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Abstract: Numerous studies have demonstrated that animal brains accurately infer whether mul-
tisensory stimuli are from a common source or separate sources. Previous work proposed that the
multisensory neurons in the dorsal medial superior temporal area (MST-d) serve as integration or
separation encoders determined by the tuning–response ratio. However, it remains unclear whether
MST-d neurons mainly take a sense input as a spatial coordinate reference for carrying out multisen-
sory integration or separation. Our experimental analysis shows that the preferred tuning response to
visual input is generally larger than vestibular according to the Macaque MST-d neuronal recordings.
This may be crucial to serving as the base of coordinate reference when the subject perceives moving
direction information from two senses. By constructing a flexible Monte-Carlo probabilistic sampling
(fMCS) model, we validate this hypothesis that the visual and vestibular cues are more likely to be
integrated into a visual-based coordinate rather than vestibular. Furthermore, the property of the
tuning gradient also affects decision-making regarding whether the cues should be integrated or
not. To a dominant modality, an effective decision is produced by a steep response-tuning gradient
of the corresponding neurons, while to a subordinate modality a steep tuning gradient produces
a rigid decision with a significant bias to either integration or separation. This work proposes
that the tuning response amplitude and tuning gradient jointly modulate which modality serves
as the base coordinate for the reference frame and the direction change with which modality is
decoded effectively.

Keywords: sensory integration and separation; cortical processing hierarchy; MST-d; causal inference

1. Introduction

The primate brain frequently combines multisensory information from different sen-
sory modalities, such as information of visual, vestibular, auditory, and haptic origin, to
improve the perception of the external world. Specifically, both visual and vestibular
information can be used to infer motion direction, and combining the two is crucial for
discriminating self-motion and object motion in a real-world situation. To achieve such
discrimination, the neural system integrates or separates multisensory inputs to attribute
information from different modalities to either a common source or two independent
sources [1,2]. Nevertheless, the mechanisms through which neurons implement multi-
sensory integration and separation have long been debated [3–11]. Although extensive
computational studies provide various perspectives, there is a general lack of evidence
from physiological records.
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On the behavioral level, many researchers have demonstrated that the human brain
adopts a discrimination strategy similar to the Bayesian approach [12–17], which makes
probabilistic inferences based on the disparity between modalities as well as the changes in
cue reliability. By representing the reliability as a prior distribution, the numerical fitting
of the Bayesian model provides convincing approximations to the decision probabilities
on the behavioral level. However, suffering from a gap between empirical results and
mathematical description, the Bayesian strategy faces the challenge of other non-Bayesian
strategies such as fixed inference, and even non-causal strategies such as forced fusion [18].
The inference strategy of brain multisensory processing remains elusive, mainly due to the
lack of physiological evidence and the resultant lack of parameter constraints.

Previous studies seek neuronal correlates of multisensory processing in the primate
dorsal medial superior temporal area (MST-d), which was a classical multisensory area
responding to both visual and vestibular modalities [19–21]. Gu et al. found that the
subtype of MST-d neurons (neurons preferring congruent and opposite stimuli directions)
showed tuning sensitivity change that was analogous to behavioral change [1]. The experi-
ments were designed to present visual and vestibular stimuli from the same direction on
the horizontal plane. Festch et al. introduced a small conflict between the two directions
(±4◦) and proposed that MST-d neurons could account for weighing cues according to
their relative reliabilities. Nevertheless, the MST-d neurons generally have large receptive
fields [22], which drew attention to the response property on the 360◦ horizontal plane.
Rideaux et al. trained an artificial network to perform causal inference and showed that a
feedforward network can estimate the visual-vestibular motion by reading out the activity
from neurons tuned to congruent and opposite directions [23]. WH Zhang proposed that
congruent neurons encode integration while opposite neurons encode separation from a
vector perspective, which covered the inference case when visual and vestibular directions
are opposite [8]. JW Zhang et al. seek a correlation between neuronal preference and
response property and proposed that the response strength ratio of MST-d neurons to
both modalities determined the neurons serving as integration or separation encoders in a
decision trial [24] and triggered the emergence of congruent and opposite neurons. The
decision trial was denoted as explicit inference by Acerbi et al. [18], deciding whether
the sensory cues originate from the same origin or separate origins. Nevertheless, the
strength ratio did not specify visual and vestibular modalities. It is previously reported
that the MST-d neurons generally present more significant tuning to visual modality than
vestibular [25], but little is known about how such response discrimination affects the
multisensory inference at a behavioral level, or whether the two modalities contribute to
the perception distinctively at all.

The contribution potentially determines whether one modality serves as the reference
frame, based on which the perception coordinates about self-motion are set up. During
integration, the reference frame also determines whether the perceived common direction
approximates closer to the visual modality or vestibular modality.

In this study, we seek to combine the physiological recordings and computational
models and explore the key topic: What is the functional difference between the visual
and vestibular signals during multisensory processing in MST-d? How does the response
distinction affect the decision-making of integration or separation? We adopt a biophysical
model that decides whether the senses should be integrated or separated. The model utilizes
physiological recording results and reveals the heterogeneity of visual and vestibular
contributions within MST-d.

2. Methods
2.1. Subjects and Surgery

Two male rhesus monkeys (Macaca mulatta) served as subjects. The general proce-
dures followed in this study have been described previously [26,27]. Each animal was
outfitted with a circular molded plastic ring anchored to the skull with titanium T-bolts
and dental acrylic. To monitor eye movements, a scleral search coil was implanted in
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each monkey. Animals were trained to fixate on a central target for fluid rewards using
operant conditioning.

2.2. Vestibular and Visual Stimuli

A 6-degree-of-freedom motion platform (MOOG 6DOF2000E; Moog, East Aurora,
NY, USA) was used to passively translate the animals along one of eight directions in
the horizontal plane, spaced 45◦ apart. A tangent screen was affixed to the front surface
of the field coil frame and visual stimuli were projected onto it by a three-chip digital
light projector (Mirage 2000; Christie Digital Systems, Cypress, CA, USA). The screen
measured 60 × 60 cm and was mounted 30 cm in front of the monkey, thus subtending
~90◦ × 90◦. The visual stimuli simulated translational movement along the same eight
directions through a three-dimensional cloud of stars. Each “star” was a triangle that
measured 0.15 cm × 0.15 cm; the cloud measured 100 cm wide by 100 cm tall by 40 cm
deep and had a star density of 0.01 per cm3. To provide stereoscopic cues, the cloud was
rendered as a red-green anaglyph and viewed through custom red-green goggles. The
optic flow field contained naturalistic cues mimicking the translation of the observer in the
horizontal plane, including motion parallax, size variations, and binocular disparity.

2.3. Electrophysiological Recordings

We recorded action potentials extracellularly from both hemispheres in each of the
two monkeys. For each recording session, a tungsten microelectrode was passed through
a transdural guide tube and advanced using a micromanipulator. An amplifier, an eight-
pole bandpass filter (400–5000 Hz), and a dual voltage-time window discriminator (BAK
Electronics, Mount Airy, MD, USA) were used to isolate action potentials from single
neurons. Action potential times and behavioral events were recorded with 1 ms accuracy
by a computer. Eye coil signals were processed with a low-pass filter and sampled at
250 Hz.

Magnetic resonance imaging (MRI) scans and Caret software analyses along with
physiological criteria were used to guide electrode penetration into the MST-d area [25].
Neurons were isolated while a large field of flickering dots was presented. In some
experiments, we further advanced the electrode tip into the lower bank of the superior
temporal sulcus to verify the presence of neurons with response characteristics typical of
the MT [25]. Receptive field locations changed as expected across guide tube locations
based on the known topography of the MT [25].

2.4. Experimental Protocol

We measured neural responses to eight heading directions evenly spaced every 45◦

in the horizontal plane. Neurons were tested under three experimental conditions. (1) In
vestibular trials, the monkeys were required to maintain fixation on a central dot on an
otherwise blank screen while being translated in one of the eight directions. (2) In visual
trials, the monkeys were presented with optic flow simulating self-motion (in the same
eight directions), while the platform remained stationary. (3) In bimodal trials, the monkeys
experienced both translational motion and optic flow. We paired all eight vestibular
headings with all eight visual headings for a total of 64 bimodal stimuli. Eight of these
64 combinations were strictly congruent, meaning that the visual and vestibular cues
simulated the same heading. The remaining 56 cases had conflicting cue stimuli. This
relative proportion of strictly congruent and conflicting stimuli was adopted to characterize
the neuronal combination rule. Each translation followed a Gaussian velocity profile. It had
a duration of 2 s, an amplitude of 13 cm, a peak velocity of 30 cm/s, and a peak acceleration
of 0.1× g (981 cm/s2).

These three stimulus conditions were interleaved randomly along with blank trials,
which included neither translation nor optic flow. Ideally, five repetitions of each unique
stimulus were collected for a total of 405 trials. Experiments with fewer than three rep-
etitions were excluded from the analysis. When isolation remained satisfactory, we ran
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additional blocks of trials with the coherence of the visual stimulus reduced to 50% and/or
25%. Motion coherence was lowered by randomly relocating a percentage of the dots on
every subsequent video frame. For example, we randomly selected one-quarter of the dots
in every frame at 25% coherence and updated their positions to new positions consistent
with the simulated motion, while the other three-quarters of the dots were plotted at new,
random locations within the 3D cloud. Each block of trials consisted of both unimodal
and bimodal stimuli at the corresponding coherence level. When a cell was tested at multi-
ple coherence levels, both unimodal vestibular tuning and unimodal visual tuning were
independently assessed in each block.

Trials were initiated by displaying a 0.2◦ × 0.2◦ fixation target on the screen. The
monkeys were required to fixate on the target for 200 ms before the stimulus was presented
and to maintain fixation within a 3◦ × 3◦ window to receive a liquid reward. Trials in
which the monkeys broke fixation were aborted and discarded.

2.5. Data Analysis

The neural responses were binned in 100-ms time windows. Mean neural responses
were averaged from 5 trials, and the units of measurement were spikes per second. The
outliers in the 5 trials were removed, and the mean response was averaged from the
remaining 4 trials. Using MATLAB (MathWorks, Natick, MA, USA), we chose the window
of 750 ms to 1250 ms to select valid data. We considered a neuron to have discriminative
tuning properties to one specific stimulus modality if the maximum response was 5 spikes/s
more than the minimum response of the same curve. Tuning curve symmetry was not
considered. Neurons that failed to meet this requirement for either the visual or the
vestibular unisensory condition were considered unisensory-tuned neurons or poorly
tuned neurons and removed from further analysis. Then, we computed the response
ratio based on the visual and vestibular unisensory tuning curves of that neuron in the
same time window. A threshold of 1.6 was chosen to discriminate between balanced
and imbalanced data. We analyzed the tuning curve in the time window from 900 ms
to 1250 ms, which corresponds to the maximum movement speed and maximum neural
response. The window parameters were first scanned and then selected comprehensively
to show the discrimination of the integration probability Pint between the balanced and
imbalanced neurons and to be physiologically plausible.

The group ∆θ distribution was rectified by doubling the probability at 0◦ and 180◦,
while the probabilities in other directions remained the same. This procedure was followed
because of the experimental protocol in which directions were binned in 45◦ intervals; a 0◦

preference encompassed preferences from −22.5◦ to +22.5◦, and a 180◦ preference encom-
passed preferences from 167.5◦ to 202.5◦. However, each of the other preference bins was
represented twice because both sides were included (for example, a ∆θ of 45◦ encompassed
directions from 22.5◦ to 67.5◦ and from −22.5◦ to −67.5◦). To align the widths of the
probability bins, the data counted at 0◦, and 180◦ were included twice.

2.6. Multisensory Tuning Curves Averaging

The multisensory tuning curve denoted as fbal and fimbal in balanced and imbalanced
groups each were direction and modality averaged. The single maximal response in the
two-dimensional multisensory response grid is first selected as the maximal response in
fbal and fimbal

(
Rmax

mul = max(R(θvis,mul , θvis,mul))
)
. The other responses were computed as

the averaged response of those with the same relative distance (∆θrel) with the maximal
one. For simplicity, we considered R(θvis,mul + ∆θrel , θvis,mul + ∆θrel) as same distant as
R(θvis,mul + ∆θrel , θvis,mul) and (θvis,mul , θvis,mul + ∆θrel), thus the averaging is square-wise
centered by the maximal response.

2.7. Bayesian Modeling

We adopted Bayesian optimal inference strategy as proposed in [17]. Here we explain
the theory briefly. The strategy determines whether the sensory measurements Xvis and
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Xves originates from a common source (C = 1) or separate sources (C = 2). If there is a
common source, draw a position s from a normal prior distribution N

(
0, σp

)
, which stands

for a normal distribution with 0 mean and standard deviation σp. Since its a common source,
we denote Svis = Sves = Scommon. If there are two sources, then the position Svis and Sves
are independent of N

(
0, σp

)
. We assumed that visual and vestibular signals are corrupted

by gaussian noise with standard deviation σvis and σves. Thus, the sensory measurements
attribute to Xvis ∼ N (Svis, σvis) and Xves ∼ N (Sves, σves). The noise is independent across
modalities. Given the statistical parameters, the posterior likelihood of a common source is
expressed as,

p(C = 1|Xvis, Xves) =
p(Xvis, Xves|C = 1)p(C = 1)

p(Xvis, Xves)
(1)

According to Bayes theorem,

p(C = 1|Xvis, Xves) =
p(Xvis, Xves|C = 1)p(C = 1)

p(Xvis, Xves|C = 1)pcommon + (Xvis, Xves|C = 2)(1− pcommon)

To p(Xvis, Xves|C = 1),

p(Xvis, Xves|C = 1) =
∫

p(Xvis, Xves|s)p(s)ds (2)

Based on conditional independence hypothesis,∫
p(Xvis, Xves|s)p(s)ds =

∫
p(Xvis|s)p(Xves|s)p(s)ds (3)

All the factors are Gaussians, then we obtain the analytical solution:

p(Xvis, Xves|C = 1) = 1
2π
√

σ2
visσ2

p+σ2
vesσ2

p+σ2
visσ2

ves

exp[− 1
2
(Xvis−Xves)

2σ2
p+(Xves−µp)

2
σ2

vis+(Xvis−µp)
2
σ2

ves

σ2
visσ2

p+σ2
vesσ2

p+σ2
visσ2

ves
]

(4)

where µp = 0 is the mean of prior.
Similarly, to p(Xvis, Xves|C = 2),

p(Xvis, Xves|C = 2) =
x

p(Xvis, Xves|Svis, Sves)p(Svis, Sves)dSvisdSves (5)

We can derive the analytical solution as,

p(Xvis, Xves|C = 2) =
1

2π

√(
σ2

vis + σ2
p

)(
σ2

ves + σ2
p

) exp[−1
2
(

(
Xvis − µp

)2

σ2
vis + σ2

p
+

(
Xves − µp

)2

σ2
ves + σ2

p
)] (6)

To reach a binary decision (C = 1 or C = 2), we assume an optimal Bayesian observer
that reports a common source (C = 1) when p(C = 1|Xvis, Xves) > 0.5, and vice versa.

In summary, the generative Bayesian strategy is featured by free parameters σp,
σvis, σves and the prior pcommon. We assume that σvis = σves, reducing the free param-
eters to 3. The external cue disparity condition is simulated by the hyper-parameter
0◦ ≤ |Svis − Sves| ≤ 180◦. The fitting of fMCS model follows the least-squares estimate (LSE).

3. Results
3.1. Quantification of MST-d Neuronal Reliability Weightings Based on Tuning Curves

We began with experimental data analysis. The dataset includes physiological record-
ings of 158 MST-d neurons (as in [24]). In the experiments, monkeys were trained to
actively perceive visual and vestibular stimuli with various directions (45◦ intervals) on
the horizontal plane but were not required to give behavioral reports. Each neuron was
recorded in three conditions: the visual and vestibular unisensory stimulus conditions
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and the visual-and-vestibular multisensory stimuli condition. Previous work proposed
that the response balance between the two unisensory conditions determined neuronal
function during the inference [24]. In this work, we similarly categorize the dataset as
balanced and imbalanced neurons are discriminated by a ratio threshold of 1.6, which
specifies only the balance between the dominant and subordinate unisensory responses and
does not determine the visual or vestibular origin. The ratio in this work slightly deviates
from previous work (1.7 in [24]) in choosing a larger time window, rendering the neuronal
activity more moderate,

r =
max

(
Rmax

vis , Rmax
ves
)

min
(

Rmax
vis , Rmax

ves
) (7)

where r is the response ratio, and Rmax
vis and Rmax

ves are the maximal values of preferred tuning
curves of MST neurons to the visual and vestibular uni-sensory inputs.

Rmax
vis = max[ f0(θvis)] (8)

Rmax
ves = max[ f0(θves)] (9)

where θvis and θves represent the visual and vestibular input directions respectively, and
f0 is the neuronal spatial response function. As defined, it is obvious that the balanced
neurons respond to both modalities with approximately equal amplitude (1~1.6) and the
imbalanced neurons are characterized by the dominance of one modality, i.e., r ≥ 1.6
(Figure 1A; note that the maximal responses are shifted to align at 0 degrees).
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Figure 1. Visual and vestibular response distinction in balanced and imbalanced MST-d neurons.
(A) Averaged tuning curves of balanced (top) and imbalanced (bottom) neurons in the monkey brain
dorsal medial superior temporal area (MST-d). Black solid lines denote the curves corresponding
to the modality of max

(
Rmax

vis , Rmax
ves
)
, and black dashed lines denote the curves corresponding to the

modality of min
(

Rmax
vis , Rmax

ves
)
. Gold solid lines denote the multisensory curve, which is direction-

averaged and modality-averaged. Error bars denote the mean standard error. (B) Comparison of
the unisensory and multisensory maximal fire-rate amplitudes of balanced (top) and imbalanced
(bottom) neurons. Blue: visual-dominant (Rmax

vis >Rmax
ves ). Red: vestibular-dominant (Rmax

vis <Rmax
ves ).

Each circle denotes a neuron. The dominance is determined by the unisensory responses. (C) Mean
dynamics in the time domain for MST-d visual-dominant (blue) and vestibular-dominant (red)
neurons. Each circle denotes the averaged response of corresponding neuron group at a particular
time step. The area indicated by the two-headed arrow is the time window in which the averaged
responses are computed.

We further examined the multisensory condition and then compared the responses of
these two types of neurons with the unisensory condition. When both stimuli are presented
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simultaneously as a multisensory condition, the response is a function of both the visual
and vestibular directions,

Rmulti = fmulti(θvis, θves) (10)

Intuitively, the responses formed a two-dimensional grid along the two modalities.
To unify the dimension of the tuning curves, the multisensory responses were averaged
based on the spatial relative distance from the single maximal response (Rmax

multi), and the
averaged multisensory curves are presented in Figure 1A (gold lines). It is clear that
the multisensory condition generally enhanced the responses of the balanced neurons
(df = 70, p = 5.30 × 10−16, paired t-test, mean response gain = 26%), but the response from
the imbalanced neurons was less enhanced (df = 55, p = 0.018, paired t-test, mean response
gain = 8%).

Figure 1B demonstrates max
(

Rmax
vis , Rmax

ves
)

versus Rmax
multi in each neuron (top: balanced

neurons, bottom: imbalanced neurons). Neurons with visual and vestibular unisensory
dominance are presented with different colors. In balanced neurons, the visual and vestibu-
lar response distributions were not discriminated in either condition, suggesting that the vi-
sual and vestibular modalities share equal weights or contributions (Uni-sensory: p = 0.79,
df = 67. Multisensory: p = 0.70, df = 67, two-sample t-test). However, the imbalanced
neurons showed clear discrimination: both the unisensory and multisensory maximal re-
sponses of visual-dominant neurons (Rmax

vis > Rmax
ves ) exceeded those of vestibular-dominant

neurons (Rmax
ves > Rmax

vis ) (Unisensory: p = 0.0086, df = 52. Multisensory: p = 0.0017, df = 52,
two-sample t-test). Figure 1C shows in the time domain that the visual-dominant neurons
generally respond more strongly than the vestibular-dominant neurons after stimulus
onset (time = 0 s), suggesting an overall dominance of the visual modality in MST-d im-
balanced neurons. Assuming that the response amplitude indicates modality weight in
the psychophysical process, the visual information thus has greater potential to outweigh
the vestibular information during the process of neural decision-making and alter the
decision-making to present a bias towards visual information. In the next section, we
validate this hypothesis by simulating decision-making with a biophysical model.

3.2. Balanced and Imbalanced MST-d Neurons Comprise Encoding Bases

Our model is a functional Monte-Carlo sampling (fMCS) model, using a plausible
biophysical process to determine whether to integrate or separate the visual and vestibular
external cues based on the balanced and imbalanced neuronal responses. As presented
in Figure 2A, the fMCS model is mainly composed of a sampling module and a decision
module (one decision neuron). The sampling module randomly chooses nbal and nimbal
neurons with a preference according to the probability distribution, which is observed from
the data (Figure 2A left). Approximated to the data observations (nbal = 71, nimbal = 56),
nbal : nimbal in the MCS model is set to 9:7 (72:56). To find a minimal requirement for
reaching effective decisions, we set the numbers as 9 and 7. In previous works, we discussed
that when the ratio does not meet this standard (for example, 1:1 or 1:2), the prior will
deviate from 0.5 [24].

The neuronal preference determines when the neuron responds maximally (the peak
response shown at 0◦ in Figure 1A) and characterizes how the neuron responds to specific
external inputs. For simplicity, only the preference for disparity (∆θ

pre f
multi) is considered, and

the absolute direction is omitted.[
θ

pre f
vis,multi, θ

pre f
ves,multi

]
= argmax(Rmulti) (11)

∆θ
pre f
multi = min(

∣∣∣θpre f
vis,multi − θ

pre f
ves,multi

∣∣∣, 360◦ −
∣∣∣θpre f

vis,multi − θ
pre f
ves,multi

∣∣∣) (12)
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vestibular-dominant neuronal response curves are presented in the bottom side panel (red curve). 

The neuronal preference determines when the neuron responds maximally (the peak 
response shown at 0° in Figure 1A) and characterizes how the neuron responds to specific 
external inputs. For simplicity, only the preference for disparity (∆𝜃 ) is considered, 
and the absolute direction is omitted.  𝜃 , , 𝜃 , = argmax(𝑅 )  (11)

∆𝜃 = min ( 𝜃 , − 𝜃 , , 360° − 𝜃 , − 𝜃 , )  (12)

Figure 2. Functional Monte-Carlo sampling model that indicates the distinct roles of visual and
vestibular neurons during decision-making. (A) Schematics of the MCS model for monkey MST-d.
The model input is the stimulus disparity (∆θcue). The neuronal preference is sampled from each
distribution of balanced and imbalanced groups and transformed into the fire rate by a response
function ( f ). The decision of integration or separation is reached by comparing the sampled group
response from balanced and imbalanced neurons. (B) Probabilistic decision functions produced by
the MCS model (circles) and fitted by the Bayesian model (solid curves). The decision probability p
of whether to integrate the cues (reporting cues from the same source) is a function of the external
cue disparity (∆θcue). The side panel demonstrates the averaged response functions in the simulation,
which are shared by all sampled neurons. (C) The decision by the fMCS model with visual-dominant
imbalanced neurons only (top) or vestibular-dominant imbalanced neurons only (bottom). The
visual-dominant neuronal response curves are presented in the top side panel (blue curve) and the
vestibular-dominant neuronal response curves are presented in the bottom side panel (red curve).

By definition, ∆θ
pre f
multi ranges from 0◦ to 180◦. The external inputs take the form

of disparity as well, denoted as ∆θcue (0◦ ≤ ∆θ′ ≤ 180◦). When ∆θcue is unaligned with
∆θ

pre f
multi, the neuron response is weaker than the maximal response. In this case, the response

is a function of the relative disparity ∆θ′,

∆θ′ =
∣∣∣∆θcue − ∆θ

pre f
multi

∣∣∣ (13)

By averaging the data, the response under specific inputs is further quantified by the
averaged multisensory tuning curves fbal and fimbal , which are also data derived (Figure 2B
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side panel, same as the gold lines in Figure 1A). fbal and fimbal are direction-averaged and
modality-averaged.

Rbal = fbal(∆θ′) (14)

Rimbal = fimbal(∆θ′) (15)

For example, if ∆θcue is 30◦, the neurons with ∆θ
pre f
multi=30◦ show the maximal re-

sponse because f (
∣∣∣∆θcue − ∆θ

pre f
multi

∣∣∣) = f (∆θ′ = 0◦) = Rmax
multi. However, the neurons with

∆θ
pre f
multi=180◦ have a low response because f (∆θ′ = 150◦), which assigns a low response

according to the curve. Different neurons respond distinctively according to Equations
(14) and (15) because of different preferences. Therefore, sampling preferences represent
sampling the response of a particular MST-d neuron, which is attributed to the various
neuronal activation thresholds in biophysical conditions.

After sampling, a hypothetical decision neuron (decision module) receives the summed
response outputs of the balanced and imbalanced MST-d groups (Rtot

bal and Rtot
imbal) and

decodes the source nature (∅) by comparing response amplitudes. Note that the balanced
neurons generally serve as the separation basis, while the imbalanced neurons generally
serve as the integration basis [24]. The growing imbalance of the responses between the
two modalities pushed the neuron to have a single representation of the external cues. If
the balanced group responds more strongly, then the decision separates the modalities and
attributes the inputs to separate sources (∅(common source) = 0). Otherwise, they are
attributed to a common source (∅(common source) = 1). The decision-making process is
described as follows.

Rtot
bal =

nbal

∑
i=1

Rbal,i (16)

Rtot
imbal =

nimbal

∑
j=1

Rimbal,j (17)

{
∅(common source) = 0 i f Rtot

bal > Rtot
imbal

∅(common source) = 1 i f Rtot
bal ≤ Rtot

imbal
(18)

Rbal,i denotes the response from the ith sampled balanced neuron (Equation (14)), and
Rimbal,j denotes the jth sampled imbalanced neuron (Equation (15)). In conclusion, the input
to the fMCS model is the hyper-parameter ∆θcue (0◦ ≤ ∆θcue ≤ 180◦) representing the
external cue disparity. The output of each decision trial is either integration or separation
and the decisions are repeated for 100,000 trials to obtain the probability of reporting a
common source (pint = nint/

(
nint + nsep

)
).

As presented in Figure 2B, the fMCS model generated decision functions with a reverse
sigmoidal shape, which had a high similarity to the behavioral results [18], especially in
that the decision was prone to integrate at a small cue disparity and separate at a large cue
disparity. Critically, the decision in any cue disparity condition was not determined but
probabilistic due to the sampling nature.

We compared the decision function with the classical Bayesian causal inference
strategy [17]. The Bayesian strategy fit closely with the fMCS decisions and further re-
vealed that the best-fit prior was 0.51. Since we stated previously that imbalanced neurons
with visual dominance have a higher response than those with vestibular dominance, it is
evident that visual and vestibular dominance contribute to decisions differently. In the form
of an averaged curve (Figure 2C, side panel), the visual-dominant imbalanced neurons
responded with 73.55 spikes/s on average, while the vestibular-dominant imbalanced
neurons responded with 50.45 spikes/s. Compared with the averaged balanced neuronal
response (52.61 spikes/s), the visual-dominant neurons had an advantage in triggering
an integration decision, while the vestibular-dominant neurons were subordinate to the
balanced neurons and were prone to resulting in a separation decision. This was further
validated by the fMCS model, which showed that the integration probability (p) was biased
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toward 1 if the fMCS model only contained visual-dominant neurons in the imbalanced
group (Figure 2C, top) but biased toward 0 with vestibular-dominant imbalanced neurons
only (Figure 2C, bottom). The classical Bayesian strategy predicted that the former case
would be matched with an integration prior of 0.83, while the latter would be matched
with 0.34.

3.3. Discriminated Multisensory Tuning of Visual and Vestibular Modalities

From the analysis above, we conclude that the response amplitude is crucial to the
final decision. Despite the distinction between the visual and vestibular dominance of
the imbalanced neurons, the response function of each neuron was modality-averaged in
the previous section. However, in realistic multisensory tuning, this may not be the case.
As proposed previously, multisensory tuning is a two-dimensional grid (exemplified in
Figure 3A), one dimension of which is the visual input direction and the other of which is the
vestibular direction. The tuning on both dimensions may have different slopes (gradients),
which determine the neuronal response at non-preferred inputs. A steep tuning gradient
indicates that the neuron is more sensitive to the change in one modality [1] and vice versa.
To study the modality-specific gradients individually, we denote the multisensory visual
tuning curve (Figure 3B, black solid line) as

Rvis,multi = fmulti(θvis,multi

∣∣∣θpre f
ves,multi) (19)

where θ
pre f
ves,multi is the preferred vestibular direction correlated with multisensory maximal

response Rmax
multi and θvis,multi is the varying visual direction. Similarly, the multisensory

vestibular curve (Figure 3B, black dashed line) is denoted as

Rves,multi = fmulti(θves,multi

∣∣∣θpre f
vis,multi) (20)

For each neuron, the multisensory visual or vestibular tuning curves intersect at Rmax
multi.

The responses at θ
pre f
multi ± θ (0◦ ≤ θ ≤ 180◦) are averaged to obtain symmetric curves. The

modality-specific tuning curves are further averaged across neurons in the same group.
Figure 3C shows that the neurons were tuned more steeply to the visual modality than
the vestibular modality in the balanced group, but the tuning gradients were proximate in
general. In the imbalanced group, the visual-dominant neurons had a steep tuning gradient
to the visual modality, while the responses to the vestibular modality were slightly tuned
(Figure 3D,E). This suggests that, when the vestibular input deviates from the preference,
the response remains constrained by the visual input. We simulated decision-making with
the averaged balanced neurons as before but replaced the visual-dominant imbalanced
neuronal tuning curve with the visual curve in Figure 3E. This is equivalent to simulating
an external disparity (∆θcue) with a visual-direction change only. Figure 3F shows that the
visual direction change altered the decision from integration to separation following the
growing disparity with the vestibular direction. This suggests that the decoded tuning of
the visual modality is effective in representing external cue changes. The classical Bayesian
strategy determined the best-fit prior to be 0.64, which is relatively close to a flat prior.
However, when replacing the tuning curve with the vestibular curve in Figure 3E, the
decision is robust integration across the vestibular direction change, in which case the
Bayesian prior is obviously 1.
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Figure 3. Distinct multisensory visual and vestibular tuning affects the decision. (A) Multisensory
tuning grid for a balanced neuron example. (B) The 2-dimensional contour of the response grid

in A. The black solid line denotes fmulti(θvis,multi

∣∣∣θpre f
ves,multi) , which is the multisensory visual curve,

and the black dashed line denotes fmulti(θves,multi

∣∣∣θpre f
vis,multi) , which is the multisensory vestibular

curve. The two curves intersect at Rmax
multi. (C) Visual (blue) and vestibular (red) multisensory response

curves for balanced neurons, n = 71. The curves are averaged to be symmetric. (D) Multisensory
tuning grid for a visual-dominant imbalanced neuron example. (E) Averaged multisensory curve of
visual-dominant imbalanced neurons, n = 32. (F) The decision inference determined by the fMCS
model, with the averaged balanced curve as in Figure 2 and the visual (blue) and vestibular (red)
curves of the visual-dominant imbalanced neurons. (G–I) Same as (D–F), for vestibular-dominant
imbalanced neurons.

Now let us focus on the vestibular-dominant imbalanced neurons. Compared with
the visual-dominant imbalanced neurons, vestibular dominance did not lead to significant
sharp vestibular tuning and blunt visual tuning; instead, the two curves presented close
tuning gradients similar to those of the balanced neurons (Figure 3G–H), except that the
vestibular tuning curve was slightly steeper than that of visual tuning. The decisions were
simulated by an fMCS model similar to visual-dominance cases. Surprisingly, we found
that such dominance did not produce an advantageous decision decoding to a vestibular
direction change (Figure 3I). Rather, more flexible decisions were made with visual direction
change again. The Bayesian strategy captured both modality changes with priors smaller
than 0.5 (visual change: prior = 0.363, vestibular change: prior = 0.360). In conclusion, the
vestibular modality was subordinate to the visual modality in MST-d both at the reference
frame level and the effective decoding level.
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4. Discussion

This work demonstrated the computational role of distinct MST neuronal response
properties to either visual or vestibular inputs in the decision by using a response-based
computational framework.

We chose the functional Monte-Carlo sampling method in the framework because
the sampling of response provides a concrete neuronal implementation to represent the
randomization of perceiving the external world state. It was proposed that the probability
of neuronal spiking is indeed computing the posterior probability of perception through
response sampling [28–31]. As the main encoding components, different probability distri-
butions of preference were observed empirically but the explicit mathematical description
of the distribution was not accessible. By enough repetitions, the fMCS model carries out
random sampling to approximate the probability density function, thus estimating the
decision inference probability of the neural network. In our fMCS model, we sampled the
neuronal response rate to represent the randomization of neuron activation as well as the
perceived multisensory state of this neuronal unit.

The analysis from the Bayesian perspective predicted well the results from the fMCS
model, indicating that the multisensory computation in the physical cortex implemented
causal inference with a nearly flat prior. Decision-making with flat prior means that the
mature MST-d circuit is neither biased towards integration nor separation, which is most
efficient for the neural system to address unknown cues. This further indicated that
matured MST-d balanced and imbalanced neurons reached an ‘equilibrium’ state in causal
inference, which was achieved through the counterbalance between the neuron number and
response amplitude, combined with the preference distributions. Since the fMCS model
in this work utilized neuronal response data from matured monkeys, it characterized the
local-cortical decision properties after synaptic learning.

Concerning the response amplitude, we present in Figure 1 that the relationship be-
tween unisensory and multisensory response matched with the additive effect found in
previous works [25,32], and the impaired additive effect with growing response imbalance
was predicted by the divisive normalization theory [33]. The division normalization is
mainly attributed to intra-cortical shunting inhibition. Therefore, such passive modulation
may not be the main site of synaptic learning discussed here. The learning process of multi-
sensory inference is more likely to locate at the synaptic learning along the hierarchy [24,34],
such as the connections from unisensory area MT (middle temporal) and PIVC (parietal
insular vestibular cortex) to multisensory area MST-d, instead of the synaptic learning
within the MST-d circuit. In other words, the learning is projected to unisensory responses
rather than multisensory ones.

We further propose that effective decision decoding requires not only matching the
maximal response amplitude, but also the response gradients. The latter is a measurement
of response selectivity, which is crucial to shifting the decisions flexibly between integration
and separation based on the external cue disparity.

In Figure 3, we demonstrate that the visual-dominant neurons respond selectively
to the visual direction, but unselectively to the vestibular direction. As a result, the
vestibular direction change did not affect the final decision and such rigid decoding has
limited information capacity for vestibular-cue information. In addition, in vestibular-
dominant neurons, the dominance did not produce an advantageous decision decoding to
the vestibular direction change. We reason that vestibular-dominant imbalanced neurons
generally respond at lower rates (mean maximal response is 50.45 spikes/s) than visual-
dominant neurons (73.56 spikes/s) and balanced neurons (52.63 spikes/s). In this case, the
weak tuning of the visual modality in turn enhanced the overall responses and pulled the
decision closer to the equilibrium state.

The results indicated that the visual and vestibular modalities were weighed differently
in MST-d, potentially leading to a biased reference frame for local decision-making [35].
The modality-specific neuronal response is the dynamic origin of reference frame selection,
so the two modalities are prone to integration into a visual frame due to visual-response
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dominance but less likely to integrate into a vestibular frame. Furthermore, effective deci-
sion encoding mostly emerged from a visual direction change, while a vestibular direction
change produced either robust integration or robust separation, making the decision rigid
and inflexible. The analysis is compatible with previous experimental findings that MST-d
was dominated by the visual frame when performing sensory integration [35]. It was
previously debated whether an accurate decision requires a common frame, intermediate,
or even distinct frames [36,37]. This work proposes that, in MST-d, the visual and vestibular
frames are pre-coded concurrently by visual and vestibular-dominant neurons. Due to the
prevalence of visual signals in MST-d [25], the integration is mostly based on the visual
frame. Nevertheless, we reason that the vestibular frame serves as a fundamental role
during the decision, because it also provides a base coordinate about self-motion for the
vestibular-related signal if the decision is to separate the cues.

5. Conclusions

This study has combined the methods of computational modeling and analysis of
physiological recordings and examined the effect of functional heterogeneity between vi-
sual and vestibular modalities in MST-d. The heterogeneity stemmed from distinct tuning
selectivity, which denotes two aspects: the response amplitude, and the tuning gradient
(the tuning curve’s steepness). Previously, related works mainly explored the multisensory
causal inference on two levels: one is the mathematical principle of multisensory behav-
iors [12,17,18], and the other is biophysical computation modeling at a neuronal circuit
level [1,2,8,33]. Nevertheless, few works have bridged the gap between the two levels and
studied the decision property stemming from neuronal architecture. This work initialized
from the neuronal response and cortical processing hierarchy and reproduced decisions
with Bayesian strategy. Importantly, we reported that the modality which produces larger
neuronal response amplitude and steeper tuning is more likely to have a larger weight in
multisensory decisions. Furthermore, we predicted that the response dominance of one
modality determined the base coordinate to set up the reference frame for motion detection.
In conclusion, the neuronal network response patterns compose the internal representation
of external motion relationships, which may serve as a ubiquitous probabilistic-inference
base for the merging of senses.

While the present work focused on the primate MST-d network, past studies demon-
strated that both human and primate behavioral properties exhibited the Bayesian inference
approach [1,12,34]. Despite the lack of physiological evidence of human subjects, it was
reported that human brain contains the homolog of macaque MST area, which locates in
human MT+ complex and compiles both visual and vestibular signals [38–40]. As Zhang
et al. proposed [24], the macaque MST-d provided essential components for Bayesian
population coding, thus future works may need to examine whether human follows similar
principle to make a multisensory inference.

6. Limitations

As we seek to provide a general principle for biophysical sampling-based processes,
the present work suffers from several limitations. It has been demonstrated that real
decision processes in the brain also involve sampling of neuronal responses [31]. In MST-d,
the neuronal response shows complex modulation of preferences and inputs, and the
response decay may not be symmetrical when the inputs deviate from the preference
of each input modality. Furthermore, the preference from unisensory to multisensory
conditions may change, potentially causing a sharper decrease in neural responses if one
input is unreliable. Both conditions add more variability to the decision process, which
induces more flexibility. A high-dimensional sampling process would be required to
include this variability.



Brain Sci. 2022, 12, 1387 14 of 15

Author Contributions: Y.Y. and A.C. supervised the research, Y.Y., A.C., Y.G. and J.Z. designed the
research, J.Z., M.H. performed the research, J.Z., M.H. wrote the analysis tools and analyzed the
data, J.Z. and Y.Y. wrote the paper. All authors have read and agreed to the published version of
the manuscript.

Funding: This project is supported by the Science and Technology Innovation 2030—Brain Science
and Brain-Inspired Intelligence Project (2021ZD0200204, 2021ZD0202600 and 2021ZD0201301), the
National Natural Science Foundation of China (U20A20221), the Shanghai Municipal Science and
Technology Major Project (2018SHZDZX01 and 2021SHZDZX0103) and ZJLab, Shanghai Municipal
Science and Technology Committee of Shanghai outstanding academic leaders plan (21XD1400400).

Institutional Review Board Statement: The Institutional Animal Care and Use Committee at Wash-
ington University approved all animal surgeries and experimental procedures, which were performed
following National Institutes of Health guidelines.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets analyzed in this study are available from the correspond-
ing author for reasonable request. The key analysis codes are available for reasonable request.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. Gu, Y.; Angelaki, D.E.; DeAngelis, G.C. Neural correlates of multisensory cue integration in macaque MSTd. Nat. Neurosci. 2008,

11, 1201–1210. [CrossRef] [PubMed]
2. Fetsch, C.R.; Pouget, A.; DeAngelis, G.C.; Angelaki, D.E. Neural correlates of reliability-based cue weighting during multisensory

integration. Nat. Neurosci. 2011, 15, 146–154. [CrossRef] [PubMed]
3. Binns, K.E.; Salt, T.E. Importance of NMDA receptors for multimodal integration in the deep layers of the cat superior colliculus.

J. Neurophysiol. 1996, 75, 920–930. [CrossRef]
4. Meredith, M.A. On the neuronal basis for multisensory convergence: A brief overview. Cogn. Brain Res. 2002, 14, 31–40. [CrossRef]
5. Meredith, M.A.; Stein, B.E. Spatial determinants of multisensory integration in cat superior colliculus neurons. J. Neurophysiol.

1996, 75, 1843–1857. [CrossRef] [PubMed]
6. Parise, C.V.; Ernst, M.O. Correlation detection as a general mechanism for multisensory integration. Nat. Commun. 2016, 7, 11543.

[CrossRef]
7. Truszkowski, T.L.S.; Carrillo, O.A.; Bleier, J.; Ramirez-Vizcarrondo, C.M.; Felch, D.L.; McQuillan, M.; Truszkowski, C.P.; Khakhalin,

A.S.; Aizenman, C.D. A cellular mechanism for inverse effectiveness in multisensory integration. Elife 2017, 6, e25392. [CrossRef]
[PubMed]

8. Zhang, W.H.; Wang, H.; Chen, A.; Gu, Y.; Lee, T.S.; Wong, K.M.; Wu, S. Complementary congruent and opposite neurons achieve
concurrent multisensory integration and segregation. Elife 2019, 8, e43753. [CrossRef] [PubMed]

9. Driver, J.; Spence, C. Multisensory perception: Beyond modularity and convergence. Curr. Biol. 2000, 10, R731–R735. [CrossRef]
10. Schroeder, C.E.; Foxe, J. Multisensory contributions to low-level, ’unisensory’ processing. Curr. Opin. Neurobiol. 2005, 15, 454–458.

[CrossRef]
11. Kayser, C.; Logothetis, N.K. Do early sensory cortices integrate cross-modal information? Brain Struct. Funct. 2007, 212, 121–132.

[CrossRef] [PubMed]
12. Knill, D.C.; Pouget, A. The Bayesian brain: The role of uncertainty in neural coding and computation. Trends Neurosci. 2004, 27,

712–719. [CrossRef] [PubMed]
13. Ma, W.J.; Beck, J.M.; Latham, P.E.; Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 2006, 9,

1432–1438. [CrossRef] [PubMed]
14. Pouget, A.; Beck, J.M.; Ma, W.J.; Latham, P.E. Probabilistic brains: Knowns and unknowns. Nat. Neurosci. 2013, 16, 1170–1178.

[CrossRef]
15. Kording, K.P.; Wolpert, D.M. Bayesian integration in sensorimotor learning. Nature 2004, 427, 244–247. [CrossRef]
16. Wallace, M.T.; Roberson, G.; Hairston, W.D.; Stein, B.E.; Vaughan, J.W.; Schirillo, J.A. Unifying multisensory signals across time

and space. Exp. Brain Res. 2004, 158, 252–258. [CrossRef]
17. Kording, K.P.; Beierholm, U.; Ma, W.J.; Quartz, S.; Tenenbaum, J.B.; Shams, L. Causal inference in multisensory perception. PLoS

ONE 2007, 2, e943. [CrossRef]
18. Acerbi, L.; Dokka, K.; Angelaki, D.E.; Ma, W.J. Bayesian comparison of explicit and implicit causal inference strategies in

multisensory heading perception. PLoS Comput. Biol. 2018, 14, e1006110. [CrossRef]
19. Duffy, C.J.; Wurtz, R.H. Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci. 1995,

15, 5192–5208. [CrossRef]
20. Duffy, C.J. MST neurons respond to optic flow and translational movement. J. Neurophysiol. 1998, 80, 1816–1827. [CrossRef]

http://doi.org/10.1038/nn.2191
http://www.ncbi.nlm.nih.gov/pubmed/18776893
http://doi.org/10.1038/nn.2983
http://www.ncbi.nlm.nih.gov/pubmed/22101645
http://doi.org/10.1152/jn.1996.75.2.920
http://doi.org/10.1016/S0926-6410(02)00059-9
http://doi.org/10.1152/jn.1996.75.5.1843
http://www.ncbi.nlm.nih.gov/pubmed/8734584
http://doi.org/10.1038/ncomms11543
http://doi.org/10.7554/eLife.25392
http://www.ncbi.nlm.nih.gov/pubmed/28315524
http://doi.org/10.7554/eLife.43753
http://www.ncbi.nlm.nih.gov/pubmed/31120416
http://doi.org/10.1016/S0960-9822(00)00740-5
http://doi.org/10.1016/j.conb.2005.06.008
http://doi.org/10.1007/s00429-007-0154-0
http://www.ncbi.nlm.nih.gov/pubmed/17717687
http://doi.org/10.1016/j.tins.2004.10.007
http://www.ncbi.nlm.nih.gov/pubmed/15541511
http://doi.org/10.1038/nn1790
http://www.ncbi.nlm.nih.gov/pubmed/17057707
http://doi.org/10.1038/nn.3495
http://doi.org/10.1038/nature02169
http://doi.org/10.1007/s00221-004-1899-9
http://doi.org/10.1371/journal.pone.0000943
http://doi.org/10.1371/journal.pcbi.1006110
http://doi.org/10.1523/JNEUROSCI.15-07-05192.1995
http://doi.org/10.1152/jn.1998.80.4.1816


Brain Sci. 2022, 12, 1387 15 of 15

21. Bremmer, F.; Kubischik, M.; Pekel, M.; Lappe, M.; Hoffmann, K.P. Linear vestibular self-motion signals in monkey medial superior
temporal area. Ann. N. Y. Acad. Sci. 1999, 871, 272–281. [CrossRef] [PubMed]

22. Tanaka, K.; Fukada, Y.; Saito, H. Underlying mechanisms of the response specificity of expansion/contraction and rotation cells
in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 1989, 62, 642–656. [CrossRef]
[PubMed]

23. Rideaux, R.; Storrs, K.R.; Maiello, G.; Welchman, A.E. How multisensory neurons solve causal inference. Proc. Natl. Acad. Sci.
USA 2021, 118, e2106235118. [CrossRef] [PubMed]

24. Zhang, J.; Gu, Y.; Chen, A.; Yu, Y. Unveiling Dynamic System Strategies for Multisensory Processing: From Neuronal Fixed-
Criterion Integration to Population Bayesian Inference. Research 2022, 2022, 9787040. [CrossRef] [PubMed]

25. Gu, Y.; Watkins, P.V.; Angelaki, D.E.; DeAngelis, G.C. Visual and nonvisual contributions to three-dimensional heading selectivity
in the medial superior temporal area. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 73–85. [CrossRef]

26. Shulman, G.L.; Corbetta, M.; Buckner, R.L.; Raichle, M.E.; Fiez, J.A.; Miezin, F.M.; Petersen, S.E. Top-down modulation of early
sensory cortex. Cereb Cortex 1997, 7, 193–206. [CrossRef]

27. Pessoa, L.; Kastner, S.; Ungerleider, L.G. Neuroimaging studies of attention: From modulation of sensory processing to top-down
control. J. Neurosci. 2003, 23, 3990–3998. [CrossRef]

28. Hoyer, P.; Hyvärinen, A. Interpreting neural response variability as Monte Carlo sampling of the posterior. Adv. Neural Inf.
Process. Syst. 2002, 15.

29. Buesing, L.; Bill, J.; Nessler, B.; Maass, W. Neural dynamics as sampling: A model for stochastic computation in recurrent
networks of spiking neurons. PLoS Comput. Biol. 2011, 7, e1002211. [CrossRef]

30. Huang, Y.; Rao, R.P. Neurons as Monte Carlo Samplers: Bayesian

Brain Sci. 2022, 12, x FOR PEER REVIEW 15 of 15 
 

21. Bremmer, F.; Kubischik, M.; Pekel, M.; Lappe, M.; Hoffmann, K.P. Linear vestibular self-motion signals in monkey medial 

superior temporal area. Ann. N. Y. Acad. Sci. 1999, 871, 272–281. 

22. Tanaka, K.; Fukada, Y.; Saito, H. Underlying mechanisms of the response specificity of expansion/contraction and rotation cells 

in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 1989, 62, 642–656. 

23. Rideaux, R.; Storrs, K.R.; Maiello, G.; Welchman, A.E. How multisensory neurons solve causal inference. Proc. Natl. Acad. Sci. 

USA 2021, 118, e2106235118. 

24. Zhang, J.; Gu, Y.; Chen, A.; Yu, Y. Unveiling Dynamic System Strategies for Multisensory Processing: From Neuronal Fixed-

Criterion Integration to Population Bayesian Inference. Research 2022, 2022, 9787040. https://doi.org/10.34133/2022/9787040. 

25. Gu, Y.; Watkins, P.V.; Angelaki, D.E.; DeAngelis, G.C. Visual and nonvisual contributions to three-dimensional heading 

selectivity in the medial superior temporal area. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 73–85. 

https://doi.org/10.1523/JNEUROSCI.2356-05.2006. 

26. Shulman, G.L.; Corbetta, M.; Buckner, R.L.; Raichle, M.E.; Fiez, J.A.; Miezin, F.M.; Petersen, S.E. Top-down modulation of early 

sensory cortex. Cereb Cortex 1997, 7, 193–206. https://doi.org/10.1093/cercor/7.3.193. 

27. Pessoa, L.; Kastner, S.; Ungerleider, L.G. Neuroimaging studies of attention: From modulation of sensory processing to top-

down control. J. Neurosci. 2003, 23, 3990–3998. 

28. Hoyer, P.; Hyvärinen, A. Interpreting neural response variability as Monte Carlo sampling of the posterior. Adv. Neural Inf. 

Process. Syst. 2002, 15. 

29. Buesing, L.; Bill, J.; Nessler, B.; Maass, W. Neural dynamics as sampling: A model for stochastic computation in recurrent 

networks of spiking neurons. PLoS Comput. Biol. 2011, 7, e1002211. 

30. Huang, Y.; Rao, R.P. Neurons as Monte Carlo Samplers: Bayesian￼ Inference and Learning in Spiking Networks. Adv. Neural 

Inf. Process. Syst. 2014, 27. 

31. Zhang, W.; Wu, S.; Josic, K.; Doiron, B. Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons. 

bioRxiv 2022. https://doi.org/10.1101/2022.01.26.477877. 

32. Ferrè, E.R.; Walther, L.E.; Haggard, P. Multisensory interactions between vestibular, visual and somatosensory signals. PLoS 

ONE 2015, 10, e0124573. 

33. Ohshiro, T.; Angelaki, D.E.; DeAngelis, G.C. A normalization model of multisensory integration. Nat. Neurosci. 2011, 14, 775–

782. https://doi.org/10.1038/nn.2815. 

34. Rohe, T.; Noppeney, U. Cortical hierarchies perform Bayesian causal inference in multisensory perception. PLoS Biol. 2015, 13, 

e1002073. https://doi.org/10.1371/journal.pbio.1002073. 

35. Yang, L.; Gu, Y. Distinct spatial coordinate of visual and vestibular heading signals in macaque FEFsem and MSTd. Elife 2017, 

6, e29809. https://doi.org/10.7554/eLife.29809. 

36. Groh, J.M. Converting neural signals from place codes to rate codes. Biol. Cybern. 2001, 85, 159–165. 

37. Deneve, S.; Latham, P.E.; Pouget, A. Efficient computation and cue integration with noisy population codes. Nat. Neurosci. 2001, 

4, 826–831. 

38. Vaina, L.M.; Cowey, A.; Eskew, R.T., Jr.; LeMay, M.; Kemper, T. Regional cerebral correlates of global motion perception: 

Evidence from unilateral cerebral brain damage. Brain 2001, 124, 310–321. 

39. Huk, A.C.; Dougherty, R.F.; Heeger, D.J. Retinotopy and functional subdivision of human areas MT and MST. J. Neurosci. 2002, 

22, 7195–7205. 

40. Bottini, G.; Karnath, H.-O.; Vallar, G.; Sterzi, R.; Frith, C.D.; Frackowiak, R.S.; Paulesu, E. Cerebral representations for egocentric 

space: Functional–anatomical evidence from caloric vestibular stimulation and neck vibration. Brain 2001, 124, 1182–1196. 

Inference and Learning in Spiking Networks. Adv. Neural Inf.
Process. Syst. 2014, 27.

31. Zhang, W.; Wu, S.; Josic, K.; Doiron, B. Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons.
bioRxiv 2022. [CrossRef]

32. Ferrè, E.R.; Walther, L.E.; Haggard, P. Multisensory interactions between vestibular, visual and somatosensory signals. PLoS ONE
2015, 10, e0124573. [CrossRef] [PubMed]

33. Ohshiro, T.; Angelaki, D.E.; DeAngelis, G.C. A normalization model of multisensory integration. Nat. Neurosci. 2011, 14, 775–782.
[CrossRef] [PubMed]

34. Rohe, T.; Noppeney, U. Cortical hierarchies perform Bayesian causal inference in multisensory perception. PLoS Biol. 2015, 13,
e1002073. [CrossRef]

35. Yang, L.; Gu, Y. Distinct spatial coordinate of visual and vestibular heading signals in macaque FEFsem and MSTd. Elife 2017, 6,
e29809. [CrossRef]

36. Groh, J.M. Converting neural signals from place codes to rate codes. Biol. Cybern. 2001, 85, 159–165. [CrossRef]
37. Deneve, S.; Latham, P.E.; Pouget, A. Efficient computation and cue integration with noisy population codes. Nat. Neurosci. 2001,

4, 826–831. [CrossRef]
38. Vaina, L.M.; Cowey, A.; Eskew, R.T., Jr.; LeMay, M.; Kemper, T. Regional cerebral correlates of global motion perception: Evidence

from unilateral cerebral brain damage. Brain 2001, 124, 310–321. [CrossRef]
39. Huk, A.C.; Dougherty, R.F.; Heeger, D.J. Retinotopy and functional subdivision of human areas MT and MST. J. Neurosci. 2002, 22,

7195–7205. [CrossRef]
40. Bottini, G.; Karnath, H.-O.; Vallar, G.; Sterzi, R.; Frith, C.D.; Frackowiak, R.S.; Paulesu, E. Cerebral representations for egocentric

space: Functional–anatomical evidence from caloric vestibular stimulation and neck vibration. Brain 2001, 124, 1182–1196.
[CrossRef]

http://doi.org/10.1111/j.1749-6632.1999.tb09191.x
http://www.ncbi.nlm.nih.gov/pubmed/10372078
http://doi.org/10.1152/jn.1989.62.3.642
http://www.ncbi.nlm.nih.gov/pubmed/2769352
http://doi.org/10.1073/pnas.2106235118
http://www.ncbi.nlm.nih.gov/pubmed/34349023
http://doi.org/10.34133/2022/9787040
http://www.ncbi.nlm.nih.gov/pubmed/36072271
http://doi.org/10.1523/JNEUROSCI.2356-05.2006
http://doi.org/10.1093/cercor/7.3.193
http://doi.org/10.1523/JNEUROSCI.23-10-03990.2003
http://doi.org/10.1371/journal.pcbi.1002211
http://doi.org/10.1101/2022.01.26.477877
http://doi.org/10.1371/journal.pone.0124573
http://www.ncbi.nlm.nih.gov/pubmed/25875819
http://doi.org/10.1038/nn.2815
http://www.ncbi.nlm.nih.gov/pubmed/21552274
http://doi.org/10.1371/journal.pbio.1002073
http://doi.org/10.7554/eLife.29809
http://doi.org/10.1007/s004220100249
http://doi.org/10.1038/90541
http://doi.org/10.1093/brain/124.2.310
http://doi.org/10.1523/JNEUROSCI.22-16-07195.2002
http://doi.org/10.1093/brain/124.6.1182

	Introduction 
	Methods 
	Subjects and Surgery 
	Vestibular and Visual Stimuli 
	Electrophysiological Recordings 
	Experimental Protocol 
	Data Analysis 
	Multisensory Tuning Curves Averaging 
	Bayesian Modeling 

	Results 
	Quantification of MST-d Neuronal Reliability Weightings Based on Tuning Curves 
	Balanced and Imbalanced MST-d Neurons Comprise Encoding Bases 
	Discriminated Multisensory Tuning of Visual and Vestibular Modalities 

	Discussion 
	Conclusions 
	Limitations 
	References

