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Abstract: Postoperative delirium (POD) is a complication characterized by disturbances in attention,
awareness, and cognitive function that occur shortly after surgery or emergence from anesthesia.
Since it occurs prevalently in neurosurgical patients and poses great threats to the well-being of
patients, much emphasis is placed on POD in neurosurgical units. However, there are intricate
theories about its pathogenesis and limited pharmacological interventions for POD. In this study, we
review the recent insights into its pathogenesis, mainly based on studies within five years, and the
five dominant pathological theories that account for the development of POD, with the intention of
furthering our understanding and boosting its clinical management.

Keywords: postoperative delirium; neurosurgery; cognitive dysfunction

1. Introduction

Delirium is a temporary mental dysfunction characterized by confusion, anxiety, inco-
herent speech, hallucinations, and reduced awareness of the environment [1]. Postoperative
delirium (POD) is a common complication in patients who undergo hospitalization and
surgery and occurs most often in the hospital up to 1 week after surgery or until dis-
charge [2,3]. Elderly patients undergoing surgery are at the highest risk of developing
POD [4]. More than half of the elderly patients who underwent abdominal surgery were
reported to experience POD. Moreover, approximately 54.9% of patients over 70 years
of age underwent cardiac surgery and 6–56% of the general hospitalized population had
symptoms of delirium [1,5]. Certain anesthetic interventions have been found to be associ-
ated with an increased risk of POD; notably, 31% of patients emerging from anesthesia had
signs of delirium in the post-anesthesia care unit [6].

Patients with POD are under the threat of physically harming themselves without
awareness. Patients may experience damage to the intravenous lines and tear the wound
dressing. Furthermore, increasing evidence indicates that POD could severely affect multi-
ple aspects of patient health. POD is associated with increased mortality in patients after
transcatheter aortic valve implantation, with a 1-year survival rate decreasing from 85%
to 68% [7]. In a retrospective study involving 1260 patients undergoing cardiac surgery,
patients with POD experienced significantly more frequent postoperative complications,
such as myocardial infarction, cerebrovascular accidents, respiratory complications, and
infections [8]. POD also results in other complications, such as a prolonged hospital stay,
delayed functional recovery, and increased morbidity [9].

The management of POD is also particularly important in neurosurgical units. Among
those patients undergoing intracranial surgery, 4.2% had serious POD, which is directly
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associated with impaired neurological function and extended rehabilitation [10]. A meta-
analysis involving 5589 patients revealed that the incidence of POD after intracranial
surgery ranges from 12% to 26% due to variations in clinical characteristics and delirium
assessment methods [11].

However, despite their prevalence and severity, pharmacological interventions with
strong evidence for the prevention or management of delirium are sparse [12]. Even
the promising agent dexmedetomidine fails to reduce postoperative delirium in patients
recovering from cardiac surgery [13].

To address this harmful complication and improve the patient’s quality of life, we
reviewed the major pathological mechanisms underlying the development of POD, the aim
of which is to improve the prevention, remission, and medication of POD.

2. Risk Factors

Randomized results have shown that the incidence of POD is related to various
perioperative risk factors. Knowledge of risk factors can help in clinical decision making
and the identification of high-risk patients. The risk factors correlated with the onset of
delirium, such as type of anesthesia, age, preoperative cognitive function, neurological
function, and environmental factors, are summarized.

2.1. Anesthesia

The effect of the different types of anesthesia on POD is controversial. In a previous
study, regional anesthesia and analgesia did not show any benefit with respect to POD
compared with general anesthesia [14]. Recently, emerging evidence has been published to
provide additional information on this topic. Regional anesthesia, such as caudal block,
fascia iliac compartment block, and intravertebral anesthesia, is also mentioned to reduce
the incidence of POD [15–17]. A recent study used topological data analysis to assess the
phenotypic subgroups of delirium and suggested that elderly patients are more susceptible
to POD and that this influence may be amplified by regional anesthesia [18]. In a recent
study, data showed that regional anesthesia significantly reduced POD incidence and
severity. The positive effect of regional anesthesia was especially reflected in pediatric
patients rather than elderly patients on postoperative days 1–5 [19]. In neurosurgical
operations, a longer duration of anesthesia is expected to induce POD due to the impairment
of neurons. Patients with anesthesia for more than 4 h showed a dramatically higher
incidence of POD. Interestingly, a history of anesthesia did not affect the occurrence of
POD [20].

2.2. Age

POD is the most common complication following surgery in elderly patients. The
incidence of POD has been estimated to range from 4% to 53% following fracture surgery
in the elderly [21]. It is hypothesized that the increased risk of imbalance in cortical
neurotransmitters or inflammatory responses contributes to delirium. In spinal surgery,
patients younger than 73 years had a significantly lower incidence of delirium. Older
age, low preoperative cognitive function, longer duration of surgery, and transfusion are
important risk factors for POD [22]. Similarly, older age is also a critical intrinsic predictor
of POD in those patients undergoing transcranial surgery. One study included patients
aged 14–80 years who underwent brain tumor resection. The mean age of patients without
and with POD was 47.1 ± 14.28 and 51.9 ± 12.66, respectively [20].

2.3. Cognitive Condition

Patients who undergo surgery and anesthesia are also at high risk of temporary or
permanent cognitive impairment due to acute stress. Mounting evidence suggests that
delirium may lead to permanent cognitive decline and dementia in some patients. Cogni-
tive impairment was common (>50%) in surgical patients who developed POD, and the
impairment persisted up to 1-year postoperatively [23]. Consistently, the cognitive state be-
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fore surgery is a strong predictor of POD occurrence. Previous cognitive dysfunction, such
as dementia or neurodegenerative status, greatly increases the vulnerability to POD [24,25].
In elderly patients with dementia, delirium is associated with increased rates of cognitive
decline, admission to institutions, and mortality [23].

2.4. Intrinsic and Extrinsic Factors

The development of POD is multifactorial. Despite its main etiological factors, multiple
intrinsic and extrinsic elements also promote the progression of POD. POD in neurosurgery
patients can be induced due to hypothalamic syndrome, infection, electrolyte disturbances,
fever, and profuse urination. A longer duration of ICU patients’ stay in the ICU was also
associated with a higher incidence of POD [20]. In particular, cardiac arrest is an additional
predisposing factor for POD because most survivors of cardiac arrest are treated in the
ICU. A longer stay in the ICU has been hypothesized to induce POD. The occurrence of
delirium prolongs the duration of the ICU and hospital stay and adversely affects functional
outcomes [26].

Surgeons and anesthesiologists are devoting great effort to the prediction of the
occurrence and the minimization of the risk of POD. The monitoring of processed elec-
troencephalograms (EEGs) is considered an alternative method to predict the occurrence
of POD. One moderate-quality evidence study indicated that EEG-optimized anesthesia
could reduce the risk of POD in those patients aged ≥ 60 years who underwent non-cardiac
or non-neurosurgical procedures [27]. However, a more advanced study did not agree with
this conclusion. They found that in older adults who underwent major surgery, EEG-guided
anesthetic administration, compared with usual care, did not decrease the incidence of
POD [28].

3. Pathological Theories

Taking recent insights into comprehensive consideration, we conclude with five dom-
inant pathological theories, as illustrated in Figure 1A, which may explain the occur-
rence and development of POD characterized by disturbances in attention, awareness,
and cognition.
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Figure 1. Schematic diagram of pathological mechanisms underlying postoperative delirium: (A) five
dominant pathological theories that may account for the occurrence and development of POD
characterized by disturbances in attention, awareness, and cognition; (B) S100A8, as a main member
of DAMPs, promotes the activation of TLR4 in macrophages and microglia and then increases the
expression of TNF-α; TNF-α will bind to TNFR on endothelial cells, subsequently triggering their
necroptosis, which disrupts BBB’s integrity and increases BBB’s permeability.
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3.1. Neuroinflammation

Inflammation is inevitable after surgery as a protective response to injury. However,
peripheral inflammation may trigger neuroinflammation, leading to the dysfunction of
the central nervous system (CNS) and the subsequent neurobehavioral and cognitive
symptoms of postoperative delirium. Additionally, inflammation from the periphery to the
CNS starts with increased permeability of the blood–brain barrier (BBB).

The BBB is a highly regulated and maintained interface that separates the peripheral
circulation from the CNS. A specific monolayer of endothelial cells, which forms the
capillaries of the brain, is the main component of the BBB. Other components of the BBB
anatomy include astrocytes, pericytes, neurons, and extracellular matrix [29,30].

Cellular injury caused by aseptic surgical trauma can induce the release of damage-
associated molecular patterns (DAMPs) that activate the peripheral innate immune
system [31]. S100A8 (Migration suppressor-associated protein-8 (MRP8)) is an impor-
tant proinflammatory cytokine in many inflammatory conditions and is expressed in large
quantities by activated neutrophils and monocytes [32,33]. As a main member of the
DAMPs, S100A8 has been shown to promote the activation of Toll-like receptor 4 (TLR4) in
macrophages and microglia [34–36]. In the TLR4 signaling pathway, MyD88 is an important
activator of the NF-κB signaling pathway [37,38]. Previous studies have confirmed that
S100A8 induced by surgery activates the TLR4/MyD88 pathway in mouse models [35].
A recent study in a rat model showed that S100A8/A9 binds to TLR4 and increases the
expression of matrix metalloproteinases (MMPs), tumor necrosis factor α (TNF-α), and IL-6
(interleukin-6) through the NF-κB signaling pathways in nucleus pulposus cells, which
contributes to inflammation-related pain [39].

The upregulation of TNF-α has been widely detected in postoperative patients [40,41].
TNF-α secreted by activated microglia cells binds to the TNF receptor (TNFR) on endothelial
cells, subsequently triggering necroptosis through receptor-interacting protein kinase 1
(RIPK1), RIPK3, and mixed-lineage kinase domain-like pseudo kinase (MLKL), which
disrupts the integrity of BBB and increases the permeability of BBB [42,43], as illustrated
in Figure 1B. Moreover, TNF-α induces the release of MMP-9 from pericytes, resulting in
increased endothelial permeability in BBB models in vitro [44].

The proinflammatory cytokine IL-6 is significantly upregulated in patients after ortho-
pedic surgery [40,41,45]. In mouse models, IL-6 disrupts the BBB and promotes hippocam-
pal inflammation through bone marrow-derived monocytes [46].

Upon infiltration into the brain parenchyma through the BBB, peripheral factors such
as DAMPs and cytokines can trigger downstream neuroinflammatory responses.

Microglial cells, which account for 20% of the total glial cell population of the brain, are
the main components of the posterior gray and white matter [47] and function to monitor
the well-being of their environment and maintain homeostasis through innate defense
mechanisms or specific immune reactions [48]. In a normal CNS environment, microglia
are shut down with a scarce expression of many typical proteins on the surface of other
tissue macrophages [49,50]. The activation states of microglial cells can be divided into
M1 (classic activation) triggered by interferon-γ and M2 (alternative activation), which are
mainly triggered by the Th2 cytokines IL-4 and IL-13 [51–53]. Activated microglial cells
have long been considered the main source of proinflammatory factors such as cytokines,
eicosanoids, complement factors, excitatory amino acids, reactive oxygen radicals, and
nitric oxide [48,54]. Furthermore, owing to the microglial-secreted cytokines, the neurotoxic
reactive subtype of astrocytes, astrocytes, can be induced by classically activated microglial
cells, which contribute to the death of neurons and oligodendrocytes [55].

A recent study showed that neuronal dysfunction after traumatic brain injury, in-
cluding disrupted neuronal homeostasis, reduced dendritic complexity, and defective
compound action potential, can be attenuated by microglial elimination [56]. Moreover, in
those patients undergoing abdominal surgery, microglial activation has been detected and
associated with impairments in cognitive function [56]. Meanwhile, the endogenous mes-
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encephalic astrocyte-derived neurotrophic factor has been shown to have positive effects
on POD by inhibiting surgery-induced inflammation and microglial activation [57,58].

3.2. Oxidative Stress

Oxidative stress is an imbalance between the production of oxidants in cells and
tissues and the particular biological processes that trigger the detoxification of these reactive
products [59]. Under physiological and pathological conditions, cells can produce free
radicals and reactive oxygen species (ROS) through the NADPH–oxidase system, xanthine
oxidase, and mitochondrial electron transport chain [60].

The disruption of the BBB is a common cause of oxidative stress. Rat brain microvas-
cular endothelial cells exposed to hydrogen peroxide (H2O2) at high concentrations display
significant monolayer hyperpermeability with decreased cell viability and induced apop-
tosis [61]. It has been found that ROS can result in the BBB’s cytoskeleton rearrangement
and redistribution and disappearance of tight junction (TJ) proteins, mediated by RhoA,
PI3 kinase, and PKB signaling [62]. Occludin, a component of intercellular TJ protein
complexes, moves away from TJ during oxidative stress [63]. Furthermore, toxic cell H2O2
concentrations cause occludin cleavage with the involvement of MMP-2 [64], and the
upregulation of MMP-9 induces posttraumatic nerve and BBB injury, which may be par-
tially mediated by Scube2 and SHH through the hedgehog pathway [65]. In turn, patients
with increased disruption of the BBB are more vulnerable to neuronal injury induced by
oxidative stress [66].

Oxidants have been found to increase the gating potential of the mitochondrial per-
meability transition pore (mPTP), resulting in hypersensitivity to Ca2+ activation during
neuronal oxidative stress [67]. The high permeability of the mitochondrial membrane
induced by mPTP dysfunction not only impairs the mitochondrial electron transport chain
but also causes mitochondrial swelling, consequently leading to the over-release of ROS
and neuronal necrosis [68]. Cyclosporine A, an inhibitor of mPTP opening that suppresses
oxidative stress [69,70], was found to attenuate delirium-like behavior induced by anes-
thesia and surgery, with decreased ROS levels in the hippocampus of POD-like mice [71].
Meanwhile, as an innate protective mechanism to combat invading pathogens, macrophage
cell lines, including microglia, can produce superoxide radicals and nitric oxide, resulting
in the production and spread of peroxynitrite [72]. Peroxynitrite has been shown to induce
neuronal apoptosis through the intracellular release of zinc and subsequent activation of
p38 mitogen-activated protein kinase and caspase 3 [73].

Among those patients undergoing cardiac surgery, intraoperative oxidative damage
has been found to contribute to postoperative delirium and neuronal injury [66,74]. Oxida-
tive stress before surgery also makes elderly hip fracture patients vulnerable to POD [75].
Low baseline antioxidant capacity is independently associated with postoperative delirium
development [76]. Additionally, increased levels of oxidative stress have been detected in
patients with delirium [77].

3.3. Circadian Rhythm or Melatonin Dysregulation

Anesthesia is implicated in the modification and disruption of circadian rhythms after
surgery [78,79]. Compared with general anesthesia, subarachnoid anesthesia is associated
with less disruption of melatonin rhythm and sleep patterns and fewer POD occurrences in
those patients undergoing hip fracture surgery [80]. Meanwhile, anesthesia mostly func-
tions as a γ-aminobutyric acid (GABA) receptor antagonist and/or N-methyl-D-aspartate
(NMDA) receptor agonist [78]. Additionally, neurons with the inhibitory neurotransmitter
GABA [81] and GABAA receptors [82] account for the majority of the suprachiasmatic nu-
cleus (SCN), which is the primary circadian pacemaker in mammals [83]. The activation of
GABAA receptors by the agonist muscimol has been reported to directly affect pacemaker
cells within the SCN and produce large phase delays in rats [83]. Moreover, NMDA recep-
tors are expressed in the SCN [84], and its antagonist ketamine can induce phase changes in
the secretion of melatonin and locomotor activity rhythms in a time-dependent manner [85].
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Furthermore, higher levels of cortisol and inflammatory cytokines have been detected in
patients undergoing morning surgery than in those undergoing afternoon surgery [86],
supporting the theory that daytime anesthesia is a breach of circadian rhythms.

Circadian rhythm dysregulation, including sleep disorders, is a major symptom of
POD [87] and promotes the development of delirium in hospitalized patients [88]. Sleep loss
directly enhances the astrocytic phagocytosis of synaptic elements and promotes microglial
activation, even without any noticeable signs of neuroinflammation [89]. The stimulation
of α7 nicotinic acetylcholine receptor (α7-nAChR) has been found to attenuate cognitive
decline, neuroinflammation, and oxidative stress [90], and reduced expression of α7-nAChR
is detected in microglia and astrocytes after chronic sleep deprivation, accompanied by
increased levels of proinflammatory factors and reduced levels of anti-inflammatory factors
and antioxidant enzymes, which can be reversed by the α7-nAChR agonist PHA-543613
through the PI3/AKT/GSK-3β pathway [91].

Plasma melatonin functions as both a marker and regulator of endogenous circadian
rhythms [92]. Melatonin has been found to combine with the NOTCH3 inhibitor DAPT, sig-
nificantly enhancing DAPT’s inhibition of NF-κB/p65 translocation to the nucleus induced
by IL-1β. Therefore, melatonin functions to protect the BBB from MMP-9 damage [93].
Moreover, in a rat model of intracerebral hemorrhage, melatonin reduced the number of
apoptotic neurons, mPTP opening, BBB damage, inflammation, and oxidative stress [94].

Numerous studies have shown that melatonin can reduce the incidence of delir-
ium in those patients undergoing surgery [95–97]. Recently, a meta-analysis involving
1712 participants found that melatonin significantly reduced the incidence of delirium, with
a risk reduction of 49% in surgical patients [96]. In addition to melatonin, ramelteon, an
FDA-approved melatonin receptor agonist, has also been shown to prevent delirium [97].

Studies have also suggested that sleep disruption before surgery predicts a higher risk
of POD, since a greater share of wake after sleep onset during the night is detected before
surgery and continues, even to a greater extent, postoperatively [98]. In addition to sleep
disorders, the incoherence between circadian physical activity rhythms before and after
hospitalization is associated with a higher risk of POD [99].

3.4. Older Age

Multiple studies have confirmed that older age is a risk factor for POD [100,101], with
an increased risk of 3% at <65 years to 14% at 65–74 years and 36% at ≥75 years among
patients with consecutive unselected acute medical admissions [102]. As mentioned above,
microglial cells play a crucial role in the immune response of the CNS and the induction of
neuroinflammation. With aging, senescent microglia may become dysfunctional, charac-
terized by damaged structures and increased apoptosis [103,104]. Although the activity
and phenotype of microglial cells are largely determined by the CX3CL1–CX3CR1 [105]
and CD200–CD200R [106] axes, aging is associated with lower expression of CX3CR1 [107]
and CD200 [108]. Additionally, with increased myelin degradation related to the aging
process, microglia have been reported to be overwhelmed by the heavy workload to remove
myelin fragments, leading to the senescence of microglia and immune dysfunction [109].
Microglia with an accumulation of lipid droplets have been identified in the aging brains
of both mice and humans and are characterized by the dysfunction of phagocytosis and
the overproduction of ROS and cytokines [110]. In contrast, the astrocytes mentioned
above have a higher reactivity to microglia and neuroinflammation during the normal
aging process [111]. Taken together, these findings showed that a proinflammatory state
mediated in the aging brain contributes to greater vulnerability to injury.

3.5. Dysregulation of the Gut Microbiota

Anesthesia/surgery can cause different alterations in the gut microbiota of mice un-
dergoing abdominal surgery, especially in POD mice, and treatment with Lactobacillus and
probiotics can reverse anesthesia/surgery-induced changes and POD [112,113]. Patients
undergoing cardiac surgery have been reported to have lower total bacterial counts and
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significantly higher fecal pH than preoperative levels [114]. This is similar to patients
undergoing digestive surgery, characterized by an increased proportion of Gram-negative
bacteria [115]. Many factors involved in surgery or anesthesia are associated with the
dysregulation of the gut microbiota. Isoflurane and sevoflurane, commonly used as volatile
anesthetics, have been reported to affect the motility and biofilm formation of bacteria,
partially due to the interaction between volatile anesthetics and ion transporters [116].
Multiple antibiotics are associated with a higher risk of delirium [117,118], and the absence
of gut microbial stimuli caused by broad-spectrum antibiotic treatment results in decreased
levels of immune cells and cytokine production in the small intestine, colon, mesenteric
lymph nodes, and spleen [119]. In addition to antibiotic drugs, in an extensive study with
1000 marketed drugs and 40 representative gut bacterial strains, 24% of non-antibiotic
drugs with human targets were found to inhibit the growth of at least one strain of gut
microbiota in vitro [120].

Altered β diversity and intestinal microbiota richness, as well as decreased levels
of TJ proteins (ZO-1 and occludin), have been detected in the intestinal tract of mice
with surgery-induced cognitive dysfunction [121]. Differential abundances of specific
gut microbiota were detected between patients with and without POD after abdominal
surgery, with a positive association between the phenotype of oxidative-stress-tolerant
bacteria and POD [122]. A novel study suggested that oxidative stress and mitochondrial
damage in microglia driven by the gut microbiota are probably the results of the metabolite
N6-carboxymethyllysine [123]. Furthermore, alterations in certain bacteria associated with
differential fecal metabolism of tryptophan, kynurenic acid, GABA, 2-indolecarboxylic
acid, and glutamic acid in POCD mice suggest that the gut microbiota might contribute to
cognitive dysfunction after surgery through neurotransmitter metabolism [124]. Taking the
above findings together, we hypothesized that gut microbiota dysregulation may promote
POD through inflammation worsened by a broken intestinal barrier, oxidative stress, and
neurotransmitter disorders.

Consistent with the role that the gut microbiota might play in the development of POD,
multiple studies have reported that probiotic treatment attenuates cognitive impairment
in both animals and patients [125]. Treatment with the probiotic VSL3 inhibited neuronal
apoptosis and reduced oxidative stress in POCD mice by upregulating the expression of
microRNA-146a (miR-146a) and the inhibition of the B-cell translocation gene 2/Bcl-2-
associated X protein (BTG2/Bax) axis [126]. ProBiotic-4, made up of Bifidobacterium lactis,
Lactobacillus casei, Bifidobacterium bifidum, and Lactobacillus acidophilus, has been reported
to significantly attenuate age-related cognitive dysfunction in mice with the inhibition
of both TLR4-and RIG-I-mediated NF-κB signaling pathways and a reduction in IL-6
and TNF-α [127]. The administration of the prebiotic Bimuno (galactooligosaccharide
mixture) significantly alleviated the cognitive decline induced by abdominal surgery under
isoflurane anesthesia, accompanied by the reduced activation of microglia and expression
of IL-6 [128]. Prebiotic (xylooligosaccharides (XOS)) intervention effectively attenuated
surgery-induced cognitive dysfunction, as well as intestinal microbiota alterations, reduced
inflammatory responses, and improved the integrity of the TJ barrier in the intestine and
hippocampus [121].

4. Postoperative Delirium in Neurosurgical Patients

Patients who undergo neurosurgery are vulnerable to delirium. Among those patients
who underwent brain tumor surgery, 4.2% were diagnosed with POD, which was associ-
ated with worse outcomes at hospital discharge [10]. POD was found to occur in 7% of
glioblastoma patients and was associated with longer hospital stays, a lower probability of
discharge home, and decreased survival [129]. A meta-analysis of 5589 patients revealed
that the incidence of POD after intracranial surgery was 19%, ranging from 12% to 26%,
due to variations in clinical characteristics and delirium assessment methods [11].

Cortical incision, the retraction of the brain lobes, and electrocoagulation are common
procedures performed in neurosurgery. All of this can cause bleeding, edema, and direct
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injury to cerebral tissue [130]. Blood loss and tissue injury can activate immune cells
and trigger the release of proinflammatory factors [131]. Additionally, more than 20% of
patients with intracerebral hemorrhage, which may occur during neurosurgical procedures,
develop a systemic inflammatory response syndrome [132]. Therefore, as mentioned above,
common neurosurgical procedures can contribute to neuroinflammation and consequently
promote the development of POD.

Studies have found that the activation of inflammatory cells after subarachnoid hemor-
rhages, such as microglia and neutrophils, can also generate free radicals [133]. Blood loss,
caused by pre-existing diseases or neurosurgical procedures, can result in the accumulation
of blood cells’ decomposition products, such as iron ions, heme, and thrombin, which conse-
quently induce the production of free radicals [134]. Moreover, ischemia–reperfusion injury,
commonly seen in neurosurgical patients with stroke, brain tumors, and subarachnoid hem-
orrhage, is mainly caused by oxidative stress. As a result, in addition to neuroinflammation,
oxidative stress is also a major pathological factor involved in POD after neurosurgery.

Meanwhile, the specific use of anesthesia during neurosurgery and a longer duration
of neurosurgical operation may contribute to the development of POD. Compared with
remifentanil, the intravenous dose-dependent administration of fentanyl during neuro-
surgical procedures was found to have a strong association with POD [135]. In a study
of 68,131 patients undergoing hip fracture repair, the risk of delirium increased with pro-
longed surgical duration, where every 30 min increase in the duration of surgery was
associated with a 6% increase in the risk of delirium [136]. Since the detailed mechanisms
underlying the association between these two factors and POD remain unknown, we
presume that these pathological theories may apply, which deserves further research.

5. Conclusions

To accomplish this work, we gathered papers from the scientific database “PubMed”,
using the keywords “postoperative delirium” and “neurosurgical”, separately and jointly.
Meanwhile, we also gathered additional sources from the reference lists of some papers we
found through database searches. Among these results, we selected, compared, synthesized,
and summarized those related to POD’s pathogenesis. During this process, we preferred
to choose novel and groundbreaking studies, mainly within 5 years, in order to reveal the
recent insights into the pathogenesis of POD.

Postoperative delirium is a complication characterized by disturbances in attention,
awareness, and cognitive function that occur shortly after surgery or emergence from
anesthesia. Neuroinflammation, oxidative stress, circadian rhythm or melatonin dysreg-
ulation, advanced age, and gut microbiota dysregulation have been shown to interact
with each other and play crucial roles in the development of POD. However, the detailed
and specific mechanisms underlying POD require further research and analyses. Further-
more, while most studies focus on the pathological factors that occur during the operation,
personal characteristics that existed before the operation are emphasized and are worth
future attention.

Given that there is a lack of pharmaceutical intervention to prevent and manage
POD and most drug discoveries in the past focused on antipsychotics, acetylcholinesterase
inhibitors, steroids, and statins, we propose that the gut microbiota might be a therapeutic
target, and probiotics might be a promising direction for pharmaceutical development.
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