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Abstract: Multi-site resting-state functional magnetic resonance imaging (rs-fMRI) data can facilitate
learning-based approaches to train reliable models on more data. However, significant data hetero-
geneity between imaging sites, caused by different scanners or protocols, can negatively impact the
generalization ability of learned models. In addition, previous studies have shown that graph convo-
lution neural networks (GCNs) are effective in mining fMRI biomarkers. However, they generally
ignore the potentially different contributions of brain regions- of-interest (ROIs) to automated disease
diagnosis/prognosis. In this work, we propose a multi-site rs-fMRI adaptation framework with
attention GCN (A2GCN) for brain disorder identification. Specifically, the proposed A2GCN consists
of three major components: (1) a node representation learning module based on GCN to extract
rs-fMRI features from functional connectivity networks, (2) a node attention mechanism module to
capture the contributions of ROIs, and (3) a domain adaptation module to alleviate the differences in
data distribution between sites through the constraint of mean absolute error and covariance. The
A2GCN not only reduces data heterogeneity across sites, but also improves the interpretability of the
learning algorithm by exploring important ROIs. Experimental results on the public ABIDE database
demonstrate that our method achieves remarkable performance in fMRI-based recognition of autism
spectrum disorders.

Keywords: domain adaptation; multi-site data; graph convolutional networks; autism; resting-state
functional MRI

1. Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) is an imaging technique
that uses blood-oxygen-level-dependent (BOLD) signals to obtain functional graphs of
brain activity while subjects are at rest [1]. Compared with other fMRI techniques, rs-
fMRI has advantages because it is non-invasive and has high tissue resolution, and it can
skillfully detect the difference between the functional activity network of the human brain
under pathological conditions and that of the normal human brain [2]. At the same time,
benefiting from the progress of scanning hardware and scanning technology, as well as the
rapid development of computer vision technology, rs-fMRI has gradually become one of the
effective means to study the human brain in recent years. Relying on rs-fMRI technology,
researchers have made remarkable achievements in the auxiliary diagnosis, pathogenesis
research, objective biomarker search and other aspects of mental disorders such as Autism
Spectrum Disorder (ASD) and Major Depressive Disorder [3,4].

Currently, the application of machine learning/deep learning in natural image analysis
is very successful. In contrast, its use in the analysis of neuroimaging data presents
some unique problems, including dimensional disaster, small sample size, and limited
true labels [5,6]. With the continued efforts of researchers, public multi-site neuroimage
datasets, increasing the sample size and statistical power of data, are helping to promote the
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adoption of data-driven machine learning/deep learning techniques. However, the study
of multi-site datasets will face another important challenge. That is, the distribution of data
between sites is often quite different due to external factors such as different scanners or
protocols [7,8]. This will severely limit the generalization ability of machine/deep learning
models, as such algorithms often start with the assumption that all data remain the same
distribution [9–11].

Studies have shown that detection of abnormal low-frequency fluctuations in the
BOLD signals caused by pathological changes in the resting state will facilitate the analysis
of brain connectivity and provide scientific and reliable treatment options before and
after surgery [12]. Typically in studies of neuroimaging data, brain functional connectivity
networks (FCNs) attempt to establish a potential causal link between two regions-of-interest
(ROIs) based on linear temporal correlations [13]. Previous studies usually use statistical
measures of FCNs (including betweenness centrality, degree centrality, and other features)
to construct prediction models [14,15]. These practices often rely on extensive expert
knowledge and are subjective, expensive, and time-consuming. FCN is usually defined as a
complex non-Euclidean space graph structure [16]. In recent years, graph neural networks,
especially graph convolutional networks (GCNs), have become one of the effective tools
to deal with irregular graph data. GCN is a natural extension of the convolutional neural
network in a graph domain [17,18]. It can be used as a feature extractor to learn node
feature information and structure information end-to-end at the same time, which is the
best choice for graph data learning task at present [19,20]. When GCN is naturally used to
analyze rs-fMRI data, comprehensive mapping of brain FC patterns can effectively describe
the functional activity of the brain [21,22]. However, existing studies usually ignore the
potential contribution of different brain functional regions to the diagnosis of brain diseases,
thus affecting the interpretability of the GCN model.

As shown in Figure 1, we construct a domain adaptation model with attention GCN
(A2GCN) of multi-site rs-fMRI for ASD diagnosis. For the convenience of description,
we set a known site as the source domain, and define the site to be predicted as the
target domain. In this paper, we focus on the classification task of graphs. Therefore, we
first construct the corresponding FCNs based on the rs-fMRI data of subjects from the
source/target domains, and take the FCNs as the corresponding source/target graphs.
Then, we use GCN as a feature extractor to capture the nodes/ROIs representations from
the source/target graphs respectively through the graph convolution layers. In addition,
the node attention mechanism is applied to explore the contribution weight of nodes/ROIs
automatically. Finally, the objective function composed of multiple loss functions is jointly
optimized, so as to establish a cross-domain classification model with a wider application
range. We will use rs-fMRI data from the three sites (NYU, UM, UCLA) of the public
ABIDE database [23] to identify ASD patients from healthy controls (HCs) to evaluate the
performance of our approach.

The rest of this work is shown below: In Section 2, we briefly review the related
research results of this work. In Section 3, we present our method and experimental setup.
In Section 4, we introduce the data used in this work, the competing algorithms, and report
the performance of different algorithms. At the same time, ablation experiments are added
to investigate the contribution of key components in our proposed model. In Section 5,
we discuss several extension studies related to this work and propose future related work.
Finally, in Section 6, we summarize our proposed method.
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Figure 1. Architecture of the proposed multi-site resting-state fMRI adaptation framework (A2GCN)
with an attention-guided GCN for brain disorder identification. The A2GCN consists of three
components: (1) With the help of GCN model, rs-fMRI features are automatically extracted from the
brain graph from the source or target domains; (2) Explore the potential contribution of different
brain regions to automatic detection of brain diseases by using attention mechanism; (3) Under the
constraints of mean absolute error and covariance, the objective function (composed of MAE loss,
CORAL loss and cross entropy loss) is established for knowledge transfer between different domains.

2. Related Work
2.1. Graph Convolution Network for fMRI Analysis

At present, the application of deep learning framework, especially the graph convo-
lutional networks (GCNs) model, to graph-structured data has aroused a warm response
worldwide [24,25]. GCN is used to advance the feature learning of the network, which inte-
grates the central node characteristics and graph topology information in the convolutional
layer [26]. In particular, GCN has achieved impressive results in helping researchers build
mathematical models for computer-assisted diagnosis of brain diseases and process and an-
alyze neuroimaging data quickly and efficiently [27]. For example, Wang et al. [28] defined
a GCN architecture based on features of fMRI for brain disorder analysis. Based on the
spatiotemporal information of rs-fMRI time series, Yao et al. [29] constructed time-adaptive
GCN architecture to study the periodic characteristics of the human brain. Gadgil et al. [30]
focused on the short subsequence of BOLD signal, so as to construct a spatio-temporal GCN
architecture and explore the non-stationary properties of FC. Traditional GCN research
usually regards feature representations of each node as independently and equally. That
is, they did not consider the unique contribution of each specific node/ROI to rs-fMRI
analysis. In this paper, we will establish a ROI/node feature attention mechanism based on
GCN to learn potential functional dependencies among brain regions, which allows us to
identify those most informative brain regions for diagnosis. This will significantly improve
the interpretability of GCN models for automated fMRI analysis.

2.2. Domain Adaptation for Brain Disorder Diagnosis

Data acquired from multiple imaging sites are correlated but distributed differently,
which is a classic domain adaptation problem [31,32]. According to the latest research,
domain adaptation related algorithms can be roughly summarized into two categories:
(1) supervised domain adaptation. The target domain samples contain a large or small
amount of label information; (2) unsupervised domain adaptation. There is no data label
available for the target domain [33]. This work will focus on the problem of unsupervised
domain adaptation, that is, samples from the source domain contain complete data labels,
while samples from the target domain to be analyzed have no label information, which is
more valuable and challenging for applications. In recent years, in order to achieve domain
alignment, many cross-domain classification algorithms have been proposed, including
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adaptive methods based on discrepancy, adversarial learning and data reconstruction [34].
In recent years, domain adaptation technology has also achieved remarkable results in the
field of medical imaging. Ingalhalikar et al. [35] coordinated multi-site neuroimaging data
based on empirical Bayes formula to improve the accuracy of brain diagnostic classification.
Guan et al. [32] defined a multi-site domain attention model based on deep learning for
brain disease recognition. Zhang et al. [36] constructed an unsupervised domain adver-
sarial network and established a brain disease prediction model with good classification
performance. In this paper, we adopt the classical domain adaptation algorithm, that is,
calculate the mean absolute error (MAE) and covariance of the source domain and the
target domain at the same time, so as to guide the gradual alignment of node features
learned from different domains and alleviate the domain offset problem.

3. Methodology

In this section, we will first describe the concepts and notation related to the unsuper-
vised domain adaptation problem (as shown in Table 1), and then introduce our approach
in detail.

Table 1. Notations and descriptions used in this paper.

Notation Description

Gs = (Vs, As, Xs, Ys) Source graph
Gt = (Vt, At, Xt) Target graph
Vs, Vt Set of nodes
Ys ∈ RMs

Source data label
A, As, At Adjacency matrix
Xs ∈ RMs×Ds

Source feature matrix
Xt ∈ RMt×Dt

Target feature matrix
Hs, Ht Learned features
Zs, Zt Learned features
M, Ms, Mt Number of samples
N, Ns, Nt Number of nodes on the graph
D, Ds, Dt Feature dimension
fC Source domain classifier
LC ,LM,LA Loss function
γ1, γ2 The balance parameters

3.1. Notation and Problem Formulation

In general, a feature space X of data and its marginal probability distribution P(X)
will form a domain D. In this work, the source domain data from the distribution P(Xs)
can be expressed as Xs ∈ RMs×Ds

; target domain data from distribution P(Xt) can be
represented as Xt ∈ RMt×Dt

, where Ds and Dt are the feature dimension, and Ms and Mt

are defined as the sample size in the source domain and target domain, respectively. In
the unsupervised domain adaptation problem, the feature space and label space of the
data from the source domain and the target domain are usually consistent, but the data
distribution is different, that is, P(Xs) 6= P(Xt). Our goal is to use the information learned
from the source domain to assist in the graph classification task of a completely unmarked
target domain. Our task is to build a good graph classification model for the target domain
without any label based on labeled source domain.

In this article, we focus on representation learning of nodes on a graph. Therefore, we
first build a graph for each subject of the source domain and target domain. A subject from
the source domain is represented as a graph Gs = (Vs, As, Xs, Ys), where Vs represents
a labeled collection of nodes in Gs, and As ∈ RNs×Ns

represents the weighted adjacency
matrix to quantify the connection strength between nodes. Ns = |Vs| represents the
number of nodes/ROIs of Gs. Xs ∈ RNs×Ds

is the eigenmatrix of graph Gs, and the i-th
row of Xs is the eigenvector related to node i. Ys ∈ RMs

is the label of Gs. In this paper,
the label value of normal people is 0 and the category label of patients is 1. Similarly, each
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subject from the target domain is also defined as a graph Gt = (Vt, At, Xt), which is a
completely unlabeled network. Vt is the node set. Nt = |Vt| is the number of nodes/ROIs
in Gt. At ∈ RNt×Nt

is the weighted adjacency matrix. Xt ∈ RNt×Dt
represents the feature

matrix of Gt.

3.2. Proposed Method

The model A2GCN designed in this paper mainly includes three modules: node repre-
sentation learning, node attention mechanism and domain adaptation module as shown in
Figure 2. In addition, our model will be described in detail below.

Extracted features
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Figure 2. Structure of node attention mechanism module. Xi ∈ RN and Hi ∈ RD are the input and
output of the convolutional layer, respectively. i = 1, · · · , N. After the two-layer graph convolution,
the spatial dimension of the output layer is limited to N × D × M. With the help of the max
pooling operation, the global feature descriptor (Hmax) of N × 1×M is generated from the tensor,
and then it is mapped into an attention score (Hatt) through the fully connected layer, and the
dimension is unchanged. Dot product this attention score with the original N × D × M tensor
(H = [S1, S2, · · · , SM]). The result of the dot product is added to the original N × D × M tensor
(H), and finally each node gets the feature with the attention mechanism reweighting. FC: Fully
connected layers.

3.2.1. Node Representation Learning

To facilitate the classification task of downstream graphs, we use GCN to capture the
node representation information on each graph.

First, we used the preprocessed BOLD signal to calculate the Pearson’s correlation
coefficient (PC) between nodes on the graph, and defined it as the functional connectivity
eij ∈ [−1, 1] of the i-th and j-th brain regions, as follows:

eij =
(vi − v̄i)

>(vj − v̄j)√
(vi − v̄i)

>(vi − v̄i)
√
(vj − v̄j)

>(vj − v̄j)
(1)

where vi ∈ Rts, vi ∈ Vs or Vt, and it is the average time series signal from the i-th ROI.
ts is the number of time points of the ROI. In addition, the v̄i represents the mean vector
corresponding to vi.

Thus, for the graph, the adjacency matrix Ak ∈ RNk×Nk
will be defined as:

Ak
ij =

{
1, i = j∣∣eij
∣∣, otherwise

(2)
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where k represents source domain s or target domain t. At the same time, for simplicity
and convenience, we describe the feature matrix Xk ∈ RNk×Nk

, of each graph through the
correlation coefficient (i.e., Xk

ij = eij).
According to the traditional GCN model, given the input feature matrix Xk and

adjacency matrix Ak, the output of the l + 1-th hidden layer of the neural network H is:

H(l+1) = σ(D̃−
1
2 AkD̃−

1
2 H(l)W(l)) (3)

where D̃−
1
2 AkD̃−

1
2 is the normalization of the adjacency matrix Ak, and D̃ii = Σj Ak

ij. W is
the trainable weight matrix, that is, the parameters of the network; σ(·) is the activation
function, and the ReLU function is used here. H(l) represents the feature matrix of the layer
l network. l = 0, then H = Xk.

3.2.2. Node Attention Mechanism

For each graph, the potential impact of nodes/ROIs features learned from the GCN
module on related brain diseases is different. Therefore, this paper proposes a node
attention mechanism module to automatically mine the weight of nodes on the graph. See
Figure 2 for details. After learning the node representation module, we naturally obtain
new embedded representations of the source and target domains, that is, Hs ∈ RN×D from
the source domain graph and Ht ∈ RN×D from the target domain graph. At this point,
N = Ns = Nt, that is, the brains of subjects from different domains will be divided into the
same number of functional areas. In addition, D = Ds = Dt.

Then, max pooling is performed on Hk to generate the comprehensive representation
of nodes, i.e., Hk

max. We send the composite node representations to the two fully connected
layers respectively to automatically generate the node’s attention score, i.e., Hk

att, and it is
defined as:

Hk
att = σ(Wk Hk

max + Bk) (4)

where Bk is the bias term. The dimension of hidden layer of full connection layer is N,
and N. The sigmoid function as a nonlinear activation function is used to constrain each
element in the range [0, 1]. Among them, the ROIs that contribute more to the predicted
results for the model will be assigned more weight, while the brain regions that contribute
less will be assigned less weight.

Therefore, the final node representation is expressed as:

Zk = Hk
att � Hk + Hk (5)

where � represents the dot product operation, which weights the features of each ex-
tracted node.

3.2.3. Domain Adaptation Module

For cross-domain classification, we propose to jointly optimize the three losses to
reduce domain shift. Graph-level classification tasks typically use the readout operation
to extract graph representations [37,38]. This can lead to missing important information,
which can negatively affect feature alignment between domains. Therefore, we will choose
to use mean absolute error (MAE) loss (LM) and CORAL loss [39] (LA) respectively to
align features before and after the readout operation.

MAE Loss LM: Considering the reality, we believe that, for the same disease and
the same classification task, the node representation of the graph obtained from different
domains should have a certain consistency.

LM(Zs, Zt) =
1

N ×M× D

N

∑
i=1
|Zi

s − Zi
t| (6)

where M = Ms = Mt is the number of samples in source or target domains.
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CORAL Loss LA: First, readout graph-level representations of nodes using average
pooling and max pooling:

Gk =
1
N

N

∑
i=1

Zi
k‖max

i=1
N Zi

k (7)

where ‖ denotes concatenation.
Meanwhile, CORAL loss is defined as the covariance distance of the features of source

domain and target domain:

LA(Gs, Gt) =
1

4D2 ‖Cs − Ct‖2
F (8)

where ‖ · ‖ represents the Frobenius norm.
The covariance of source domain (Cs) or target domain (Ct) is:

Ck =
1

M− 1
(Gi

k>Gi
k − (I>Gi

k)>(I>Gi
k)

M
) (9)

where I is a column vector with all elements 1, and i ∈ {1, · · · , M}.
Cross Entropy Loss LC . Take the cross entropy loss as the source domain classifier

loss. Its objective is to minimize the classification loss of the source domain data when the
data label is intact:

LC( fC(Gs), Ys) = − 1
Ms

Ms

∑
i=1

Yi
slog(Ŷi

s
) (10)

where Yi
s represents the real category label of the i-th graph of source domain, and Ŷi

s

represents the label prediction result of the i-th graph of source domain. We set two fully
connected layers fC as the label classifier for the source domain.

Finally, we obtain the overall objective function of model A2GCN:

L = LC + γ1LM + γ2LA (11)

where γ1 and γ2 are hyperparameters used to balance the contribution weights of LC , LM
and LA.

3.3. Implementation

The proposed A2GCN model is implemented based on PyTorch platform. For fair
comparison, we will use the same epoch and learning rate for all involved domain adapta-
tion learning tasks, that is, the epoch is set to 150, the learning rate is 0.0001, and Adam is
used as the optimizer to optimize the model. This A2GCN is composed of two layers of
the graph convolution layer and two layers of the fully connected layer, and the output
feature dimensions are set as 32 → 32 → 64 → 2. The convolution layer is nonlinearly
activated using the ReLU function, and the dropout of the fully connected layer is 0.4. In
order to extract more discriminative pathological features and establish a cross-domain
classification model with good performance, we divided the model training into two stages.
According to Equation (11), we first pre-train the node representation learning and attention
mechanism module for 50 epochs. LC is set to 0. Both the hyperparameters γ1 and γ2 are
set to 1. In the second stage, the above modules and category classifiers are further jointly
trained for 100 epochs through Equation (11), while both the balance parameters γ1 and γ2
are set to 0.5.
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4. Experiments
4.1. Data

To evaluate the effectiveness of our proposed approach, we use NYU, UM, and
UCLA from the public Autism Brain Imaging Data Exchange (ABIDE) website (http://
fcon_1000.projects.nitrc.org/indi/abide/ (accessed on 20 September 2022)) to validate our
model. Meanwhile, the data from these three sites have also been used by Wang et al. [40].
Specifically, the NYU site included 164 subjects, including 71 with ASD and 93 with
HC. The UM site included 113 subjects, 48 with ASD, and 65 with HC. The UCLA site
included 74 subjects, 36 with ASD, and 38 with HC. We built the graph based on these
three sites. The phenotypic information of the subjects involved in this study is shown
in Table 2. The rs-fMRI data are from the Preprocessed Connectome Project initiative
(http://preprocessed-connectomes-project.org (accessed on 20 September 2022)).

Rs-fMRI data collected at different sites will be preprocessed by a widely accepted
pipeline (the Configurable Pipeline for the Analysis of Connectomes (C-PAC) [41]). The steps
of preprocessing mainly include: (1) slice timing, head motion correction, (2) nuisance sig-
nal regression (ventricular, cerebrospinal fluid (CSF), white matter signal, etc.), (3) template
spatial standardization of the Montreal Neurological Institute (MNI) [42], and (4) temporal
filtering. Then, we use the classical AAL atlas to divide each subject’s brain into 116 func-
tional regions and extract their average time series. Finally, each subject can generate a
corresponding symmetric functional connectivity matrix based on the extracted signals,
and the size of the matrix is 116× 116 (according to Equation (2)). The element of the matrix
represents the PC between paired ROIs.

Table 2. Demographic information of three sites (NYU, UM, UCLA) of the public ABIDE dataset.
Values are counted as mean ± standard deviation. M/F: Male/Female; ASD: Autism Spectrum
Disorder; HC: Healthy Controls.

Name of the site Category Gender (M/F) Age

NYU ASD (N = 71) 66/5 17.59± 7.84
HC (N = 93) 79/14 16.49± 7.68

UM ASD (N = 48) 43/5 17.05± 8.36
HC (N = 65) 56/9 17.35± 7.12

UCLA ASD (N = 36) 28/8 16.27± 6.48
HC (N = 38) 31/7 14.65± 4.97

4.2. Experimental Settings

In this study, we will establish a classification model through four cross-site prediction
tasks: NYU→UM, NYU→UCLA, UM→NYU, UM→UCLA. The dataset before the arrow
is defined as the source domain, and the dataset after the arrow is set as the target domain.
The source domain samples all contained complete category labels, while the target domain
subjects had no label information. Considering the limited number of samples, we will
use all source/target domain samples for training and testing all target domain subjects.
In order to make the result more reasonable, we repeat the training process 10 times,
and take the mean value and standard deviation of each algorithm as the final result.

In this study, we will set seven metrics to evaluate the performance of the model,
including: Accuracy (ACC), Precision (Pre), Recall (Rec), F1-Score (F1), Balanced accuracy
(BAC), Negative predictive value (NPV), and Area under curve (AUC). The greater the
value of these indexes, the better the classification performance of the model. These metrics
are calculated as follows: ACC = TP+TN

TP+FN+FP+TN , Pre = TP
TP+FP , Rec = TP

TP+FN , NPV = TN
TN+FN ,

BAC = TP
2(TP+FN)

+ TN
2(TN+FP) , F1 = 2Pre×Rec

Pre+Rec . The TN, TP, FN, and FP represent True Negative,
True Positive, False Negative, and False Positive, respectively.

http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/abide/
http://preprocessed-connectomes-project.org
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4.3. Competing Methods

In this work, we compare the proposed A2GCN with five single-domain models:
(1) Degree centrality (DC), (2) Feature fusion using betweenness centrality and degree
centrality (BD), (3) Feature fusion using betweenness centrality, degree centrality, and
closeness centrality (BDC), (4) Deep neural networks (DNN), and (5) Graph convolutional
networks (GCN). At the same time, we compare A2GCN with three state-of-the-art domain
adaptation methods: (1) Cross-domain model based on multi-layer perceptron (DNNC),
(2) Maximum Mean Discrepancy (MMD), and (3) Domain Adversarial Neural Network
(DANN). More details of these competing methods are introduced below.

(1) DC: This method measures the degree of nodes in the FCNs as the features of subjects.
Specifically, according to Equation (2), for each subject, we can generate FCN of the
size of 116× 116, where each element in FCN is the correlation coefficient between
node pairs calculated by PC. First, the degree centrality (DC) indexes of each node in
the FCN are calculated. Then, the model DC takes the 116× 1-dimensional feature
vector representation obtained by computing DC for each subject as the input of the
SVM classifier.

(2) BD: This method combines the betweenness centrality (BC) and DC of nodes as the
features of subjects. Based on Equation (2), the FCN of each subject is obtained,
and then the BC and DC of nodes are respectively calculated. The BC and DC are
concatenated into 232× 1-dimensional vectors according to rows, used as the input
of SVM.

(3) BDC: To mitigate the lack of information or noise pollution caused by manually
defined features, we further calculate the BC, DC, and closeness centrality (CC) of the
node of each subject FCN. The model BDC is further sequentially splicing the DC, BC,
and CC values of each subject to form a feature representation of 348× 1-dimensional
as the input of the SVM classifier.

(4) DNN: According to the classical practice, we take the FCN of the subject in the
upper triangle and pull it into a vector. In order to prevent dimensional disaster,
the principal component analysis (PCA) algorithm limits the dimension of variables
to 64 dimensions. Then, the features after dimensionality reduction are used as the
input of model DNN. The model DNN is composed of two fully connected layers,
and the output dimension is: 16→ 2.

(5) GCN: GCN can combine the topological structure of the graph to deeply mine the
potential information of nodes. Our A2GCN is inspired by GCN. Obviously, if we set
γ1 = 0, γ2 = 0, A2GCN will crash to GCN. Similar to our proposed A2GCN method,
first, we construct the source and target graphs, respectively, based on the FCNs of
the subjects. Then, based on the source graphs, the cross entropy loss is optimized
to train the classification model with good performance. Finally, the GCN model is
applied directly to the target graphs to make prediction. The model GCN consists of
two convolutional layers and two fully connected layers, and the output dimension is:
32→ 32→ 64→ 2.

(6) DNNC: We transform our A2GCN model feature extractor GCN into multi-layer
perceptron (MLP) to construct a simple cross-domain classification model. The model
inputs are the same as the settings for the DNN model above. The output dimension
of the network is set to 32 → 2. At the same time, add CORAL loss minimization
domain offset. The covariance between the sample features of the source domain and
the target domain is defined as CORAL loss. Meanwhile, CORAL loss can minimize
the domain offset without additional parameters. This method is basic and efficient,
and it is also one of the losses used in our A2GCN.

(7) MMD: The Maximum Mean Discrepancy (MMD) method aims to reduce differences
of the domain distribution by MMD. This deep transfer model uses the GCN as a
feature extractor. MAE loss and CORAL loss in our model are replaced by the MMD
loss [9]. Then, the two-layer MLP is used as a category classifier for MMD. The
number of neurons in the output layer of convolution layer and fully connected layer
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is consistent with our A2GCN method. The reference code (https://github.com/
jindongwang/transferlearning (accessed on 20 September 2022)) is publicly available.

(8) DANN: The Domain Adversarial Neural Network (DANN) [43] is a domain adaptive
method based on confrontational learning. The DANN method uses a gradient
inversion layer (GRL) as Qλ(x) = x with a reversal gradient ∂Qλ

∂x = −λI to train
a domain classifier. The adaptation parameter λ of GRL refers to [43,44]. Here, x
represents the representation of the extracted graph. The two-layer fully connected
layer is used as the domain classifier of DANN to establish the adversarial loss. The
hidden layer dimension is set to 64→ 2; the dropout is 0.4, and ReLU is responsible
for nonlinear activation. Then, the two-layer MLP is used as a category classifier for
DANN. Dimensions of the output layer of the convolution layer or fully connected
layer are consistent with A2GCN.

Note that the three conventional machine learning methods (i.e., DC, BD, and BDC)
and two deep learning methods (i.e., DNN and GCN) are single-domain approaches, while
the three deep learning methods (i.e., DNNC, MMD, and DANN) are state-of-the-art
domain adaptation methods for cross-domain classification.

4.4. Results

The quantitative results of the A2GCN and several competing methods in ASD vs. HC
classification will be reported in Table 3. We observe the following interesting findings.

Table 3. Results of different models in ASD vs. NC classification task based on rs-fMRI data in
NYU, UM, and UCLA sites. The data set preceding the arrow represents the source domain, and the
arrow is followed by the target domain to predict. Values are reported as mean ± standard deviation.
DC: Degree centrality; BD: Feature fusion using betweenness centrality and degree centrality; BDC:
Feature fusion using betweenness centrality, degree centrality, and closeness centrality; DNN: Deep
neural networks; GCN: Graph convolutional networks; DNNC: Cross-domain model based on multi-
layer perceptron; MMD: Maximum Mean Discrepancy; DANN: Domain Adversarial Neural Network;
ACC: Accuracy; Pre: Precision; Rec: Recall; F1: F1-Score; BAC: Balanced accuracy: NPV: Negative
predictive value; AUC: Area under curve. The bold values mean to highlight the experiment results.

Source→Target Method ACC (%) Pre (%) Rec (%) F1 (%) BAC (%) NPV (%) AUC (%)

NYU→UM

DC 53.54 ± 1.88 46.33 ± 0.25 54.60 ± 1.89 50.55 ± 9.32 54.17 ± 1.45 62.86 ± 4.04 54.60 ± 1.89
BD 56.64 ± 1.25 49.29 ± 1.01 58.17 ± 0.23 57.00 ± 0.90 58.09 ± 0.52 67.06 ± 0.54 58.17 ± 0.23
BDC 54.43 ± 1.87 47.48 ± 1.55 56.51 ± 2.12 56.17 ± 2.07 56.3 ± 2.02 65.54 ± 2.69 56.51 ± 2.12
DNN 58.85 ± 0.62 58.67 ± 1.60 58.78 ± 1.70 58.39 ± 1.17 58.78 ± 1.70 65.99 ± 2.73 51.72 ± 4.19
GCN 61.07 ± 1.25 60.65 ± 0.95 60.84 ± 0.89 60.61 ± 1.05 60.84 ± 0.89 67.49 ± 0.35 59.28 ± 0.02
DNNC 61.07 ± 1.25 61.36 ± 3.49 61.11 ± 3.59 60.27 ± 2.35 61.11 ± 3.59 69.10 ± 6.80 59.89 ± 9.31
MMD 66.82 ± 0.63 66.20 ± 0.69 66.04 ± 0.46 66.09 ± 0.45 66.12 ± 0.35 71.32 ± 0.16 65.77 ± 1.32
DANN 66.82 ± 0.63 66.72 ± 0.20 67.07 ± 0.16 66.56 ± 0.45 65.19 ± 2.51 70.61 ± 5.57 64.35 ± 0.84
A2GCN (Ours) 72.27 ± 0.51 71.94 ± 0.50 72.35 ± 0.52 71.97 ± 0.49 72.35 ± 0.52 78.23 ± 0.97 70.90 ± 1.53

NYU→UCLA

DC 58.79 ± 2.86 57.51 ± 2.76 58.77 ± 2.88 57.92 ± 3.33 58.78 ± 2.89 60.03 ± 3.02 58.77 ± 2.88
BD 56.08 ± 2.87 55.04 ± 2.97 56.02 ± 2.89 53.89 ± 3.47 56.00 ± 2.89 56.99 ± 2.81 56.02 ± 2.89
BDC 58.79 ± 0.95 57.74 ± 0.84 58.75 ± 0.97 57.34 ± 1.41 58.74 ± 0.98 59.75 ± 1.10 60.11 ± 0.96
DNN 60.14 ± 0.95 60.11 ± 0.96 60.05 ± 0.88 60.03 ± 0.85 60.05 ± 0.88 60.76 ± 0.32 59.83 ± 1.91
GCN 61.49 ± 0.95 61.50 ± 1.00 61.44 ± 1.09 61.40 ± 1.08 61.44 ± 1.09 62.44 ± 2.06 58.19 ± 1.76
DNNC 60.81 ± 3.82 60.88 ± 3.92 60.60 ± 3.83 60.46 ± 3.85 60.60 ± 3.83 60.47 ± 3.29 53.77 ± 3.98
MMD 66.89 ± 0.96 66.94 ± 0.85 66.92 ± 0.88 66.88 ± 0.94 66.92 ± 0.88 68.50 ± 0.11 64.51 ± 1.91
DANN 66.90 ± 0.95 67.14 ± 1.34 66.96 ± 1.14 66.82 ± 0.93 66.96 ± 1.14 69.28 ± 3.68 65.87 ± 0.52
A2GCN (Ours) 69.82 ± 1.56 70.09 ± 1.56 69.83 ± 1.56 69.71 ± 1.56 69.83 ± 1.56 71.38 ± 1.56 67.03 ± 1.56

UM→NYU

DC 53.66 ± 0.86 46.31 ± 1.41 52.66 ± 1.41 45.62 ± 3.76 52.65 ± 1.46 59.00 ± 1.41 52.66 ± 1.41
BD 57.02 ± 0.43 50.33 ± 0.46 56.45 ± 0.68 51.53 ± 1.66 56.52 ± 0.73 62.59 ± 0.89 56.46 ± 0.67
BDC 53.66 ± 0.86 47.23 ± 0.91 54.46 ± 1.27 53.06 ± 2.11 54.48 ± 1.24 61.70 ± 1.65 54.46 ± 1.27
DNN 59.15 ± 1.73 58.57 ± 1.74 58.65 ± 1.75 58.59 ± 1.75 58.65 ± 1.75 64.45 ± 1.58 55.49 ± 2.08
GCN 63.11 ± 0.43 62.96 ± 0.03 63.15 ± 0.09 62.83 ± 0.20 63.15 ± 0.09 69.27 ± 1.03 64.35 ± 0.24
DNNC 60.68 ± 1.29 59.99 ± 1.65 60.00 ± 1.85 59.95 ± 1.73 60.00 ± 1.85 65.49 ± 2.21 62.68 ± 3.57
MMD 66.16 ± 1.29 65.44 ± 1.34 65.08 ± 1.26 65.18 ± 1.27 65.08 ± 1.26 69.04 ± 0.94 66.18 ± 2.17
DANN 66.16 ± 0.43 65.59 ± 0.67 65.50 ± 1.09 65.47 ± 0.90 65.50 ± 1.09 70.14 ± 2.05 65.34 ± 0.69
A2GCN (Ours) 68.70 ± 0.70 68.73 ± 0.63 69.07 ± 0.65 68.56 ± 0.68 69.07 ± 0.65 75.52 ± 0.71 66.77 ± 0.43

UM→UCLA

DC 54.73 ± 0.95 53.81 ± 0.68 54.65 ± 1.00 51.00 ± 3.56 54.57 ± 1.09 55.48 ± 1.32 54.65 ± 1.00
BD 54.73 ± 0.96 53.28 ± 1.10 54.80 ± 0.86 55.03 ± 0.33 54.79 ± 0.88 56.32 ± 0.62 54.80 ± 0.86
BDC 56.08 ± 4.78 54.39 ± 4.40 56.21 ± 4.84 56.93 ± 5.09 56.18 ± 4.81 58.03 ± 5.28 56.21 ± 4.84
DNN 56.76 ± 3.83 56.79 ± 4.02 56.69 ± 4.09 56.47 ± 4.19 56.69 ± 4.09 58.16 ± 5.10 52.31 ± 1.39
GCN 61.49 ± 0.95 61.47 ± 0.93 61.44 ± 0.88 61.43 ± 0.88 61.44 ± 0.88 62.33 ± 0.24 58.52 ± 1.50
DNNC 60.14 ± 0.95 60.13 ± 0.96 60.05 ± 1.09 60.00 ± 1.14 60.05 ± 1.09 60.84 ± 1.87 46.50 ± 4.86
MMD 65.54 ± 0.96 65.54 ± 0.97 65.50 ± 1.03 65.49 ± 1.03 65.50 ± 1.03 66.29 ± 1.82 65.24 ± 1.60
DANN 65.54 ± 0.96 65.57 ± 0.93 65.57 ± 0.93 65.54 ± 0.95 65.57 ± 0.93 67.12 ± 0.64 61.26 ± 4.45
A2GCN (Ours) 70.61 ± 2.56 71.71 ± 3.42 70.65 ± 2.20 70.22 ± 2.23 70.52 ± 2.29 70.92 ± 3.09 71.29 ± 1.29

https://github.com/jindongwang/transferlearning
https://github.com/jindongwang/transferlearning
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(1) The four cross-domain classification models (i.e., DNNC, MMD, DANN, and A2GCN)
achieved better results in most cases compared with several single-domain classifi-
cation models (i.e., DC, BDC, DNN, and GCN). This means that the introduction of
domain adaptation learning module helps to enhance the classification performance
of the model, which may benefit from the transferable feature representation across
sites learned by the model.

(2) Graph-based (i.e., GCN, MMD, DANN, and A2GCN)) methods usually produce
better classification results than traditional classical methods based on manually
defined node features (i.e., DC, BD, and BDC) and network embeddings (i.e., DNN
and DNNC). Because these traditional methods only consider the characteristics
of nodes, however, those methods that use GCN as feature extractors can update
and aggregate the features of nodes on the graph end-to-end with the help of the
underlying topology information of FCNs, in order to learn more discriminative node
representation, which may be more beneficial for ASD auxiliary diagnosis.

(3) The experimental results of the proposed A2GCN consistently outperform all compet-
ing methods. This indicates that A2GCN can achieve effective domain adaptation and
reduce data distribution differences, thus improving the robustness of the model.

(4) Compared with three advanced cross-domain methods (i.e., DNNC, MMD, and
DANN), our proposed A2GCN method has a competitive advantage in various
domain adaptation tasks. This may be because our method adds node attention
mechanism modules, which can make intelligent use of different contributions of
brain regions. Meanwhile, our method adopts MAE loss and CORAL loss to align
different domains step by step. These operations can partially alleviate the negative
effects of noisy areas.

4.5. Ablation Study

The proposed A2GCN contains two key components, namely, node attention mecha-
nism module and domain adaptation module. To evaluate the contribution of these two
parts, we compare the proposed A2GCN with its three variants:

(1) A2GCN_A: Similar to the A2GCN method, firstly, the source graph and the target
graph are respectively constructed based on the subject’s FCNs. Then, the node
representation on the source graph is learned based on GCN. At the same time,
the node attention mechanism model mentioned in Section 3.2.2 is added to set
different weight values for different nodes/brain regions of the source graph. Then,
cross entropy is used to calculate the classification loss. Finally, the model trained in
the source domain is applied to the prediction of the target domain graph.

(2) A2GCN_M: First, based on the subject’s FCNs, the model constructs the source graph
and the target graph respectively. Then, according to the node representation learning
module in Section 3.2.1, the node features on the source graph and the target graph are
simultaneously learned based on GCN. Then, the node attention mechanism module
in Section 3.2.2 is added, and the weighted node features are used to calculate the
MAE loss between domains (domain adaptation module). Finally, the cross entropy is
used to calculate the classification loss.

(3) A2GCN_C: First, the model uses FCNs to construct source and target graphs. Like
A2GCN, this model learns the node features of different domains based on GCN
according to the node representation learning module in Section 3.2.1. Then, after the
readout operation, the CORAL loss (domain adaptation module) between domains is
calculated based on the extracted graph representation vector. The cross entropy is
used to calculate the classification loss of the source domain.

In Figure 3, we report the corresponding ACC and AUC values. As shown in Figure 3,
we can find that the performance of three variants A2GCN_A (without domain adaptation
module), A2GCN_M (with attention mechanism module and part of domain adaptation
module), and A2GCN_C (without domain attention mechanism module) are significantly
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degraded in the corresponding transfer learning task. In particular, A2GCN_A achieved
the worst performance in most cases. The underlying reason could be that attention
mechanisms play a role in extracting more discriminative features. In addition, it also
shows that using MAE loss and CORAL loss to align the learned features step by step
during training can reduce the data information loss caused by readout-related pooling
operations, thus significantly improving the robustness and transmission performance
of A2GCN. More results on the influence of parameters and model pre-training can be
found in Supplementary Materials.
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Figure 3. Ablation studies are performed to verify the effect of different components in the pro-
posed model. A2GCN_A (without domain adaptation module), A2GCN_M (with attention mecha-
nism module and part of domain adaptation module), and A2GCN_C (without domain attention
mechanism module) are three variations of our model. ACC: Accuracy; AUC: Area under curve.

5. Discussion
5.1. Visualization of Data Distribution

To visually demonstrate the features learned through the proposed A2GCN, we use
the t-SNE [45] tool to visualize the data distribution of different imaging sites before and
after domain adaptation. In Figure 4, the blue and red dots represent the source and target
domains, respectively. To visualize the regional heterogeneity before domain adaptation,
we flattened the upper triangle of the FCN matrix for each sample of each site. The vector
representation is obtained, which is further reduced to 64 dimensions by the PCA method
as the original representation of the sample. From Figure 4a, we can observe that there is
a significant domain shift between the distribution of the source domain and the target
domain. We use the t-SNE algorithm to visualize feature distribution of the source and
target domains after the feature extractor GCN in different cross-site classification tasks
(through A2GCN), with results reported in Figure 4b. In Figure 4b, red and blue dots are
closely clustered together. This means that the distributions of the node representations
of the two domains learned by our method are close, and the domain heterogeneity has
been substantially reduced. At the same time, we calculated the Frobenius norm of the
covariance (CF) between samples in the source domain and the target domain, which is used
to measure the difference of data distribution between different sites. It is observed that the
CF between different sites is significantly reduced after domain adaptation. These results
show that A2GCN can effectively extract transferable features and reduce domain shift.

5.2. Most Informative Brain Regions

One of the main focuses of this work is to use interpretable deep learning algorithms
to discover the underlying differences between ASD and HC subjects. An interesting
question is to identify the most informative brain regions for ASD detection. In the task
of “NYU→UM”, we randomly select 10 subjects from the UM site. We then extract the
features of these subjects after the attention mechanism module, select 19 brain regions
with strong correlation, and visualize them using BrainNet [46] tool, with results shown
in Figure 5. In Figure 5, the color of brain regions is randomly assigned, and the stick-like
connections between brain regions indicate strong FC between them. For ASD vs. HC
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classification, we find that the most informative brain regions include the hippocampus,
parahippocampal gyrus, putamen lentiform, and the vicinity of thalamus, which is also
consistent with previous studies [47,48]. It validates the potential application value of
our model in the discovery of rs-fMRI biomarkers for ASD identification, thus helping to
improve the interpretability of learning algorithms in automated brain disease detection.

5.3. Limitations and Future Work

Although our proposed A2GCN method has achieved good results in the prediction
of ASD, there is still challenging work to be considered in the future. First, in our current
work, only knowledge transfer between a single source domain and a target domain is
considered. It is also interesting to explore the shared features of multiple source domains
to reduce the heterogeneity of data and thus improve the learning performance of the
target domain. Second, the size of the training sample is relatively small. We hope to add
unlabeled samples from other public datasets to assist in pre-training the proposed network
in a semi-supervised learning manner, aiming to further improve model generalization
capability [49].

(a) Before domain adaptation

(b) After domain adaptation
CF: 0.0013 CF: 0.0094

CF: 0.0010 CF: 0.0004

CF: 0.0096

CF: 0.0002

Figure 4. Visualization of (a) the original data distribution before domain adaptation and (b) the data
distribution after adjustment through our proposed domain adaptation model for ABIDE data set.
The blue dots are from the source domain and the red dots are from the target domain. CF: Frobenius
norm of the covariance between the source and target domains.

Axial View Coronal ViewSagittal View

Figure 5. Visualization of the 19 brain regions generated by 10 randomly selected subjects from the
UM site (according to the results of A2GCN in the domain adaptation task of “NYU→UM”). Colors of
brain regions are randomly assigned, just for better visualization. The stick-like connections between
brain regions indicate strong functional connectivity between them.
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6. Conclusions

In this paper, we construct a multi-site unsupervised rs-fMRI domain adaptation
framework (A2GCN) with an attention mechanism for ASD diagnosis. The framework
automatically extracts rs-fMRI features from brain FCNs with the help of the GCN model.
The attention mechanism is used to explore the contribution of different brain regions to the
automatic detection of brain diseases and explore the interpretable features of brain regions.
In addition, our method explores mean absolute error and covariance-based constraints
to alleviate data distribution differences among imaging sites. We evaluate our proposed
method using rs-fMRI data from a real multi-site dataset (ABIDE). Experimental results
show that the A2GCN has significant advantages over several advanced methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12101413/s1, Figure S1: Classification performance by
the proposed model based on different parametric values. The abscissa represents the ratio of MAE
loss to CORAL loss (γ1:γ2) during model training; Figure S2: Impact of pre-training times on model
classification results. The abscissa represents the epoch values set during the pre-training process.

Author Contributions: Conceptualization, M.L.; methodology, Y.C.; software, Y.C.; investigation,
Y.C.; writing—original draft preparation, Y.C.; writing—review and editing, L.Q. and H.R.; supervi-
sion, M.L.; project administration, M.L. and L.Q. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used in this study are available from the corresponding author
on reasonable request.

Acknowledgments: Y.C, H.R., and L.Q. were partly supported by the National Natural Science Foun-
dation of China (Nos. 62176112, 61976110 and 11931008), the Taishan Scholar Program of Shandong
Province, and the Natural Science Foundation of Shandong Province (No. ZR202102270451).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Buckner, R.L.; Krienen, F.M.; Yeo, B.T. Opportunities and limitations of intrinsic functional connectivity MRI. Nat. Neurosci. 2013,

16, 832–837. [CrossRef] [PubMed]
2. McCarty, P.J.; Pines, A.R.; Sussman, B.L.; Wyckoff, S.N.; Jensen, A.; Bunch, R.; Boerwinkle, V.L.; Frye, R.E. Resting State Functional

Magnetic Resonance Imaging Elucidates Neurotransmitter Deficiency in Autism Spectrum Disorder. J. Pers. Med. 2021, 11, 969.
[CrossRef] [PubMed]

3. Subah, F.Z.; Deb, K.; Dhar, P.K.; Koshiba, T. A deep learning approach to predict Autism Spectrum Disorder using multisite
resting-state fMRI. Appl. Sci. 2021, 11, 3636. [CrossRef]

4. Walsh, M.J.; Wallace, G.L.; Gallegos, S.M.; Braden, B.B. Brain-based sex differences in autism spectrum disorder across the
lifespan: A systematic review of structural MRI, fMRI, and DTI findings. NeuroImage Clin. 2021, 31, 102719. [CrossRef] [PubMed]

5. Shrivastava, S.; Mishra, U.; Singh, N.; Chandra, A.; Verma, S. Control or autism-classification using convolutional neural networks
on functional MRI. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–6.

6. Niu, K.; Guo, J.; Pan, Y.; Gao, X.; Peng, X.; Li, N.; Li, H. Multichannel deep attention neural networks for the classification of
Autism Spectrum Disorder using neuroimaging and personal characteristic data. Complexity 2020, 2020. [CrossRef]

7. Yamashita, A.; Yahata, N.; Itahashi, T.; Lisi, G.; Yamada, T.; Ichikawa, N.; Takamura, M.; Yoshihara, Y.; Kunimatsu, A.; Okada, N.;
et al. Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into
sampling bias and measurement bias. PLoS Biol. 2019, 17, e3000042. [CrossRef]

8. Lee, J.; Kang, E.; Jeon, E.; Suk, H.I. Meta-modulation Network for Domain Generalization in Multi-site fMRI Classification. In
Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Virtual Event,
27 September–1 October 2021; Springer: Berlin, Germany, 2021; pp. 500–509.

9. Zhang, Y.; Liu, T.; Long, M.; Jordan, M. Bridging theory and algorithm for domain adaptation. In Proceedings of the International
Conference on Machine Learning (PMLR), Long Beach, CA, USA, 9–15 June 2019; pp. 7404–7413.

https://www.mdpi.com/article/10.3390/brainsci12101413/s1
https://www.mdpi.com/article/10.3390/brainsci12101413/s1
http://doi.org/10.1038/nn.3423
http://www.ncbi.nlm.nih.gov/pubmed/23799476
http://dx.doi.org/10.3390/jpm11100969
http://www.ncbi.nlm.nih.gov/pubmed/34683111
http://dx.doi.org/10.3390/app11083636
http://dx.doi.org/10.1016/j.nicl.2021.102719
http://www.ncbi.nlm.nih.gov/pubmed/34153690
http://dx.doi.org/10.1155/2020/1357853
http://dx.doi.org/10.1371/journal.pbio.3000042


Brain Sci. 2022, 12, 1413 15 of 16

10. Farahani, A.; Voghoei, S.; Rasheed, K.; Arabnia, H.R. A brief review of domain adaptation. Adv. Data Sci. Inf. Eng. 2021, 877–894.
[CrossRef]

11. You, K.; Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Universal domain adaptation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2720–2729.

12. Jiang, X.; Zhang, L.; Qiao, L.; Shen, D. Estimating functional connectivity networks via low-rank tensor approximation with
applications to MCI identification. IEEE Trans. Biomed. Eng. 2019, 67, 1912–1920. [CrossRef]

13. Xing, X.; Li, Q.; Wei, H.; Zhang, M.; Zhan, Y.; Zhou, X.S.; Xue, Z.; Shi, F. Dynamic spectral graph convolution networks with
assistant task training for early MCI diagnosis. In Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; Springer: Berlin, Germany, 2019; pp. 639–646.

14. Jie, B.; Wee, C.Y.; Shen, D.; Zhang, D. Hyper-connectivity of functional networks for brain disease diagnosis. Med. Image Anal.
2016, 32, 84–100. [CrossRef]

15. Zhang, Y.; Jiang, X.; Qiao, L.; Liu, M. Modularity-Guided Functional Brain Network Analysis for Early-Stage Dementia
Identification. Front. Neurosci. 2021, 15, 956. [CrossRef]

16. Zhang, D.; Huang, J.; Jie, B.; Du, J.; Tu, L.; Liu, M. Ordinal pattern: A new descriptor for brain connectivity networks. IEEE Trans.
Med. Imaging 2018, 37, 1711–1722. [CrossRef] [PubMed]

17. Niepert, M.; Ahmed, M.; Kutzkov, K. Learning convolutional neural networks for graphs. In Proceedings of the International
Conference on Machine Learning (PMLR), New York, NY, USA, 20–22 June 2016; pp. 2014–2023.

18. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
19. Anirudh, R.; Thiagarajan, J.J. Bootstrapping graph convolutional neural networks for Autism spectrum disorder classification.

In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 12–17 May 2019; pp. 3197–3201.

20. Cao, M.; Yang, M.; Qin, C.; Zhu, X.; Chen, Y.; Wang, J.; Liu, T. Using DeepGCN to identify the Autism spectrum disorder from
multi-site resting-state data. Biomed. Signal Process. Control 2021, 70, 103015. [CrossRef]

21. Yu, S.; Wang, S.; Xiao, X.; Cao, J.; Yue, G.; Liu, D.; Wang, T.; Xu, Y.; Lei, B. Multi-scale enhanced graph convolutional network for
early mild cognitive impairment detection. In Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention, Lima, Peru, 4–8 October 2020; Springer: Berlin, Germany, 2020; pp. 228–237.

22. Parisot, S.; Ktena, S.I.; Ferrante, E.; Lee, M.; Guerrero, R.; Glocker, B.; Rueckert, D. Disease Prediction Using Graph Convolutional
Networks: Application to Autism Spectrum Disorder and Alzheimer’s Disease. Med. Image Anal. 2018, 48, 117–130. [CrossRef]

23. Di Martino, A.; Yan, C.G.; Li, Q.; Denio, E.; Castellanos, F.X.; Alaerts, K.; Anderson, J.S.; Assaf, M.; Bookheimer, S.Y.; Dapretto, M.;
et al. The Autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in Autism.
Mol. Psychiatry 2014, 19, 659–667. [CrossRef]

24. Abu-El-Haija, S.; Kapoor, A.; Perozzi, B.; Lee, J. N-GCN: Multi-scale graph convolution for semi-supervised node classification.
In Proceedings of the Uncertainty In Artificial Intelligence (PMLR), Virtual, 3–6 August 2020; pp. 841–851.

25. Zhang, M.; Cui, Z.; Neumann, M.; Chen, Y. An end-to-end deep learning architecture for graph classification. In Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

26. Chen, Y.; Ma, G.; Yuan, C.; Li, B.; Zhang, H.; Wang, F.; Hu, W. Graph convolutional network with structure pooling and joint-wise
channel attention for action recognition. Pattern Recognit. 2020, 103, 107321. [CrossRef]

27. Ktena, S.I.; Parisot, S.; Ferrante, E.; Rajchl, M.; Lee, M.; Glocker, B.; Rueckert, D. Metric learning with spectral graph convolutions
on brain connectivity networks. NeuroImage 2018, 169, 431–442. [CrossRef]

28. Wang, L.; Li, K.; Hu, X.P. Graph convolutional network for fMRI analysis based on connectivity neighborhood. Netw. Neurosci.
2021, 5, 83–95. [CrossRef]

29. Yao, D.; Sui, J.; Yang, E.; Yap, P.T.; Shen, D.; Liu, M. Temporal-adaptive graph convolutional network for automated identification
of major depressive disorder using resting-state fMRI. In Proceedings of the International Workshop on Machine Learning in
Medical Imaging, Lima, Peru, 4 October 2020; Springer: Berlin, Germany, 2020; pp. 1–10.

30. Gadgil, S.; Zhao, Q.; Pfefferbaum, A.; Sullivan, E.V.; Adeli, E.; Pohl, K.M. Spatio-temporal graph convolution for resting-state
fMRI analysis. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention,
Lima, Peru, 4–8 October 2020; Springer: Berlin, Germany, 2020; pp. 528–538.

31. Csurka, G. A comprehensive survey on domain adaptation for visual applications. Domain Adapt. Comput. Vis. Appl. 2017, 1–35.
[CrossRef]

32. Guan, H.; Liu, Y.; Yang, E.; Yap, P.T.; Shen, D.; Liu, M. Multi-site MRI harmonization via attention-guided deep domain adaptation
for brain disorder identification. Med. Image Anal. 2021, 71, 102076. [CrossRef]

33. Guan, H.; Liu, M. Domain adaptation for medical image analysis: A survey. IEEE Trans. Biomed. Eng. 2021, 69, 1173–1185.
[CrossRef] [PubMed]

34. Wang, M.; Deng, W. Deep visual domain adaptation: A survey. Neurocomputing 2018, 312, 135–153. [CrossRef]
35. Ingalhalikar, M.; Shinde, S.; Karmarkar, A.; Rajan, A.; Rangaprakash, D.; Deshpande, G. Functional connectivity-based prediction

of Autism on site harmonized ABIDE dataset. IEEE Trans. Biomed. Eng. 2021, 68, 3628–3637. [CrossRef] [PubMed]
36. Zhang, J.; Liu, M.; Pan, Y.; Shen, D. Unsupervised conditional consensus adversarial network for brain disease identification with

structural MRI. In Proceedings of the International Workshop on Machine Learning in Medical Imaging, Shenzhen, China, 13–17
October 2019; Springer: Berlin, Germany, 2019; pp. 391–399.

http://dx.doi.org/10.1007/978-3-030-71704-9_65
http://dx.doi.org/10.1109/TBME.2019.2950712
http://dx.doi.org/10.1016/j.media.2016.03.003
http://dx.doi.org/10.3389/fnins.2021.720909
http://dx.doi.org/10.1109/TMI.2018.2798500
http://www.ncbi.nlm.nih.gov/pubmed/29969421
http://dx.doi.org/10.1016/j.bspc.2021.103015
http://dx.doi.org/10.1016/j.media.2018.06.001
http://dx.doi.org/10.1038/mp.2013.78
http://dx.doi.org/10.1016/j.patcog.2020.107321
http://dx.doi.org/10.1016/j.neuroimage.2017.12.052
http://dx.doi.org/10.1162/netn_a_00171
http://dx.doi.org/10.1007/978-3-319-58347-1_1
http://dx.doi.org/10.1016/j.media.2021.102076
http://dx.doi.org/10.1109/TBME.2021.3117407
http://www.ncbi.nlm.nih.gov/pubmed/34606445
http://dx.doi.org/10.1016/j.neucom.2018.05.083
http://dx.doi.org/10.1109/TBME.2021.3080259
http://www.ncbi.nlm.nih.gov/pubmed/33989150


Brain Sci. 2022, 12, 1413 16 of 16
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