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Abstract: Objective: To investigate the relationship of lobar and deep brain regions with post-stroke
dysphagia (PSD). Method: The databases of Medline, Embase, Web of Science, and Cochrane Library
were searched from the establishment to May 2022. Studies that investigated the effects of lesions
in lobar and deep brain regions on swallowing function after stroke were screened. The primary
outcomes were PSD-related brain regions (including aspiration-related and oral transit time-related
brain regions). The secondary outcomes were the incidence rate of PSD. The brain regions with
the most overlap in the included studies were considered to be most relevant to PSD, and were
presented as percentages. Data were compared utilizing the t-tests for continuous variables and χ2

for frequency-based variables. Result: A total of 24 studies and 2306 patients were included. The
PSD-related lobar and deep brain regions included the insular cortex, frontal lobe, temporal gyrus,
basal ganglia, postcentral, precentral, precuneus, corona radiate, etc. Among these brain regions, the
insular cortex was most frequently reported (taking up 54.2%) in the included studies. Furthermore,
the total incidence rate of PSD was around 40.4%, and the incidence of male was nearly 2.57 times
as much as that of female (χ2 = 196.17, p < 0.001). Conclusions: In lobar and deep brain regions, the
insular cortex may be most relevant to PSD and aspiration, which may be a potentially promising
target in the treatment of PSD.

Keywords: post-stroke dysphagia (PSD); aspiration; swallow–breathing coordination; insular cortex;
systematic review

1. Introduction

Strokes are common diseases; in the aggregate, they are among the leading causes of
mortality and long-term disability in developed countries, and their incidence is increas-
ing as the population ages. There are an estimated 100 million individuals living with
stroke sequelae worldwide, which has an enormous impact on patients’ quality of life
and raises the financial burden of medical treatment [1]. Post-stroke dysphagia (PSD) is a
major complication or significant sequelae after stroke, which may manifest as aspiration,
pharyngeal residual, delayed swallowing initiation, etc., and be closely related to aspiration
pneumonia, starvation, and dehydration [2–4]. Early data suggest that it affects 29–78% of
patients with stroke and is linked to a higher risk of hospital readmissions and death [5,6].
Besides, other PSD-related factors include advanced age, unilateral spatial neglect (USN),
etc., because of the decline of physiological functions [7,8].
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The medulla oblongata is usually considered to be the swallowing center, where the
swallowing central pattern generator (swCPG) participates in the coordinated contraction
of lingual, pharyngeal, and laryngeal muscles [9,10]. However, the lobar and deep brain
regions also play an important role in the neural regulation of swallowing (including pre-
frontal lobe, temporal lobe, insular lobe, parietal lobe, thalamus, supplementary motor area,
corona radiata, internal capsule, periventricular white matter, etc.). Any lesions of these
brain regions are thought to be related to PSD [11–14]. For example, the activation of the pri-
mary sensory/motor cortex is believed to predominate in reflex swallowing [15–17], while
the activation of the primary sensory/motor cortex, insular, prefrontal lobe, subgenual
cingulate gyrus, cuneate, and precuneus is associated with spontaneous swallowing [11,13].
The aspiration, a major complication of PSD, has been reported to be related to lesions of
brainstem [14]. However, whether there is an association between aspiration and lesions of
lobar and deep brain regions has not been well investigated.

Neuroimaging technologies, including functional magnetic resonance imaging (fMRI),
make it possible to identify the relationship between brain regions and PSD [18–20]. MRI
provides high sensitivity and specificity for ischemic stroke, in which the diffusion-weighted
imaging (DWI) is most sensitive to hyperacute cerebral infarction [21,22]. Besides, voxel-based
lesion-symptom mapping (VLSM) is a technique used to make voxel-wise statistical com-
parisons between lesion sites and neuropsychological test performance [11]. Furthermore,
videofluoroscopic swallowing study (VFSS) and fiberoptic endoscopic evaluation of swallow-
ing (FEES) are widely used in evaluation of PSD, and both VFSS and FEES are characterized
as the gold standards for assessing PSD with different advantages and indications [23].

Several studies have reported that neuroanatomical location is linked to the incidence,
severity, and characteristics of PSD [13,17,24,25]. Given that the lobar and deep brain
regions related to PSD are reportedly different, we conducted this systematic review and
compared existing studies in the literature. The aim of this study was to investigate the
relationship of lobar and deep brain regions with PSD. We hope to provide evidence that
can guide treatment for PSD in clinical practice.

2. Method
2.1. Data Sources and Searches

Medline, Embase, Web of Science, and the Cochrane Library were systematically
searched from the establishment to May 2022. We manually searched the related studies
with the MESH term “stroke” or “post-stroke” or “poststroke” or “hemiplegia” or “hemi-
paresis” or “paresis” or “paretic” or “hemipareticand” and “lesion” or “site” or “region”
and “dysphagia” or “swallowing disorder” or “deglutition”. A hand search was addi-
tionally performed to screen the articles to further clarify potentially eligible studies in
the pre-selected articles. The full search strategy and Mesh terms were detailed in the
Supplementary Materials. The retrieval was based on the subject terms, keywords, or titles.
This study was registered with PROSPERO (CRD42022339058).

2.2. Inclusion and Excluded Criteria

Inclusion criteria were: (1) detailed brain regions related to stroke were confirmed by
MRI or CT; (2) age >18 years old; (3) swallowing function was evaluated by VFSS, FEES, or
clinical evaluations; (4) studies published in English; (5) case-control studies; (6) prospective
or retrospective cohort studies with consecutive enrollment; (7) randomized controlled trials;
and (8) human as a study population. Excluded criteria were: (1) the detailed brain regions
and swallowing function were not described; (2) studies were not published in English.

2.3. Data Extraction

Two well-trained evaluators (JQ and XC) independently extracted data from the
abstract, original texts, additional appendices, and protocols. Disagreements were resolved
by discussion with the third author (ZMW). The studied were screened for review as per the
Population, Intervention, Comparison, Outcomes, and Study design (PICOS) criteria [26].



Brain Sci. 2022, 12, 1334 3 of 13

Full texts of screened publications were examined based on the inclusion criteria and study
quality. To comply with the PRISMA statement, the reviewers pilot-tested eligibility criteria
and presented a flow diagram of study selection. The characteristics of study included
publication year and first author, while characteristics of patients included numbers of
patients, locations of stroke, phases of stroke, diagnosis methods of stroke, image analysis
methods, evaluation of PSD, days to stroke evaluation, days to PSD evaluation, age, gender,
rates of PSD, PSD-related brain regions, aspiration-related brain regions, and oral transit
time (OTT)-related brain regions. The primary outcomes were PSD-related brain regions
(including aspiration-related and OTT-related regions), and the brain regions related to
dysphagia in studies were presented as percentages. The secondary outcomes were the
incidence rate of PSD. If data extraction could not be completed, important missing data
were first requested from the corresponding author of the studies.

2.4. Quality Assessment

We utilized relevant elements from the Cochrane Collaboration’s risk of bias check-
list [27]. Two authors (QJ and XC) independently evaluated factors as Yes, No, or Unclear.
Disagreements were resolved by discussion with the third author (ZMW). We documented
additional factors, including study design, timeline for data capture, assessor-blinded,
consistent assessment for all patients, declared operational definition for outcome, and
outcome addressed for all patients.

2.5. Data Synthesis and Analysis

The brain regions with the most overlap in the included studies were considered to
be most relevant to PSD. The cortical surface maps were generated by BrainNet viewer
software (www.nitrc.org/projects/bnv/ (accessed on 31 October 2017) and Mricon software
(www.mccauslandcenter.sc.edu/MRIcro/mricron (accessed on 2 May 2016). Differences
between groups were identified by the two-tailed independent-sample t-tests or χ2 analyses
for continuous variables and frequency-based variables (as appropriate). All statistical anal-
yses were performed using SPSS software (version 23.0, SPSS/IBM, Armonk, NY, USA).

3. Result

A total of 3601 articles were screened, and the full text of 51 articles was reviewed.
Finally, 24 studies (2306 patients) meet the inclusion criteria and are included in the final
analysis. Figure 1 shows the PRISMA flow diagram. A detailed description and quality
assessment of each article is provided in Tables 1–4.

3.1. Characteristics of Included Studies

Of 24 studies (2306 patients), the median age of participants was 68.60 (age range from
61.1 to 75.0 years), and 57.24% (n = 1712) of the population were male. The median sample
size was 95 (ranging from 20 to 342). Thirteen of the included studies were supratentorial
strokes [11–13,17,25,28–35], one infratentorial stroke [36], and seven both the supratentorial
and infratentorial strokes [16,37–42]. Besides, subjects of sixteen studies were in acute phase
of stroke [11–14,16,17,25,29,34,35,38,39,41–44], one was in subacute phase of stroke [30],
and one was in chronic phase of stroke [28], while the stroke phases of the remaining six
studies were unclear (Table 1).

www.nitrc.org/projects/bnv/
www. mccauslandcenter.sc.edu/MRIcro/mricron
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Table 1. The characteristics of included studies.

Study Number of
Patients Locations of Stroke Phases of

Stroke

Diagnosis
Methods of

Stroke

Image Analysis
Methods

Evaluation of
PSD

Days to
Evaluation of
Lesion Sites
after Stroke

Days to
Evaluation of

PSD

Age (Mean ±
SD, Years)

Gender
(M/F)

Incidence
of PSD

Presence of
Dysphagia

before
Stroke-Event

Hess 2021 [11] n = 132 Supratentorial Acute CT VLSM WST NA NA 71.20 ± 14.20 78/54 63.60% NA

Zhang 2021 [43] n = 275 NA Acute MRI (DWI;
DTI) VLSM WST; V-VST Within

3 days Within 24 h 67.92 ± 12.22 182/93 41.10% No

Galovic 2017 [17] n = 62 Supratentorial Acute MRI VLSM FOIS 3 ± 2 days Within 48 h 75.00 ± 21.00 28/34 NA No

Moon 2018 [37] n = 90 Supratentorial and
Infratentorial NA MRI VLSM VFSS NA NA 68.02 ± 13.21 57/33 NA No

Moon 2022 [36] n = 40 Cerebellar NA MRI VLSM VFSS(VDS) NA NA 64.02 ± 13.21 24/16 NA No
Galovic 2013 [25] n = 94 Supratentorial Acute MRI ROI SSA NA Within 48 h 74.00 ± 19.00 48/46 36.00% NA

Nakamori 2021 [38] n = 342 Supratentorial and
Infratentorial Acute MRI

(FLAIR) NA VFSS Within 1 week Within 14 days 70.40 ± 12.60 200/142 13.20% NA

Jang 2017 [28] n = 82 Supratentorial Chronic MRI VLSM VFSS NA NA 73.90 ± 8.01 75/7 73.17% No
Lapa 2021 [29] n = 113 Supratentorial Acute CT or MRI ASPECTS FEES(FEDSS) NA Within 24 h 69.00 ± 13.00 67/45 54.90% No

Wilmskoetter 2019 [13] n = 68 Supratentorial Acute DWI VLSM MBSImP; PAS NA NA 68.21 ± 15.23 32/36 NA No
Suntrup 2015 [44] n = 200 NA Acute CT or MRI NA FEES(FEDSS) Within 24–60 h Within 96 h 73.70 ± 16.50 101/99 82.50% No
Flowers 2017 [14] n = 160 NA Acute MRI NA NA Within 14 days NA 68.00 91/69 48.00% NA

Kim 2016 [30] n = 31 Supratentorial Subacute DTI FA value; ADC
value VFSS(VDS) NA NA 61.10 ± 9.42 19/12 54.80% No

Im 2018 [31] n = 21 Supratentorial NA MRI NA VFSS NA Within 14 days 57.38 ± 12.71 13/8 NA No

Osawa 2013 [39] n = 50 Supratentorial and
Infratentorial Acute CT or MRI SPECT data VFSS; RSST;

MWST NA NA 70.20 ± 10.30 32/18 70.00% No

Momosaki 2012 [32] n = 20 Supratentorial NA MRI rCBF MWST; FEES
FOIS NA Within 7 days 66.10 ± 5.10 14/6 NA No

Cola 2010 [12] n = 20 Supratentorial Acute MRI NA VFSS NA NA 62.30 ± 12.20 19/1 35.00% No

Saito 2016 [40] n = 20 Supratentorial and
Infratentorial NA MRI (DWI;

FLAIR) NA VFSS NA Within 4 weeks 76.40 ± 10.40 7/13 NA NA

Dehaghani 2016 [16] n = 113 Supratentorial and
Infratentorial Acute CT or MRI NA MASA Within 24–72 h Within 20 days 64.37 ± 15.10 69/44 47.80% No

Daniels 1996 [24] n = 16 Supratentorial NA CT or MRI NA VFSS within 1 month within 1 month 66.60 ± 13.90 12/4 NA NA

Broadley 2003 [41] n = 149 Supratentorial and
Infratentorial Acute CT or MRI NA

Parramatta
Hospitals

Assessment
NA Within 72 h 72.00 88/61 50.00% NA

Steinhagen 2009 [42] n = 60 Supratentorial and
Infratentorial Acute CT or MRI NA FEES NA NA 74.60 ± 11.40 25/35 NA No

Gonzalez-Fernandez
2008 [34] n = 14 Supratentorial Acute MRI (FLAIR;

DWI) ROIs NA Within 24 h Within 7 days 62.60 ± 14.30 7/7 NA No

Galovic 2016 [35] n = 119 Supratentorial Acute MRI (DWI) VLSM
Bogenhausen

Dysphagia
Score part 2

NA Within 48 h 76.00 ± 9.00 65/54 NA No

Note: CT, Computed Tomography; MRI, Magnetic Resonance Imaging; FLAIR, Fluid Attenuated Inversion Recovery; DWI, Diffusion-Weighted Imaging; VLSM, Voxel-based Lesion
Symptom Mapping; ROI, Region of Interest; FA value, Fractional Anisotropy value; ADC value, Apparent Diffusion Coefficient value; SPECT, Single-photon Emission Computed
Tomography; rCBF, Regional Cerebral Blood Flow; WST, Water Swallowing test; V-VST, Volume Viscosity Screening Test; VFSS, Videofluoroscopic Swallowing Study; FOIS, Functional
Oral Intake Scale; PAS, Penetration-aspiration Scale; VDS, Videofuoroscopic Dysphagia Scale; FEES, Fiberoptic Endoscopic Evaluation of Swallowing; FEDSS, Fiberoptic Endoscopic
Dysphagia Severity Scale; RSST, Repetitive Saliva Swallowing Test; MWST, Modified Water Swallow Test; SSA, Standardized Swallowing Assessment; NA, not applicable.
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Figure 1. The PRISMA flow diagram.

3.2. Study Design and Quality Assessment

As shown in Table 2, five of the included articles were prospective studies [25,34,38,41,42],
five articles were retrospective ones [13,24,30,39,40], while the types of other
fourteen articles were unclear. A total of fourteen articles reported being assessor-
blinded [11–13,17,28–30,34,38,40–44], and the other ten were unclear. Twenty-three articles
reported consistent assessment for all patients, and the remaining one was unclear [25].
Eighteen articles reported declared operational definition for the outcome, and the remain-
ing six were unclear [13,14,25,34,35,41]. Twenty-three articles reported outcomes addressed
for all patients, and the remaining one did not report [41].

Table 2. Evaluation of study quality.

Study Timeline for
Data Capture

Assessor
Blinded

Consistent
Assessment for

All Patients

Declared Operational
Definition for Outcome

Outcome
Addressed for All

Patients

Hess 2021 [11] unclear yes yes yes yes
Zhang 2021 [43] unclear yes yes yes yes

Galovic 2017 [17] unclear yes yes yes yes
Moon 2018 [37] unclear unclear yes yes yes
Moon 2022 [36] unclear unclear yes yes yes

Galovic 2013 [25] prospective unclear unclear unclear yes
Nakamori 2021 [38] prospective yes yes yes yes

Jang 2017 [28] unclear yes yes yes yes
Lapa 2021 [29] unclear yes yes yes yes

Wilmskoetter 2019 [13] retrospective yes yes unclear yes
Suntrup 2015 [44] unclear yes yes yes yes
Flowers 2017 [14] unclear unclear yes unclear yes

Kim 2016 [30] retrospective yes yes yes yes
Im 2018 [31] unclear unclear yes yes yes

Osawa 2013 [39] retrospective unclear yes yes yes
Momosaki 2012 [32] unclear unclear yes yes yes

Calo 2010 [12] unclear yes yes yes yes
Saito 2016 [40] retrospective yes yes yes yes

Dehaghani 2016 [36] unclear unclear yes yes yes
Daniels 1996 [24] retrospective unclear yes yes yes

Broadley 2003 [41] prospective yes yes unclear no
Steinhagen 2009 [42] prospective yes yes yes yes

Gonzalez-Fernandez 2008 [34] prospective yes yes unclear yes
Galovic 2016 [35] unclear unclear yes unclear yes
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3.3. Swallowing Assessment

The swallowing assessment tools included the Water Swallowing Test (WST) [11,43],
Videofluoroscopic Swallowing Study (VFSS) (taking up 37.5% of included
studies) [12,24,28,30,31,36,38–40], Volume-viscosity Swallow Test (V-VST) (4.2%) [43],
Fiberoptic Endoscopic Evaluation of Swallowing (FEES) (12.5%) [29,42,44], MBS impair-
ment tool (MBSImP) (4.2%) [13], Standardized Clinical Assessment Tool (4.2%) [25], and
Bogenhausen Dysphagia Score Part 2 (BDS-2) (4.2%) [35]. A total of thirteen articles de-
scribed the days to the evaluation of PSD (ranging from 24 h to 4 weeks; Table 1).

3.4. Diagnosis of Stroke

The MRI was used for the diagnosis of stroke in the 24 articles, in which four articles
reported using DWI scans [13,34,35,43], two articles adopted DTI scans [30,43], three articles
used flair scans [34,38,40], and the remaining twelve articles did not report the scanning
sequence. Of all the articles, eight articles adopted VLSM in the assessment of stroke-related
brain regions [11,13,17,28,35–37,43], and eight described the days to evaluation of lesion
sites after stroke (ranging from 24 h to 14 days; Table 1) [14,16,17,24,34,38,43,44].

3.5. PSD-Related Lobar and Deep Brain Regions

The PSD-related lobar and deep brain regions included insular cortex (including
the right, left, and anterior insular cortex) [11,13,14,16,17,24,25,29,31,35,37,39,41], which
has been reported in 54.2% of included studies; frontal lobe (16.7%) (including superior
frontal gyrus, inferior frontal gyrus, left inferior frontal lobe, right inferior frontal gyrus,
middle frontal gyrus) [3,28,37,40]; temporal gyrus (4.2%) [11]; left and right basal ganglia
(25%) (including right internal capsule, bilateral posterior limb of the internal capsule,
lentiform nucleus) [11,28,29,34,37,38]; corona radiata (16.7%) (including left corona radiata
and superior corona radiata) [13,16,25,34]; postcentral (12.5%) (including right primary
sensory cortex) [13,16,44]; precentral (16.7%) (including left primary motor cortex, motor
supplementary areas) [13,28,30,44]; precuneus (4.2%) [39] (Table 3 and Figure 2).
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Figure 2. Illustration of lesion overlap and distribution for patients with post-stroke dysphagia (PSD).
The insular cortex might be the most relevant brain region for PSD. (A) Lobar brain regions related to
PSD. (B) Insular cortex and corresponding published articles in this review. (C) Deep brain regions
related to PSD (including basal ganglia). (D) The percentages of specific brain regions related to PSD
in the included studies. Note: the detailed information (including the lesion reported and the related
studies) was shown in Table 2; L, left; R, right.
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Table 3. The PSD-related brain regions, aspiration-related brain regions, and OTT-related brain regions.

Study Number of
Patients PSD-Related Brain Regions Aspiration-Related Brain

Regions
OTT-Related Brain

Regions

Hess 2021 [11] n = 132 Right insular cortex; Left basal ganglia; Left corona radiata; Left central
region NA NA

Zhang 2021 [43] n = 275 Left inferior parietal gyrus NA NA
Galovic 2017 [17] n = 62 Superior corona radiata; Anterior insular cortex NA NA

Moon 2018 [37] n = 90 Superior frontal gyrus; Inferior frontal gyrus; Lentiform nucleus; Insular
cortex NA Lentiform nucleus; Insular

cortex
Moon 2022 [36] n = 40 Posterior lobe of the left cerebellum NA NA

Galovic 2013 [25] n = 94 Internal capsule; Insular cortex Insular cortex NA
Nakamori 2021 [38] n = 342 Parietal lobe lesion; Basal ganglia Parietal lobe NA

Jang 2017 [28] n = 82 Left inferior frontal lobe; Precentral gyrus; Right basal ganglia; Corona
radiate; Putamen Putamen Precentral gyrus

Lapa 2021 [29] n = 113 Left lentiform nucleus; Left insular cortex; Left frontal operculum; Right
insular cortex NA NA

Wilmskoetter 2019 [13] n = 68

Right inferior frontal gyrus; Pre- and postcentral gyrus; Supramarginal
gyrus; Angular gyrus; Superior temporal gyrus; Insular cortex; Thalamus;

Amygdala; Superior longitudinal fasciculus; Corona radiata; Internal
capsule; External capsule; Ansalenticularis; Lenticular fasciculus

NA NA

Suntrup 2015 [44] n = 200 Right pre- and post-central gyri; Opercular region; Supramarginal gyrus;
Respective subcortical white matter tracts; Post-central lesion NA NA

Flowers 2017 [14] n = 160 Medullary; Insular cortex; Pontine NA NA

Kim 2016 [30] n = 31 Primary motor cortex on the contra-lesional side; Bilateral posterior limb of
the internal capsule NA NA

Im 2018 [31] n = 21 Caudate nucleus; Insular cortex Caudate nucleus NA
Osawa 2013 [39] n = 50 Left precuneus; Left insular cortex; Anterior cingulate gyrus Anterior cingulate gyrus NA

Momosaki 2012 [32] n = 20 Brodmann area 4 NA NA
Calo 2010 [12] n = 20 Left periventricular white matter NA NA
Saito 2016 [40] n = 20 Middle frontal gyrus NA NA

Dehaghani 2016 [16] n = 133 Right primary sensory; Right insular cortex; Right internal capsule NA NA
Daniels 1996 [24] n = 16 Insular cortex NA NA

Broadley 2003 [41] n = 149 Frontal cortex; Insular cortex NA NA
Steinhagen 2009 [42] n = 60 NA Insular cortex NA

Gonzalez-Fernandez 2008 [34] n = 14 Primary somatosensory; Motor and motor supplementary areas; Putamen;
Caudate; Basal ganglia; Internal capsule; NA NA

Galovic 2016 [35] n = 119 Anterior insular cortex NA NA

Note: PSD, post-stroke dysphagia; OTT, oral transit time; NA, not applicable.
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A total of twelve studies reported the effect of the insular cortex on PSD. These studies
were conducted on an acute phase of stroke, investigated the potential lesion pattern related
to PSD, and found that the right insular cortex is related to swallowing dysfunction and
predictive for the development of dysphagia [11,16,29]. According to Hess et al., the MNI
coordinates were X = −39, Y = −11, Z = 10, and the voxels were 799 [11]. Another two
studies, conducted on right hemispheric strokes, reported that associations were found
in the left insular cortex [29,39]. Furthermore, two studies conducted on supratentorial
strokes by VLSM analysis demonstrated that the anterior insular cortex was associated with
the prognosis of PSD [17,35]. The anterior insular cortex (MNI coordinates were X = 39,
Y = 10, Z = 20) was related to impaired oral intake 4 weeks after stroke, as reported by
Galovic et al. [17], and affected 54% of voxels. Besides, Galovic et al. reported the anterior
insular cortex was also related to the time before oral feeding [35] and found a significant
difference in the anterior insular cortex (MNI coordinates are X = 37, Y = 10, Z = 6) by the
comparison between tube-dependency and no tube feeding patients, which affected 70% of
voxels. The remaining six studies did not report the specific regions of the insular cortex.

3.6. Aspiration-Related and Oral Transit Time (OTT)-Related Brain Regions

The aspiration-related brain regions included insular cortex (8.3%) [25,42], parietal
lobe (4.17%) [38], putamen (4.17%) [28], caudate nucleus (4.17%) [31], and anterior cingulate
gyrus (4.17%) [39]. The OTT-related brain regions included insular cortex, lentiform nucleus,
and precentral gyrus [28,37].

3.7. The Incidence Rate of PSD

The incidence rates of PSD were 63.6%, 41.1%, 54.9%, 82.5%, 48%, 35%, 47.8%, and
50% in acute phase of stroke [11,12,14,16,29,41,43,44], while the rate was 54.8% in subacute
phase of stroke [29]. For supratentorial stroke patients, the reported incidence rates of PSD
were 54.9%, 54.8%, and 35% [12,29,30]. Furthermore, the incidence rate of aspiration was
36%, 13.2%, and 70.0% in acute phase of stroke [25,38,39].

We conducted a secondary analysis according to the data provided in the included
articles. The results showed that the incidence rate of PSD was around 40.4%, which was
significantly higher in the male than in the female population (χ2 = 196.17, p < 0.001), while
there was no statistical difference in incidence rate between ischemic and hemorrhagic
stroke groups (χ2 = 1.173, p = 0.279), as well as right and left hemispheric stroke groups
(χ2 = 0.648, p = 0.412) (Table 4).

Table 4. The incidence of PSD stratified by gender, type of stroke, and location of stroke.

Study Number of
Patients

PSD vs. No
PSD

Male vs.
Female

Ischemic vs.
Hemorrhagic

Right vs.
Left

Infratentorial vs.
Supratentorial

Hess 2021 [11] n = 132 84/48 48/36 NA 36/48 10/74
Zhang 2021 [43] n = 275 113/162 75/38 NA 52/43 NA

Galovic 2017 [17] n = 62 NA NA NA NA NA
Moon 2018 [37] n = 90 90/0 57/33 64/26 50/35 16/74
Moon 2022 [36] n = 40 NA NA NA NA NA

Galovic 2013 [25] n = 94 NA NA NA NA NA
Nakamori 2021 [38] n = 342 45/297 37/18 NA NA NA

Jang 2017 [28] n = 82 82/0 75/7 68/14 26/11 NA
Lapa 2021 [29] n = 113 62/51 27/24 NA 11/40 NA

Wilmskoetter 2019 [13] n = 68 NA 32/36 NA NA NA
Suntrup 2015 [44] n = 200 NA NA NA NA NA
Flowers 2017 [14] n = 160 76/84 46/30 NA NA NA

Kim 2016 [30] n = 31 17/14 12/5 NA 13/14 NA
Im 2018 [31] n = 21 21/0 13/8 14/7 9/12 NA

Osawa 2013 [39] n = 50 27/23 13/14 19/8 4/12 13/3
Momosaki 2012 [32] n = 20 10/10 8/2 2/8 NA NA

Calo 2010 [12] n = 20 7/14 NA NA 10/10 NA
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Table 4. Cont.

Study Number of
Patients

PSD vs. No
PSD

Male vs.
Female

Ischemic vs.
Hemorrhagic

Right vs.
Left

Infratentorial vs.
Supratentorial

Saito 2016 [40] n = 20 20/0 7/13 NA 8/12 NA
Dehaghani 2016 [36] n = 133 54/79 24/30 8/12 NA NA

Daniels 1996 [24] n = 16 NA NA NA 8/8 NA
Broadley 2003 [41] n = 149 74/75 41/33 NA NA NA

Steinhagen 2009 [42] n = 60 NA NA NA NA 16/44
Gonzalez-Fernandez 2008 [34] n = 29 14/15 7/7 NA 10/4 NA

Galovic 2016 [35] n = 119 12/107 6/6 NA 5/7 NA

Note: PSD, post-stroke dysphagia. NA, not applicable.

4. Discussion

The present study found that the PSD-related lobar and deep brain regions included
the insular cortex, frontal lobe, temporal gyrus, basal ganglia, postcentral, precentral,
precuneus, corona radiate, etc., in which the insular cortex might be most relevant to PSD
and aspiration after PSD and was reported in 54.2% of included studies. Furthermore,
the total incidence rate of PSD was around 40.4%, and the incidence of male was nearly
2.57 times as much as that of female.

4.1. The Lobar and Deep Brain Regions Participate in the Swallowing Function Regulation

The swallowing function is not only regulated by the medulla oblongata, but by the
lobar and deep brain regions. Different lobar and deep brain regions participate in different
aspects of swallowing function. For example, lobar regions like the parietal–temporal lobes
are associated with oropharyngeal residue, while the somatosensory cortex governs and
executes motions by controlling and providing feedback to the brainstem and is responsible
for the laryngeal elevation and vestibular closure [13,45]. Besides, the deep brain regions
are also involved in PSD. The basal ganglia are considered to participate in the sensory
input of swallowing function [34,46], in which the internal capsule is involved in the
oropharyngeal residue and aspiration after dysphagia [13,34], while the outer capsule is
involved in laryngeal elevation and vestibular closure [13,35]. The periventricular white
matter is related to the occurrence of PSD [12,31], and the corona radiata is related to the
oropharyngeal residue, laryngeal elevation, and vestibular closure [13].

4.2. Insular Cortex May Be Most Relevant to PSD

The present study found that the insular cortex may be most relevant to PSD. The insu-
lar cortex is involved in an overwhelming variety of functions, including decision-making,
complex social functions, addiction, and sensory processing, to represent feelings [47,48]. It
is located in the deep brain part of the lateral fissure and covered by the parietal, frontal, and
temporal lobes, which accept the projection fiber from the thalamic nucleus and participate
in the swallowing coordination by sensory-motor integration [13]. Therefore, the insular
cortex participates in the various aspects of the swallowing process, including OTT, tube
dependency, pharyngeal transit time, and aspiration [17,25,31,35,37]. Damage to the insular
cortex (e.g., brain trauma) is more likely to manifest as delayed swallowing initiation,
decreased laryngeal elevation, and impairment of laryngeal vestibular closure [13,49,50].

4.3. Insular Cortex May Be Relevant to Aspiration after PSD

The aspiration is a common but serious sequela after PSD and is associated with
abnormal swallow–breathing coordination [51]. The insular cortex may be involved in the
aspiration process by participating in the swallow–breathing coordination. The swallow–
breathing coordination center is often considered the medulla oblongata, in which the
swCPG and respiratory center pattern generator (rCPG) participates in the regulation
of swallow–breathing coordination directly [9,10]. A core aspect of swallow–breathing
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coordination is the reciprocal inhibition between swCPG and rCPG, and any injury or
damage to the brainstem may lead to PSD and aspiration [52].

Meanwhile, the lobar and deep brain neural networks also play an important role
in swallow–breathing coordination. On the one hand, the insular cortex participates in
the coordination of swallowing function. The previous studies adopted fMRI to explore
the features of the cerebral cortex for PSD patients and found that the insular cortex was
activated obviously during the swallowing task [50]. For healthy volunteers, the insular
cortex was also activated, and the functional connection was enhanced between the insular
cortex and other brain regions during swallowing tasks, including the sensorimotor cortex,
frontal lobe, and parietal lobe [49]. Besides, damage to the anterior insular would cause
more serious symptoms, manifesting as severely impaired oral intake requiring acute
tube insertion [35].

On the other hand, the insular cortex also participates in the coordination of respiratory
function. Brain imaging studies have provided evidence that dyspnea is associated with
activation of the insular cortex [53]. Meanwhile, Trevizan-Baú et al. adopted holera toxin
subunit B (CT-B) for the retrograde tracing of the neural regulation of breathing and found
that insular exists alongside a great number of neurons with CT-B labeled [54]. Van et al.
used the pseudorabies virus (PRV) inoculation into the thyroarytenoid muscle, which par-
ticipates in the breathing–swallowing coordination, showing that the PRV transfer from the
peripheral to the swCPG, rCPG, hypothalamus, insular, and motor cortex. Besides, the dif-
ferent insular cortex regions might be involved in different breathing patterns, and damage
to the posterior insular cortex is more likely to manifest as respiratory excitatory responses,
while the anterior insular manifests as inhibitory respiratory responses [55]. Therefore,
the insular cortex (especially the anterior insular) might be involved in the occurrence of
aspiration after PSD by participating in the regulation of swallow–breathing coordination.

According to the previous research, we proposed a new hypothesis for the mechanism
of the insular cortex on aspiration after PSD. Firstly, the brainstem receives input signals
from peripheral organs (including the tongue, bronchial, and esophagus), in which the
swCPG and rCPG located in the brainstem are reciprocal inhibition. Secondly, the thalamus
receives input signals from the brainstem. Eventually, the insular cortex receives input
signals from the thalamus. The stroke in the insular cortex may disturb the reciprocal
inhibition relationship of swCPG and rCPG, which may lead to PSD and aspiration after
PSD (Figure 3).
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Figure 3. A hypothesis for the mechanism of the insular cortex on aspiration after PSD based on
previous studies. Firstly, the brainstem receives input signals from peripheral organs (including
the tongue, bronchial, and esophagus), in which the swCPG and rCPG located in the brainstem are
reciprocal inhibition. Secondly, the thalamus receives input signals from the brainstem. Eventually,
the insular cortex receives input signals from the thalamus. The stroke in the insular cortex may
disturb the reciprocal inhibition relationship of swCPG and rCPG, which may lead to PSD and
aspiration after PSD. Note: PSD, post-stroke dysphagia; swCPG, swallowing center pattern generator;
rCPG, respiratory center pattern generator. Green arrow, promotion; red arrow, inhabitation.
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4.4. Clinical/Rehabilitative Implication of Normal Function for Insular Cortex

Several suggestions can be recommended according to our results. Firstly, the insular
cortex participates in the various aspects of swallowing and can be a potentially promising
target for the treatment of aspiration. For example, noninvasive brain stimulation (NIBS),
including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct cur-
rent stimulation (tDCS), is a practical technique which has proved effective, and is widely
used to promote the recovery of PSD [56]. However, the rTMS relies on accurate stimulation
at specific brain regions to achieve clinical efficacy [57]. Therefore, the insular cortex may
become the target in the treatment of PSD and aspiration. Secondly, brainstem stroke
is reportedly the main incentive of PSD [58], however, the lobar and deep brain regions
also participate in the swallowing function regulation [59]. After lobar and deep brain
regions stroke, a comprehensive assessment may be needed to avoid serious complications
according to our results.

4.5. Limitations

The present study has several limitations. First, the relationship between the brain
stem and dysphagia is not investigated in the present study. Second, only studies that
presented detailed stroke lesion sites were included, while those on the large areas of the
brain regions were excluded, which might cause potential bias. Third, the studies included
in the present research were limited to those in English, which may lead to bias. Fourth,
the relationship between brain lesions and dysphagia after stroke was investigated based
on qualitative analysis rather than quantitative analysis due to the limited data. Therefore,
high-quality quantitative analysis studies are needed.

4.6. Conclusions

The PSD-related lobar and deep brain regions included the insular cortex, frontal lobe,
parietal lobe, basal ganglia, etc., in which insular cortex may be the area most relevant to
PSD and aspiration after PSD.
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