Kramer post hoc test was used. Error bars represent standard deviation (SD).
Pearson correlations were calculated using MATLAB (R2021b, The MathWorks, Inc., Natick,
MA, USA).

Growth curves of contrast-enhancing regions and gadolinium- and FET-uptake were
analysed by GraphPad Prism 9 (GraphPad Software, San Diego, CA, USA) and visualized
with Adobe Illustrator 2022 (Adobe, San José, CA, USA).

3. Results
3.1. Implantation of RCAS-PDGFB Transfected DF-1 Cells and Glioma Formation In Vivo

First, we generated murine glioma in vivo after the implantation of RCAS-PDGFB
transfected DF-1 cells in experimental mice in two independent animal experiments with
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and without longitudinal imaging. Therefore, as illustrated in Figures 1 and 2A, DF-1 cells
were transfected with RCAS-PDGFB [46]. Transfection was controlled by a GFP-labelled
transfection control (RCAS-GFP), showing an enhanced GFP signal after plasmid trans-
fection (see Figure 2A). Next, 5 × 104 transfected DF-1 cells were implanted into the right
striatum of the mice (day 0). For longitudinal MRI and FET-PET imaging, mice received
baseline measurement one day before cell implantation (see Figure 2B). Animals received
cerebral MRI measurements twice per week (in total, 12 measurements) and an additional
FET-PET once per week depending on the availability of the FET tracer, as visualized in
Figure 2B. Untreated symptom-free survival was assessed according to the experimental
endpoint, as outlined in material/methods and Supplementary Table S1. Median symptom-
free survival time in the imaging animal group was 38 days; the independent implantation
of transfected DF-1 cells in seven additional animals revealed a median symptom-free
survival of 39 days (see Figure 3A).
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Figure 2. Longitudinal MRI-FET-PET imaging study and H&E staining pattern. (A) Schematic
overview of experimental design. Brightfield image shows transfected DF-1 cells. Scale bar is
50 µm. Representative picture of DF-1 cells transfected with RCAS-GFP plasmid as transfection
control. (B) Imaging schedule: day 0 represents the day of implantation of transfected DF-1 cells.
(C) Representative images of two animals showing glioma formation. Typical aspects of high-grade
glioma, such as infiltrating growth behavior, neovascularization (highlighted in green), and cell
atypia, are visible. Boundaries of the tumor core area are highlighted with a dotted line. Scale bars
are 50 and 100 µm. (A,B) were created with BioRender.com.
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with and without MRI and FET-PET measurements (yellow and green curve). The red curve repre-
sents entire animal studies. No statistically significant differences in Log-Rank test and Tukey–Kramer
post hoc test were observed. (B) Longitudinal tumor volume development: (1) representative FET-
PET image day 7; (2) and (3) representative MRI images of day 39 PTI (post tumor initiation) of
two animals showing glioma-like gadolinium enhancement in the final stage of the disease; (4)
representative H&E staining showing glioma-like histologic features in the region of the previously
occurred gadolinium enhancement (scale bar is 50 µm); (5) representative FET-PET image, showing
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We performed Hematoxylin and Eosin (H&E) staining for the histological confirmation
of tumor formation in post-experimental brain tissue. Additionally, immunohistochemistry
for the proliferation marker Ki67 as well as endothelial marker CD31 were executed (see
Figure 4, column 1–2). Both experiments revealed extensive tumor formation with glioma-
type histological characteristics [20]. We observed infiltrative growth behavior, a high
density of strong basophilic stained tumor cells, a high grade of neovascularization, and
an extended necrosis area (as illustrated in Figure 2C). This infiltrative growth was more
pronounced compared to the SMA560-glioma (see Supplementary Figure S1). Proliferation
marker Ki67 was largely present in tumor regions and was good comparable to the staining
patterns in untreated VM-Dk mice (see Figure 4, column 1). Staining against CD31 showed
large vessel formation in good accordance with the PDGFB amplification as the tumor
driver mutation (see Figure 4, column 2). CD31 signal was present in the widely used
orthotopic SMA560/VM-Dk glioma mouse model as well. Interestingly, tumor volume
expanded over the adjacent brain regions, infiltrating into the adjacent temporal and
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parietal lobe. Taken together, we could detect robust tumor formation, which could be
confirmed by histology, displaying high-grade glioma-like histological features.
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3.2. Longitudinal MR-Imaging Reveals Exponential Growth Dynamics and Late FET Uptake

Acquired imaging data, a total of 12 MRI measurements and 4 FET-PET measurements,
were co-registered, and the longitudinal course was analysed. As shown in Figure 3B, the
longitudinal volumetry of the contrast agent-enhanced regions revealed tumor-specific
signals starting at day 25 until 27 after the implantation of transfected DF-1 cells. First,
the contrast agent-enhancing lesions were detected in the region of cell implantation and
were expanded and showed increasing accumulations in an exponential fashion. Irregular
and diffuse gadolinium uptake, similar to the radiological behavior of human high-grade
glioma, was detected. At the final phase of acquired measurements, gadolinium uptake
was detected even contralateral to the implantation side, infiltrating the corpus callosum
and the contralateral parietal lobe (see Figure 3B(2 + 3),D). In the T2-weighted images, a
large signal alteration was apparent in comparable localizations. Furthermore, in the region
of the cell implantation, T2-alterations highly suspected for tumor necrosis were detected
(Figure 3D). The final measured volume of the contrast agent-enhancing regions before
reaching the defined experimental endpoints (as outlined in Supplementary Table S1) were
in the range of 65 mm3 to 135 mm3 in four of the five included animals (see Figure 3B).
Of note, calculated tumor volumes represented up to 40% of the whole brain volume in
the final stage of the disease (see Supplementary Figure S2A). As visualized in Figure 3D,
[18F]FET uptake was in good accordance with gadolinium uptake in the late phase of
tumor progression at day 42. Of note, at 27 days, although several mice presented contrast-
enhancing tumor lesions, [18F]FET-PET did not present any focal lesions.

We aimed at investigating the relationships between the measured imaging variables
and the timepoints when the primary outcome parameter, i.e., symptom-free survival, was
reached. Therefore, we correlated tumor volume, tumor [18F]FET uptake, and gadolinium
concentration in the tumor region and the brain parenchyma adjacent to the main tumoral
mass. We observed significant positive correlations between tumor volume, [18F]FET
uptake, and gadolinium concentrations in the tumor region (p < 0.001). Moreover, evaluated
imaging variables highly correlated with the primary outcome parameter (p < 0.001).
Correlations are shown in supplementary Figure S3.

The dynamic analysis of the PET data per time point showed a steady retention in
the brain up to day 27 but no tumor differentiation. Unfortunately, we could not perform
FET-PET acquisitions between days 27 and 42. After 42 days, the tumors displayed an
increased uptake in comparison to brain background, without wash-out dynamics, only
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constant increased retention (Figure 3C). In summary, the tumors were first identifiable on
day 25 using gadolinium-enhanced MRI. We detected colocalizing gadolinium and [18F]FET
enhancement on the last imaging acquisition day (day 42 after DF-1 cell implantation).

3.3. PDGFB-Driven Glioma Show High Basal Infiltration of Immune Cells in Comparison with the
Orthotopic Syngeneic SMA560/VM-Dk Glioma Mouse Model

Treatment-naïve human glioblastomas harbor an immunosuppressive microenviron-
ment with low numbers of infiltrating T cells and tremendous amounts of tumor-associated
macrophages (TAMs) [63,64]. Current approaches in immunotherapy, e.g., by personalized
peptide vaccination, can lead to an increased infiltration of CD8-positive T cells and in-
creased immunogenicity [65]. Moreover, systemic immunosuppressive and inflammation
markers can be influenced by novel therapeutic options as well [66–69].

Therefore, we assessed the composition of the glioma-associated microenvironment of
treatment-naïve PDGFB-driven glioma in mice. We performed an immunohistochemical
analysis of 14 markers on tumor tissue (Figure 4 and Supplementary Figure S4). We
investigated the infiltration of tumor tissue by host T cells and microglia/macrophages
using the well-established markers CD3, CD4, CD8 (as illustrated in Figure 4, column 3–5),
CD11b, CD204, and CD163 (column 6–8).

Moreover, we compared the staining patterns with the untreated tissue of the or-
thotopic SMA560/VM-Dk glioma mouse model (see Figure 4, row 1) [57]. T cell-specific
markers showed a stable presence in animal cohorts (both with and without imaging), and
the strongest signal was detectable against CD3-positive cells. Of note, even CD8-positive
cells could be often clearly distinguished, whereas in the SMA560/VM-DK, only single
positive stained cells could be observed (see Figure 4, column 5). Interestingly, CD11b
showed a strong staining signal in both glioma mouse models. In contrast CD204, which
was widely expressed in the syngeneic SMA560/VM-Dk model, showed a reduced fre-
quency in the evaluated PDGFB-driven glioma. Inversely, we detected an increased CD163
staining signal in the evaluated RCAS-tva model in comparison to the SMA560/VM-Dk
model. Additionally, the PD1/PD-L1 axis immunosuppressive markers were assessed
(as illustrated in Supplementary Figure S4). PD1 as well as ligand PD-L1 were present in
evaluated tissue samples. Additional histological markers against several subtypes of B and
T cells revealed comparable results to the SMA560/VM-Dk model, with a slight tendency
towards decreased numbers of natural cytotoxicity, triggering receptor 1 (NCRI)-expressing
cells (Supplementary Figure S4, column 3) and an increased signal for CD20-expressing
cells in the evaluated tumor tissue from mice after DF-1 cell implantation (Supplementary
Figure S4, column 2).

4. Discussion

Robust and flexible systems to precisely implement genetic and metabolic alterations
in immunocompetent rodent glioma models are essential for the preclinical evaluation of
therapeutic strategies [38]. Here, we aimed at further characterizing the PDGFB-driven
glioma model using the RCAS-tva delivery system, monitoring tumor growth dynamics as
well as tumoral metabolic activity by neuroimaging.

Genetic alterations, such as PDGFB amplification, the homozygous loss of Cyclin
Dependent Kinase Inhibitor 2A (CDKN2A), and coding for p16INK4A and p14ARF, show
high frequency in human glioma [4]. In general, as outlined in Figures 1 and 2A, we
observed robust tumor induction in a reliable manner [41,42], i.e., stable tumor forma-
tion and comparable median symptom-free survival, in two independently conducted
experiments using the RCAS-tva system with a PDGFB overexpression in Cdkn2a deleted
mice, underlining the high reproducibility of the model (Figure 3A). Of note, our evaluated
median symptom-free survival was comparable to Hambardzumyan et al., who primarily
evaluated the tumor-formation capacity of RCAS-PDGFB in transgenic mice depending on
the cerebral implantation site [46]. Control groups of treatment studies, e.g., focusing on
colony stimulating factor 1 (CSF1R) inhibition, have also reported similar symptom-free
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survival [49]. The morphological analysis of post-mortem tumor tissue revealed histological
features of human glioblastoma (Figure 2C) [20]. We detected a high grade of neovascu-
larization and necrosis areas as well as infiltrating growth behavior (Figure 2C)). Similar
findings were described by Connolly et al., who established a PDGFB-driven glioma model
in transgenic rats using the RCAS/tva system [70].

The multimodal neuroradiological assessment of treatment responses using classical
and functional imaging modalities, evaluating tumoral growth kinetics, are essential for
brain tumor surveillance [7]. Executed longitudinal MRI imaging of the PDGFB-driven
glioma model revealed exponential growth kinetics of contrast-enhanced lesions (Figure 3B).
Interestingly, the evaluated tumors showed comparable radiological features with the
clinical situation. The time points of the first-detectable contrast-enhancing lesions and
tumor volumes before reaching the experimental endpoint differed in the range of five
to ten days between animals within the experimental group (Figure 3B). Despite the
different onset of detectable tumoral lesions, we could observe similar growth patterns
and stable median-symptom-free survival, as shown in Figure 3A in our experimental
group. These findings correlate with other preclinical studies that evaluated treatment
responses by MRI. The exponential growth dynamics were displayed in control groups or
in tumors that acquired therapeutic resistance [49,50]. Moreover, growth dynamics might
recapitulate high proliferative capacities in combination with rapid neovascularization in
human glioblastoma [20].

Due to the complexity of the contrast agent application in rodent models, monitoring
glioma growth in therapy studies is mostly performed by assessing T2-weighted images.
However, these do not always allow reliable and clear tumor delimitations (Figure 3D).
T2-weighted imaging showed perifocal edema with loss of signal in center regions, often
observed in cerebral micro bleedings [71]. Of note, tumor borders are rather ill-defined
in T2-weighted images (Figure 3B,D). Gadolinium uptake provides a better delineation
of the tumor region, similar to the clinical situation in glioma patients [72]. In fact, the
observed gadolinium uptake in this study reflected other published contrast-agent uptake
patterns observed in the same model during treatment that targeted myeloid-derived
suppressor cells (MDSCs) [73]. Interestingly, our findings indicated a delayed contrast-
agent uptake starting at day 25 until 27 post-DF-1 cell implantation (Figure 3B). This finding
entails a disruption of the BBB that produced a focal observable lesion at day 25. Although,
histologically, tumor cells are present at early time points, they appear to present insufficient
tissue alterations to disrupt the BBB. A late onset of BBB disruption and gadolinium-
enhanced tumor visualization starting between days 25 and 27 emphasizes that appropriate
therapy starting points in treatment studies are imperative for evaluating PDGFB-driven
glioma. Fixed and early treatment schedules might result in the early therapy initiation
of small-size lesions that poorly recapitulate the clinical situation. Accordingly, it might
lead to the exaggerated interpretation of treatment responses in rodent models. Therefore,
imaging-based therapy start points referring to a predefined minimum tumor volume
might be helpful to increase the translational impact, i.e., comparability between in vivo
modelling and human glioma patients. This consideration was implemented in several
studies tackling TAMs-centered therapies. Therapy started only with a tumor volume of
40 mm3 in T2-weighted images, largely observed between weeks 4 and 5 after the tumor
induction of PDGFB-driven glioma [49,50,74]. In some studies, group randomization
referring to initially measured tumor volume was possible in preclinical rodent therapy
studies, probably leading to better balanced treatment groups [49,73]. We suggest the
following experimental sequence for preclinical therapeutic assessments: cell implantation,
baseline imaging and determination of tumor volume, start of therapy with comparable
tumor volume in all experimental groups, and clinical and imaging-based monitoring.

Longitudinal metabolic imaging using [18F]FET-PET detecting temporal and spatial
alterations in human glioma usually encompasses the period from the initial diagnosis of
a clinically apparent tumor to its evolution under therapy. In contrast, the used PDGFB-
driven glioma model offers the unique possibility to monitor the interval from tumor



Brain Sci. 2022, 12, 1426 11 of 16

induction to the establishment of a clinically and biologically advanced tumor by close-
meshed [18F]FET PET imaging time points (Figures 2B and 3). Longitudinal [18F] FET-PET
imaging showed the late onset of intense and diffuse tracer uptake in tumoral regions above
the background brain activity. The tumor [18F]FET uptake presented a similar pattern as
observed post-contrast-enhancement T1-weighted images (Figure 3C,D). Taking these two
patterns together, the model presents typical human PET/MRI features that are highly
relevant for the diagnostic and clinical management of glioma [33]. Interestingly, [18F]FET-
PET did not correlate with BBB permeability at early tumor stages (Figure 3C). This finding
is in agreement with previously published glioma rat data, where BBB permeability did not
always correlate to [18F]FET uptake [75]. Possible explanations for this phenomenon might
be a delayed availability of amino-acid transporters in the tumor, the partial volume effect,
or sensitivity limitations of PET [76]. In addition, the lack of a “washout” dynamic curve in
all evaluated tumors is reminiscent of the IDH-mutant tumor in humans [77]. Therefore,
the uptake behavior of wash-out negative glioblastomas and their biological mechanisms
can be further investigated using this mouse model.

Next, we investigated the composition of the glioma-associated microenvironment
by immunohistochemistry [63]. We detected several subtypes of infiltrating lymphocytes,
as well as CD163- and CD11b-positive cells, highly suggestive of the presence of TAMs
inside the glioma-associated microenvironment (Figure 4 and Supplementary Figure S4).
The presence of stained TAM markers has been linked to a worse prognosis in molecular
glioblastoma subtypes, and an increased frequency correlates with the respective WHO
grade [64,78,79]. Additionally, the comparison of the widely used syngeneic SMA560/VM-
Dk model showed similarities and differences regarding the composition of the glioma-
associated microenvironment, indicating a rodent model-specific microenvironmental
structure and reflecting the different genetic landscapes and immune escape mechanisms
of modelled human gliomas (Figure 4) [57]. However, potential cofounding factors, such
as the difference in tumor size or the experimental setup, might be considered as well. In
general, glioma models using the RCAS-tva system might better reflect the natural course
of disease than chemically induced or spontaneous-occurring syngeneic orthotopic glioma
transplantation models, e.g., implanting GL261 cells in C57BL/6 mice, regarding tumor
initiation and disease progression [80].

The PDGFB-driven model was widely used in studies with novel TAM-centered thera-
peutic options. For example, one study demonstrated that primarily achieved re-education
of TAMs through CSF1R inhibition often led to acquired therapeutic resistance via alter-
native insulin growth factor 1 (IGF1)/IGFR signaling. Combination therapeutic regimes
targeting the acquired resistance mechanism led to a survival benefit, underscoring the
PDGFB-driven mouse model applicability towards combination therapeutic regimes [50].
Moreover, valuable insights into the dynamic composition of the tumor microenvironment
under therapy and during disease progression could be achieved in a study combining
two-photon microscopy and MRI measurements [74]. Even more so, the discrimination of
undiscovered potential drivers of gliomagenesis can be addressed by the establishment of
a novel genetic forward screen using the retroviral integration capacity of the RCAS virus
for detecting potential novel oncogenes in the PDGFB-driven glioma model [81].

Taken together, we provided the multiparametric profiling of a PDGFB-driven glioma
mouse model using the RCAS-tva delivery system and demonstrated radiological, his-
tological, and metabolic features that are comparable to human high-grade glioma. Still,
the small number of imaged animals as well as limited FET tracer availability during day
27 and 42 are a study limitation. Therefore, future close-meshed imaging studies using
[18F]FET PET should begin close to day 25 p.i. in order to capture early model-specific
tumor features.

5. Conclusions

Our study provided a multilayered profiling of a PDGFB-driven glioma mouse
model using the RCAS-tva delivery system and discovered radiological, histological, and
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metabolic features that are comparable to human high-grade glioma. We conclude that our
results further highlighted the translational capacities of this innovative preclinical model
by reflecting relevant glioblastoma-like imaging and histological characteristics. Further-
more, future translational studies using this preclinical model might be further facilitated
and reproducible by using the following experimental sequence: cell implantation, baseline
imaging and determination of tumor volume, start of therapy with comparable tumor
volume in all experimental groups, and clinical and imaging-based monitoring. This might
optimize the design of future preclinical studies and comparability with the clinical setting.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12111426/s1, Figure S1: Representative H&E images of
SMA560 glioma, Figure S2: Selected immunohistochemistry staining in SMA560 and PDGFB-driven
glioma, Figure S3: Longitudinal MRI dynamics and correlation with [18F]FET uptake, Figure S4:
Correlation matrix of all imaging parameters to the primary outcome parameter, Table S1: Parameter
for scoring of the experimental animals.
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