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Abstract: Feature selection for multiple types of data has been widely applied in mild cognitive
impairment (MCI) and Alzheimer’s disease (AD) classification research. Combining multi-modal data
for classification can better realize the complementarity of valuable information. In order to improve
the classification performance of feature selection on multi-modal data, we propose a multi-modal
feature selection algorithm using feature correlation and feature structure fusion (FC2FS). First, we
construct feature correlation regularization by fusing a similarity matrix between multi-modal feature
nodes. Then, based on manifold learning, we employ feature matrix fusion to construct feature
structure regularization, and learn the local geometric structure of the feature nodes. Finally, the two
regularizations are embedded in a multi-task learning model that introduces low-rank constraint, the
multi-modal features are selected, and the final features are linearly fused and input into a support
vector machine (SVM) for classification. Different controlled experiments were set to verify the
validity of the proposed method, which was applied to MCI and AD classification. The accuracy of
normal controls versus Alzheimer’s disease, normal controls versus late mild cognitive impairment,
normal controls versus early mild cognitive impairment, and early mild cognitive impairment
versus late mild cognitive impairment achieve 91.85 ± 1.42%, 85.33 ± 2.22%, 78.29 ± 2.20%, and
77.67 ± 1.65%, respectively. This method makes up for the shortcomings of the traditional multi-
modal feature selection based on subjects and fully considers the relationship between feature nodes
and the local geometric structure of feature space. Our study not only enhances the interpretation of
feature selection but also improves the classification performance, which has certain reference values
for the identification of MCI and AD.

Keywords: feature correlation; feature structure fusion; multi-modal; classification; feature selection

1. Introduction

Alzheimer’s Disease (AD) is a neurological disorder associated with memory and
mobility impairment and resulting in loss of cognitive function. With the aging of society,
more and more elderly people are facing this disease. Studies have shown that the preva-
lence of AD in developing countries is much higher than that in developed countries [1].
Early mild cognitive impairment (EMCI) and late mild cognitive impairment (LMCI) is
an intermediate state between healthy normal people and Alzheimer’s patients, and MCI
gradually develops into AD with the development of the disease. Thus, determining how
to accurately classify MCI and AD is of great significance.

In daily diagnosis, we can obtain massive amounts of medical image data with differ-
ent structures and types. It helps us to observe the same subject from different perspectives
and strengthen the understanding of the disease pathogenic factors. Traditional single-
modal data only start from medical image data and observe the subjects from a single
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perspective. Obviously, the information complementarity between different modal data is
ignored. This is bound to result in the acquired features not being comprehensive enough,
affecting the final classification results. By observing the subjects with multi-modal data, we
can understand the pathogenic factors of the disease more comprehensively. For example,
Zhang et al. [2] combined Magnetic Resonance Imaging (MRI), Positron Emission Tomog-
raphy (PET), and Cerebrospinal Fluid (CSF) data for feature selection. Li et al. [3] adopted
two imaging techniques, Arterial Spin Labeling (ASL) and Blood Oxygen Level-Dependent
Functional Magnetic Resonance Imaging (BOLD-FMRI), to conduct MCI classification and
select features with good characterization. The results show that the classification effect of
these two studies is better than that of single-modal data. Structural Magnetic Resonance
Imaging (sMRI) and PET have been widely adopted in multi-modal feature selection [4–7].
These two modes can simultaneously obtain the structural and functional features of the
brain, which can enhance the ability of feature description and facilitate feature expression.

For MCI and AD classification, the most important point is to carry out joint feature
selection for the features extracted from multiple modal data. It is essential to screen out
the features associated with the disease and improve the classification performance while
reducing the feature dimension. In machine learning, feature selection algorithms can
be roughly divided into filtering [8], wrapping [9], and embedded [10,11]. Embedded
feature selection, which is widely applied, combines the learner with the feature selection
process, and automatically completes feature selection when the learner learns. Regu-
larization techniques are often applied to embedded feature selection algorithms. For
example, the Lasso algorithm [12] uses L1-norm regularizer to achieve feature selection
effect with sparse feature weight vectors. Among the existing embedded feature selection
algorithms, multi-task learning is often used for feature selection related to disease [13–16].
Its advantages are that it can reveal the potential common characteristics between different
tasks, carry out information sharing between tasks, and has good generalization. For
example, Jie et al. [17] obtained manifold structures of different modal data by combining
manifold learning and multi-task learning, effectively combining information complemen-
tarity among multi-modal data; Lei et al. [15] adopted a new regularization to reduce rank
relaxation based on multi-task learning, which can better carry out feature selection and
reduce redundant features. In recent studies, Shao et al. [18] introduced hypergraph learn-
ing derived from multi-task learning and proposed a feature selection algorithm based on
hypergraph to reflect the high-order relationship between subjects through the hypergraph
Laplacian matrix.

However, the above methods only consider the potential relationship between subjects
in different modalities or in the same modality, and do not satisfactorily consider the
internal relationship between different modalities or different features in the same modality.
Therefore, we propose a multi-modal feature selection with feature correlation and feature
structure fusion that applies to MCI and AD classification. First, features are extracted
from sMRI and PET data, and the correlation coefficient matrix between different modal
features is converted into feature correlation regularization by weighted sum; Then, based
on manifold learning, the feature matrix is fused, and feature structure regularization is
constructed. A low-rank constraint is added based on the multi-task learning model, and
two regularizations are embedded into the improved model to obtain the final feature
selection model. The multi-modal features are selected by the proposed model, and the
selected features are linearly fused into a support vector machine (SVM) for classification,
and the final classification results are obtained. Then, the effects of different feature
correlation calculation methods, the fusion coefficients of the feature matrix, and different
regularized weight coefficients on classification performance are discussed. Finally, the
brain regions corresponding to the selected features are analyzed to find the discriminative
brain regions affected by MCI and AD diseases respectively.
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2. Materials and Methods
2.1. Research Framework

Our research framework which is shown in Figure 1 mainly includes the following steps.
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Figure 1. The research framework. (a) Original sMRI and PET images were preprocessed, then
regions of interest were extracted by AAL template as sMRI and PET features, and the corresponding
feature matrices of sMRI and PET were obtained, respectively. (b) Correlation coefficients between
feature nodes of each modal data were calculated to obtain the feature correlation matrix, and the
feature correlation regularization was obtained by linear fusion. (c) Feature matrix was weighted
fusion, then the adjacent nodes were calculated to obtain the adjacency matrix, and the feature graph
Laplacian matrix was constructed according to the cosine distance method to obtain the feature
structure regularization. (d) The two regularizations were embedded into the multi-task model with
low-rank constraint for feature selection. (e) Feature vectors with good characterization were selected
by the proposed model, standardized respectively, and the features extracted from multi-modal data
were linearly fused to obtain a new fused feature matrix. (f) The test set and training set were divided
from the fused feature matrix, the training set was trained by the 10-fold cross-validation method and
SVM to obtain the classification model, and the classification performance of the model was verified
by the test set; (g) The corresponding discriminative brain regions of the selected feature nodes were
visualized to analyze the discriminative brain regions affected by MCI and AD respectively.

2.2. Data Acquisition and Preprocessing

The data were collected from Alzheimer’s Disease Neuroimaging Initiative (ADNI),
which focuses on the prediction and diagnosis of AD. ADNI was approved by the In-
stitutional Review Boards (IRBs), and all subjects were reviewed and approved by the
IRBs within the ADNI study, meeting all ethical standards for data collection. Our study
included structural magnetic resonance imaging (sMRI) and positron emission tomography
(PET) imaging data of 73 normal controls (NCs), 53 EMCI subjects, 49 LMCI subjects, and
69 AD subjects. The specific information of subjects is shown in Table 1.
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Table 1. The subject’s information.

Characteristic Normal EMCI LMCI AD

Number 73 53 49 69
Male/Female 39/34 23/30 22/27 36/33

Age (mean ± SD) 75.9 ± 6.79 72.9 ± 7.6 73.1 ± 8.23 72.54 ± 6.12
MMSE (mean ± SD) 28.14 ± 1.21 27.1 ± 1.62 26.3 ± 2.1 22.54 ± 2.16

There are different inclusion and exclusion criteria for the four categories of subjects:
For normal controls, cognition must be normal, and without memory impairment, the
Mini-Mental State Exam (MMSE) score should be between 24 and 30, Clinical Dementia
Rating (CDR) and Memory Box Score should be 0, while any normal controls with signifi-
cant neurologic disease must be excluded. EMCI subjects must have subjective memory
problems, MMSE score between 24 and 30, CDR and Memory Box score must both be 0.5;
Subjects with any significant neurological disease other than suspected early Alzheimer’s
disease need to be excluded. For LMCI subjects, the inclusion criteria were consistent
with EMCI, and the criteria to distinguish EMCI and LMCI were determined by Wechsler
Memory Scale. Exclusion criteria are consistent with EMCI. Patients with AD must have
subjective memory problems, MMSE score between 20 and 26, and CDR must be 0.5 or
1. Probable AD needs to meet the NINCDS/ADRDA criteria [19]. Subjects with other
neurological disorders besides Alzheimer’s had to be excluded.

SPM12 software [20] was used to preprocess sMRI and PET original images with voxel-
based morphometric (VBM) analysis methods. For sMRI data, spatial standardization was
first carried out. The MNI152 standard brain template was used to map the same region
of each original image to the template region one by one, which helps to eliminate the
brain differences caused by individual factors. Then, the image was segmented into gray
matter, white matter, and cerebrospinal fluid, and the noise was eliminated by a smoothing
operation. Finally, the AAL template [21] was used to extract the average gray matter
density of the brain region of interest (ROI) as the sMRI data features. For PET data, the
realignment of the images was carried out first. The images were coregistered onto the
MNI152 brain space [21,22] for normalization and smoothing operation, and the width of
8 mm of a Gaussian filter was adopted. Finally, the glucose metabolism of the cerebral
regions of interest was extracted using AAL template as PET data features.

2.3. Joint Feature Learning with Low-Rank Constraint

The multi-task learning model has been widely applied into multi-modal feature
selection. Its main advantage is that it can mine deep common data features among
different tasks and realize information sharing among multiple modal data [23].
L2,1-norm regularizer can minimize the loss function while making weight vectors as
sparse as possible, while selecting feature vectors with representation. Previous studies
have shown that low-rank constraint can also find shared information well [24] and can
measure the similarity between matrix row vectors. Therefore, low-rank constraint is
introduced to capture the potential relationship between different task features. It promises
to improve the information sharing between different tasks in the multi-task model and
improve the model generalization performance. The following model is established:

min
w1,w2,...,wm

m

∑
i=1
‖Yi −Xiwi‖2

2 + γrank(W) (1)

where Xi = [x1, x2, . . . , xN ]
T ∈ RN×p is the feature matrix of the i-th modality, N represents

the number of subjects, p represents the number of features, which is also the number of
regions of interest; Yi = [y1, y2, . . . , yN ]

T ∈ RN×1 represents the number of subjects labels
in the i-th modality, W = [w1, w2, . . . , wm] ∈ Rp×m is the feature weight matrix, and each
element in wi represents the corresponding feature weight value in the i-th modality, m is
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the number of the modality; rank(·) represents low-rank constraint, and γ is the low-rank
constraint coefficient.

In fact, the low-rank constraint for a matrix is nonconvex and it is a typical NP-
hard problem. It has been proved that trace norm can be used to approximate low-rank
constraint [25,26]. Finally, the loss function of multi-modal feature learning based on
low-rank constraint is obtained, as shown in Equation (2):

min
w1,w2,...,wm

m

∑
i=1
‖Yi −Xiwi‖2

2 + γ‖W‖∗ (2)

where ‖ · ‖∗ represents trace norm of the matrix, ‖W‖∗ = ∑i λi is the sum of all singular
values of the matrix W.

2.4. Feature Correlation and Feature Structure Regularization

In multi-modal data, features are often related to each other [27]. Feature selection is
to select a feature from several highly correlated features, when one feature is restricted,
which will inevitably lead to the selection of highly correlated features [28]. Therefore, we
consider the correlation of features between different modalities, the weighted average
of the feature correlation matrix of various modalities. Finally, we propose a new feature
correlation regularization, as shown in Equation (3):

tr(WT
m

∑
i=1

RiW) (3)

where Ri is the correlation coefficient matrix of the i-th modality, and tr(·) represents the
trace of the matrix.

The common calculation methods of correlation coefficient include the Pearson correla-
tion coefficient, the Spearman correlation coefficient, and the Kendall correlation coefficient.
The Pearson correlation coefficient can measure the linear correlation of two variables and
its value lies between −1 and 1. The Spearman correlation coefficient and Kendall corre-
lation coefficient, compared with the Pearson correlation coefficient, have more relaxed
requirements for data and wider application scope [29,30].

Furthermore, when the distance between two feature vectors is close in space, the
distance between their corresponding weight vectors should also be close. Inspired by
manifold learning and feature fusion [17,31–33], we use the weighted fusion multi-modal
feature matrix to construct the Laplacian matrix to preserve the local geometric structure of
features, so we have the following feature structure regularization:

1
2

p
∑
j,k

hjk‖Wj· −Wk·‖2
2

= tr(WT(S−H)W)
= tr(WTLFW)

(4)

where Wj· and Wk· represent the j-th row and k-th row vectors of the weight matrix
respectively, H ∈ Rp×p represents an adjacency matrix of the features. S ∈ Rp×p is a
degree and diagonal matrix, the principal diagonal element is the degree of each feature

node in the adjacency matrix H, and the calculation equation is Sii =
p
∑

i=1
Hi·. LF =∈ Rp×p

represents the Laplacian matrix computed after the fusion of the feature matrices, and
LF = S−H.
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For the adjacency matrix H, there are three construction methods: 0–1 weighting,
heat-kernel function, and cosine distance [34]. We adopt the cosine distance method to
construct, and its calculation equation is as follows:

hij =


XT
·i X·j

‖X·i‖‖X·j‖
, i f X·i and X·j are adjacent

0, otherwise
(5)

where hij is the i-th row and j-th column element of the adjacency matrix H, which is used
to measure the similarity between i-th and j-th columns of the feature vectors in the feature
matrix X. X·i and X·j represent the feature vectors of the i-th and j-th columns of the feature
matrix X, respectively.

2.5. Multi-Modal Feature Selection

In this work, an improved feature selection algorithm is proposed. Based on the
multi-task learning model, trace norm is introduced to improve information sharing be-
tween different modalities, and the feature correlation regularization and feature structure
regularization proposed above are introduced. The potential correlation between features
is learned and the local geometric structure of features is preserved while minimizing the
loss function, in order to improve the generalization ability of the model. Finally, we obtain
the final established loss function:

min
w1,w2,...,wm

m

∑
i=1
‖Yi −Xiwi‖2

2 + αtr(WT
m

∑
i=1

RiW) + βtr(WTLFW) + γ‖W‖∗ (6)

where α, β, and γ are regularization parameters, and they are all real numbers greater than
zero. The loss function is divided into four parts, the first is empirical error, the second
is feature correlation regularization, the third is feature structure regularization, and the
fourth is trace norm.

The solution of the objective loss function of Equation (6) is a convex optimization
problem. Combining with the existing optimization algorithm [35,36], an optimization
algorithm is proposed to solve this problem. First, the loss function is divided into a convex
and non-convex function. The trace norm is a non-convex regularization term, and the
remainder is convex terms. Let ϕ(W) = η(W) + γ‖W‖∗, where η(W) is the differentiable
part, and the original loss function can be rewritten as:

min
w1,w2,...,wm

η(W) + γ‖W‖∗ (7)

For any given Wk−1, consider the second-order approximate form of ϕ(W) at Wk−1,
and we obtain:

ϕ(W) ≈ Q(W, Wk−1)

= η(Wk−1)+ < W−Wk−1,∇η(Wk−1) > + s
2‖W−Wk−1‖2

F + γ‖W‖∗
(8)

where < ·, · > denotes the inner product, ‖ · ‖F is the Frobenius norm of the matrix,
∇η(Wk−1) represents the derivative of the differentiable function η(·) at Wk−1, and the
iterative updating equation of the weight matrix W is further obtained:

Wk = proxγ‖·‖∗(Wk−1 −
1
s
∇η(Wk−1)) (9)

where s is the step length, and the calculation of the proximal operator proxγ‖·‖∗(·) is shown
in Equation (10):

proxγ‖·‖∗(Z) =
1
2
‖Wk − Z‖2

F + γ‖W‖∗ (10)
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For the solution of Equation (10), according to the conclusions of existing studies [37,38],
it can be computed by singular value decomposition (SVD) of Wk−1 − 1

s∇η(Wk−1), as
shown in Equation (11):

proxγ‖·‖∗(Z) = UDγVT (11)

where UDγVT is the SVD of Z, Dγ is a diagonal matrix, and the diagonal element of Dγ is
(Dγ)ii = max{Dii − γ, 0}. Equation (11) can make the weight matrix W become low-rank
while shrinking the singular values.

In the above optimization algorithm, the time complexity of this algorithm can still
be achieved O(1/M), where M is the maximum number of iterations of the algorithm,
despite the existence of a non-differentiable trace norm approximate low-rank constraint.
Meanwhile, we summarize the optimization algorithm flow of loss function to show the
above iterative update process more clearly, as shown in Table 2.

Table 2. Optimization algorithm of loss function.

Line No. Optimization Algorithm of Loss Function

1 Input: Xi ∈ RN×p represents the feature matrix of the i-th modality; Yi ∈ RN×1

represents the label corresponding to the i-th modality subjects.
2 Output: W ∈ Rp×m represents the weight matrix of the feature.
3 Normalize feature matrix Xi and initialize W0, s;
4 Compute feature correlation matrix of i-th modality, and weighted average;
5 Weighted fusion of the feature matrix, and compute feature Laplacian matrix LF;
6 Do
7 Compute SVD of Wk−1 − 1

s∇η(Wk−1);
8 Update Zk−1 = Wk−1 − 1

s∇η(Wk−1);
9 Update Wk = proxγ‖·‖∗ (Zk−1);
10 Update step length s;
11 While it reaches the maximum number of iterations or converges

2.6. Classification and Evaluation Measures

SVM is suitable for binary classification with small subjects. It has good gener-
alization ability, and can avoid dimensional disasters, and is often applied to disease
classification [39–41]. In our study, the loss function of Equation (6) is used for feature
selection, and the multi-modal features obtained are linearly fused. Then the features are
input into the SVM to classify MCI and AD, and the performance of the model is estimated
from different classification indexes.

This work mainly includes six indicators to evaluate the classification performance.
The first four common classification indicators are accuracy (ACC), area under curve (AUC),
sensitivity (SEN), specificity (SPE). Meanwhile, the geometric mean (GMean) and F1 Score
(F1) are used to further measure classification performance to overcome the influence of
different proportions of positive and negative subjects on the classification results.

Each indicator is defined as follows:

ACC =
TN + TP

TP + FP + TN + FN
(12)

AUC = P(P− < P+) (13)

SEN =
TP

TP + FN
(14)

SPE =
TN

TN + FP
(15)

GMean =

√
TP

TP + FN
+

TN
TN + FP

(16)
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F1 =
2TP

2TP + FP + FN
(17)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative respectively. Accuracy (ACC) represents the proportion of correctly classified
subjects to all subjects, sensitivity (SEN) and specificity (SPE) describe the proportion of
positive and negative subjects that are correctly classified, respectively, while area under
the curve (AUC) describes the area of the ROC curve.

3. Results
3.1. Classification Performance

In the experiment, four methods were selected for comparison and respectively applied
to MCI and AD classification. The classification performance of each method is shown
in Table 3. The baseline method is the widely used Lasso feature selection method [12],
CMTL [42] is a multi-task learning method based on clustering, MTFS [2] is a multi-task
feature selection method with L2,1-norm regularizer and applied to AD, and HMTFS [18] is
a multi-modal feature selection method based on MTFS that introduces hypergraph. In
addition to being less sensitive in NC vs. LMCI classification, the proposed method has
a better classification performance for NC vs. AD, NC vs. EMCI and EMCI vs. LMCI
than previous methods. Compared to the four comparison methods, feature correlation
regularization can better reflect the potential relationship between multiple features, while
feature structure regularization can preserve the local geometric structure of features.

Table 3. Classification performance of different methods.

Task Methods ACC (%)
±STD

AUC (%)
±STD

SEN (%)
±STD

SPE (%)
±STD

GMean (%)
±STD

F1 (%)
±STD

NC
vs.
AD

Lasso 83.89 ± 3.80 84.18 ± 4.00 83.60 ± 3.55 84.50 ± 4.76 83.09 ± 4.06 84.08 ± 3.67
CMTL 86.44 ± 2.26 86.86 ± 2.79 86.24 ± 2.14 86.99 ± 3.62 85.91 ± 2.51 86.59 ± 1.98
MTFS 87.28 ± 1.66 88.58 ± 1.87 87.09 ± 2.70 87.76 ± 2.26 86.75 ± 2.21 87.52 ± 1.88

HMTFS 90.83 ± 2.72 90.96 ± 3.38 89.54 ± 3.24 91.45 ± 1.80 90.14 ± 3.12 90.78 ± 3.01
FC2FS 91.85 ± 1.42 92.84 ± 1.69 91.07 ± 2.02 92.27 ± 2.12 91.23 ± 1.77 91.81 ± 1.59

NC
vs.

LMCI

Lasso 78.81 ± 3.69 78.66 ± 5.09 80.24 ± 3.75 76.41 ± 4.71 76.85 ± 4.28 82.36 ± 2.97
CMTL 80.45 ± 2.72 80.96 ± 3.09 82.38 ± 2.40 77.96 ± 4.87 78.75 ± 3.68 83.09 ± 2.53
MTFS 81.10 ± 2.55 82.20 ± 3.84 83.14 ± 2.18 78.65 ± 3.89 79.52 ± 3.51 83.96 ± 2.49

HMTFS 84.39 ± 2.30 84.96 ± 3.52 85.65 ± 2.07 82.42 ± 3.36 83.00 ± 3.02 87.09 ± 2.17
FC2FS 85.33 ± 2.22 85.11 ± 1.86 85.38 ± 2.13 84.85 ± 2.73 83.91 ± 2.55 87.45 ± 1.59

NC
vs.

EMCI

Lasso 70.67 ± 2.47 70.81 ± 4.54 74.24 ± 1.91 66.47 ± 3.89 68.90 ± 2.96 74.18 ± 2.10
CMTL 71.52 ± 2.48 70.06 ± 3.34 74.44 ± 3.07 68.44 ± 4.21 69.82 ± 3.56 75.30 ± 2.56
MTFS 72.56 ± 3.55 71.86 ± 2.86 75.10 ± 3.11 68.89 ± 3.83 69.69 ± 3.30 75.80 ± 2.89

HMTFS 74.90 ± 2.41 74.41 ± 1.68 79.77 ± 2.72 69.86 ± 3.11 73.37 ± 2.61 77.56 ± 2.32
FC2FS 78.29 ± 2.20 78.03 ± 2.41 82.02 ± 2.13 74.73 ± 3.04 77.18 ± 2.58 81.00 ± 1.93

EMCI
vs.

LMCI

Lasso 71.58 ± 2.43 70.07 ± 3.62 72.41 ± 3.06 70.65 ± 2.11 70.09 ± 2.20 71.77 ± 1.76
CMTL 73.08 ± 2.37 70.89 ± 3.81 73.71 ± 2.31 72.15 ± 3.32 70.95 ± 3.12 72.91 ± 2.23
MTFS 73.54 ± 2.22 74.14 ± 4.84 75.45 ± 2.98 72.58 ± 3.29 72.48 ± 2.62 73.16 ± 2.49

HMTFS 75.46 ± 3.12 74.18 ± 3.97 75.77 ± 3.36 74.74 ± 3.53 74.08 ± 3.78 75.46 ± 2.98
FC2FS 77.67 ± 1.65 77.63 ± 3.17 77.72 ± 2.54 78.94 ± 2.47 76.83 ± 2.35 78.35 ± 1.75

In NC vs. AD classification, ACC, AUC, SEN, SPE, GMean and F1 reach 91.85 ± 1.42%,
92.84 ± 1.69%, 91.07 ± 2.02%, 92.27 ± 2.12%, 91.23 ± 1.77%, and 91.81 ± 1.59%, respec-
tively. Compared with the other four methods, the classification performance is improved.
It is worth noting that the method improved greatly in NC vs. EMCI, and the six clas-
sification indexes achieve 78.29 ± 2.20%, 78.03 ± 2.41%, 82.02 ± 2.13%, 74.73 ± 3.04%,
77.18 ± 2.58%, and 81.00 ± 1.93%, respectively. MTFS has a better classification perfor-
mance than Lasso and CMTL, indicating that the introduction of L2,1-norm regularizer can
effectively sparse multi-modal features and capture effective features, which is consistent
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with the research results of Zhang et al. [2]. In addition, HMTFS has better classification
performance than MTFS, indicating that introducing hypergraph regularization can indeed
discover high-order relations between subjects, which is consistent with the research re-
sults of Shao et al. [18]. Besides, FC2FS has better classification performance than HMTFS,
indicating that feature correlation and feature structure regularization can effectively dis-
cover more potential features and improve classification performance, which proves the
effectiveness of the method.

We used bar charts to represent the classification performance of the five methods
more vividly on MCI and AD, aiming at better display of the experiment results of different
methods, as shown in Figure 2.
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3.2. Parameter Sensitivity and Correlation Analysis

The selection of different parameters has different effects on the experiment results,
and the parameter selection directly affects the performance of the method for MCI and AD
classification. This section mainly analyzes the various influences of the main parameters



Brain Sci. 2022, 12, 80 10 of 18

involved in the experiment and calculates the correlation coefficient on the experimental
results, while exploring the optimal parameter selection of the experiment. The influence
of the weighted fusion coefficient of the feature matrix, two kinds of regularization pa-
rameters, and the common calculation methods of the feature correlation coefficient on
the classification performance are analyzed. Ten-fold cross-validation was adopted to
make the experiment results credible [43]. According to the results of each experiment,
the mean value of the ten experiment results was calculated randomly as the value of the
classification performance index.

3.2.1. The Influence of Fusion Coefficient on Classification Accuracy

First, α, β, and γ values were fixed, α and β were set to 2−2 and γ to 2−1, and the
Pearson correlation was used to calculate the correlation coefficient matrix. Then the feature
matrix fusion coefficient τ of sMRI data was set, with the range of change of 0 to 1 and
step size of 0.1 decimal, then giving the feature matrix fusion coefficient of PET data as
1− τ. Further, the influence of fusion with different fusion coefficients on classification
performance was explored, and experimental results were obtained as shown in Figure 3.
Among them, the optimal fusion coefficient of NC vs. AD and EMCI vs. LMCI is 0.3, while
the optimal fusion coefficient of NC vs. LMCI and NC vs. EMCI is 0.7. Using different
fusion coefficient combinations to fuse the feature matrix directly affects the classification
accuracy. In addition, the analysis of the four experiment results shows that in NC vs. AD
and EMCI vs. LMCI classification, the sMRI fusion coefficient is 0.3, while the PET fusion
coefficient is 0.7, indicating that sMRI data contributes more to classification performance
than PET data. In NC vs. LMCI and NC vs. EMCI, the sMRI fusion coefficient was 0.7,
while the PET fusion coefficient was 0.3, indicating that sMRI data had more influence on
classification performance than PET data.
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3.2.2. Effects of Regularization Parameters on Classification Performance

In the established feature selection model, there are three regularization parameters,
namely α, β, and γ. In the experiment, the appropriate γ value was first selected, and
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the value range of α and β was set as
{

2−1, 2−2, 2−3, 2−4, 2−5} to explore the influence
of different regularization parameter combinations on classification accuracy and reduce
the time complexity of the model. Then the values of each group of α and β were fixed.
Finally, the classification accuracy of each group of values was calculated using the 10-fold
cross-validation method, and the results were obtained as shown in Figure 4. Through
analysis, it can be found that the classification accuracy does not fluctuate greatly under
different regularization parameter combinations, which indicates that the method has a
certain stability. In most cases, for each fixed α (β), as the value of β (α) decreases, the
classification accuracy generally shows a trend of increasing first and then decreasing. The
reason may be that with the decrease of the regularization parameter value, the weight of
the feature correlation regularization and feature structure regularization decreases. The
feature selection model’s ability to capture the correlation between features is weakened,
which results in partial effective features being ignored and reduced accuracy.
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3.2.3. The Influence of Correlation Coefficient Calculation Methods on
Classification Performance

The influence of the proposed method on classification accuracy was analyzed when
different methods were applied to calculate the feature correlation coefficients. The Pearson
correlation coefficient, Spearman correlation coefficient and Kendall correlation coefficient
were used to calculate the influence of correlation between features on classification ac-
curacy under the three conditions, as shown in Figure 5. The results show that when
the Pearson correlation coefficient is used to average the feature correlation matrix, the
median accuracy obtained is always higher than that calculated by using the other two
correlation coefficients, and the Pearson correlation has a larger fluctuation range than the
other two correlation coefficients. The main reason may be that the Pearson correlation
coefficient is sensitive to outliers. When more outliers of the feature correlation coefficient
are generated, the Pearson correlation coefficient is greatly affected, while the Spearman
correlation coefficient and the Kendall correlation coefficient are correlation coefficients
based on matrix rank, so they are robust to outliers.
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3.3. Discriminative Brain Regions

The optimal regularized parameters determined by the 10-fold cross-validation method
were selected in the experiment to find the most discriminant biologic features in MCI
and AD classification. Further statistics obtain the brain regions corresponding to the
top 15 feature vectors with different classification results. These brain areas are called
discriminative brain regions, as shown in Table 4. The influence degree of MCI and AD on
brain regions was discussed, and the BrainNet Viewer toolbox [44] was used to visually
display the selected discriminative brain regions, as shown in Figure 6. As can be seen
from the obtained results, most of the selected discriminative brain regions in NC vs. AD
and NC vs. LMCI classification were confirmed, while only a small part of the selected
discriminative brain regions in NC vs. EMCI and EMCI vs. LMCI classification was
confirmed by previous studies. This phenomenon explains the lower performance of the
latter classification.
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Table 4. Discriminative brain regions.

NC vs. AD NC vs. LMCI

ID Regions Abbreviation References ID Regions Abbreviation References

29 Insula_L INS.L Jon et al. [45]
Bi et al. [46] 11 Frontal_Inf_Oper_L IFGoperc.L Liu et al. [47]

81 Temporal_Sup_L STG.L Liu et al. [48] 39 ParaHippocampal_L PHG.L Lee et al. [49]
45 Cuneus_L CUN.L Le et al. [50] 29 Insula_R INS.R Li et al. [51]
10 Frontal_Mid_Orb_R ORBmid.R 32 Cingulum_Ant_R ACG.R Li et al. [51]
67 Precuneus_L PCUN.L Bailly et al. [52] 1 Precentral_L PreCG.L Cai et al. [53]
85 Temporal_Mid_L MTG.L Liu et al. [48] 5 Frontal_Sup_Orb_L ORBsup.L Li et al. [51]
37 Hippocampus_L HIP.L Salvatore et al. [54] 19 Supp_Motor_Area_L SMA.L
53 Occipital_Inf_L IOG.L 45 Cuneus_L CUN.L Le et al. [50]
50 Occipital_Sup_R SOG.R 46 Cuneus_R CUN.R Le et al. [50]
39 ParaHippocampal_L PHG.L Katsel et al. [55] 50 Occipital_Sup_R SOG.R
84 Temporal_Pole_Sup_R TPOsup.R Salvatore et al. [54] 67 Precuneus_L PCUN.L Bailly et al. [52]
66 Angular_R ANG.R 68 Precuneus_R PCUN.R Bailly et al. [52]
46 Cuneus_R CUN.R Le et al. [50] 81 Temporal_Sup_L STG.L
14 Frontal_Inf_Tri_R IFGtriang.R Salvatore et al. [54] 84 Temporal_Pole_Sup_R TPOsup.R Salvatore et al. [54]
9 Frontal_Mid_Orb_L ORBmid.L Zhang et al. [56] 86 Temporal_Mid_R MTG.R

NC vs. EMCI EMCI vs. LMCI

ID Regions Abbreviation References ID Regions Abbreviation References

88 Temporal_Pole_Mid_R TPOmid.R 68 Precuneus_R PCUN.R Lee et al. [49]
12 Frontal_Inf_Oper_R IFGoperc.R Chen et al. [57] 75 Pallidum_L PAL.L
82 Temporal_Sup_R STG.R Lee et al. [49] 37 Hippocampus_L HIP.L Wu et al. [58]
29 Insula_L INS.L Anna et al. [59] 66 Angular_R ANG.R Lee et al. [49]
32 Cingulum_Ant_R ACG.R 2 Precentral_R PreCG.R
50 Occipital_Sup_R SOG.R 11 Frontal_Inf_Oper_L IFGoperc.L
68 Precuneus_R PCUN.R Lee et al. [49] 25 Frontal_Mid_Orb_L ORBsupmed.L
4 Frontal_Sup_R SFGdor.R 30 Insula_R INS.R Bi et al. [46]
8 Frontal_Mid_R MFG.R Lee et al. [49] 36 Cingulum_Post_R PCG.R

19 Supp_Motor_Area_L SMA.L 44 Calcarine_R CAL.R
21 Olfactory_L OLF.L Vasavada et al. [60] 53 Occipital_Inf_L IOG.L
26 Frontal_Mid_Orb_R ORBsupmed.R 54 Occipital_Inf_R IOG.R
30 Insula_R INS.R Anna et al. [59] 26 Frontal_Mid_Orb_R ORBsupmed.R
36 Cingulum_Post_R PCG.R 45 Cuneus_L CUN.L
52 Occipital_Mid_R MOG.R 58 Postcentral_R PoCG.R
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By analyzing the brain regions obtained by NC vs. AD and NC vs. LMCI classification,
we can find that among the selected discriminative brain regions, the ones belonging to
temporal lobe, prefrontal lobe and occipital lobe account for a large proportion of the
first 15 discriminative brain regions. NC vs. EMCI and EMCI vs. LMCI classification
results showed that the discriminative brain regions belonging to the prefrontal lobe and
occipital lobe accounted for a large proportion. The temporal lobe region mainly includes
five discriminative brain regions: the left superior temporal gyrus (STG.L), the left middle
temporal gyrus (MTG.L), the left hippocampus (HIP.L), the left parahippocampal gyrus
(PHG.L), and the right temporal pole superior temporal gyrus (TPOsup.r). The temporal
lobe is closely related to language and memory, among which damage to the left superior
temporal gyrus (STG.L) will cause sensory aphasia, while damage to the left hippocampus
(HIP.L) and left parahippocampus (PHG.L), one of the important organs in the brain
involved in learning and memory storage, will lead to atrophy and memory impairment.
Relevant studies have confirmed that the volume and morphology of the AD hippocampus
will change compared with normal subjects [61,62]. The prefrontal lobe has the function of
managing cognition, emotion, and behavior, which is mainly related to motor and higher
mental function, while occipital lobe lesions will not only lead to visual impairment but are
also accompanied by memory and motor defects. The selected discriminative brain regions
belonging to the prefrontal lobe and occipital lobe, mainly include the right middle frontal
gyrus (MFG.R), left middle frontal gyrus, orbital part (ORBmid.L), left superior orbital
cortex (ORBsup.L), right inferior frontal gyrus, triangular part (IFGtriang.R), left opercular
part of inferior frontal gyrus (IFGoperc.L), right anterior cingulate gyrus (ACG.R), left
insula (INS.L), left cuneus (CUN.L), and right cuneus (CUN.R).

Notably, the right posterior cingulate gyrus (PCG.r) and the left precuneus (PCUN.L)
were selected in NC vs. EMCI classification. These two discriminative brain regions are
associated with the process of memory formation, indicating that compared with normal
subjects, memory has been changed during the EMCI stage. The right angular gyrus
(ANG.R) was identified in the EMCI vs. LMCI classification and is an important biological
feature that distinguishes the first two [54]. However, there are still a small number of brain
regions that have not been confirmed by previous studies among the selected discriminative
brain regions. This may be caused by the fact that some of these brain regions do indeed
have a strong impact on MCI and AD classification, but the existing relevant studies have
not proved it. In addition, there may still be a few redundant features in the feature
selection, leading to the selection of brain regions weakly related to the disease.

4. Discussion

There are few studies on the relationship and structure between feature nodes among
the existing multi-modal feature selection methods for diseases. Most of the methods
focusing on the relationship between the same modality or different modality subjects,
do not consider the influence of the relationship between feature nodes and structure on
the model, and lack interpretation. For example, Jie et al. [17] used manifold learning to
measure the distance between different subjects to maintain the adjacent structure between
subjects, and applied it to MCI classification, achieving a good classification performance
and verifying the effectiveness of the method. However, this method ignores the similarity
relation between feature nodes and local geometry structure and lacks explanation for
feature selection.

The results of this experiment show that this feature relation cannot be ignored in
MCI and AD classification and has a positive influence on feature selection. It is worth
mentioning that in the study of Lei et al. [63], four feature relations were regularized and the
L2,1-norm regularizer was introduced to sparse feature weight vectors, and it was finally ap-
plied to the classification of Parkinson’s disease, achieving good classification performance
and good interpretability. Yet, this method has some disadvantages, the obvious one is that
there are too many model parameters, and the time complexity of the method increases in
practical application. In our study, the multi-modal feature selection method with feature
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correlation and feature structure fusion fully considers the internal connection between
feature nodes, solves the problem of too many parameters in the loss function, reduces the
time complexity of feature selection, and brings better classification performance.

Additionally, it is worth noting that we extract feature vectors directly from the original
sMRI and PET images to obtain the feature matrix, and each feature vector represents a
different brain region in the AAL template. When learning feature weight, the loss function
essentially learns the weight value of the brain region through the training set and selects
the corresponding feature vectors of the brain regions that are helpful to improve the
classification performance. Therefore, the proposed method improves the interpretability
of the model.

In summary, our work has potential clinical application value in clinical diagnosis.
On the one hand, since the scale is subjective in clinical use [64] and the determination of
patients with cognitive impairment is also personal, applying this method in the clinic will
reduce human intervention, assist clinical diagnosis, and make diagnostic results more
objective. On the other hand, the experimental results showed that the sensitivity and
specificity of the method were significantly improved in the classification of NC and EMCI,
which is clinically significant [65], reducing the risk of misdiagnosis of normal controls
as early cognitive impairment patients require timely drug intervention. At the same
time, the experiment proved that the method is more suitable for accurately capturing and
identifying patients with subtle changes in brain regions. This property is better suited
for diagnosing more difficult cognitive impairment associated with certain diseases, such
as End-Stage Renal Disease (ESRD) combined with cognitive impairment [66], the exact
neuropathological mechanism of which is still unclear. Cognitive impairment is a comor-
bidity of ESRD, and treatment of ESRD may also change brain function and structure [67],
making it more challenging to identify MCI. In the future, based on the proposed model,
we will further explore the identification of ESRD patients with cognitive impairment.

5. Conclusions

In this study, a multi-modal feature selection algorithm with feature correlation and
feature structure fusion is proposed and applied to MCI and AD classification. In this
method, low-rank constraint is introduced based on multi-task learning, moreover, fea-
ture correlation and feature structure regularization are adopted considering feature node
relations. Finally, feature learning is carried out according to the constructed loss func-
tion. Experimental results showed that the proposed method performed better than the
comparison methods in classification performance.

Nevertheless, our work has some limitations. When constructing the feature correla-
tion coefficient matrix, only the relatively common calculation method of the correlation
coefficient was considered, and the method that can better measure the correlation between
two features or even multiple feature nodes remains to be discussed. Moreover, only the
linear fusion of multi-modal features was input into the SVM classifier during classification.
In the future, the integration model [68] deserves to be discussed to combine several weak
classifiers into a strong classifier, and the classification performances of MCI and AD need
to be further improved.
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