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Abstract: Robot-assisted rehabilitation (RAR) and non-invasive brain stimulation (NIBS) are inter-
ventions that, both individually and combined, can significantly enhance motor performance after
spinal cord injury (SCI). We sought to determine whether repetitive transcranial magnetic stimulation
(rTMS) combined with active transvertebral direct current stimulation (tvDCS) (namely, NIBS) in
association with RAR (RAR + NIBS) improves lower extremity motor function more than RAR alone
in subjects with motor incomplete SCI (iSCI). Fifteen adults with iSCI received one daily session
of RAR+NIBS in the early afternoon, six sessions weekly, for eight consecutive weeks. Outcome
measures included the 6 min walk test (6MWT), the 10 m walk test (10MWT), the timed up and
go (TUG) to test mobility and balance, the Walking Index for Spinal Cord Injury (WISCI II), the
Functional Independence Measure-Locomotion (FIM-L), the manual muscle testing for lower ex-
tremity motor score (LEMS), the modified Ashworth scale for lower limbs (MAS), and the visual
analog scale (VAS) for pain. The data of these subjects were compared with those of 20 individuals
matched for clinical and demographic features who previously received the same amount or RAR
without NIBS (RAR − NIBS). All patients completed the trial, and none reported any side effects
either during or following the training. The 10MWT improved in both groups, but the increase was
significantly greater following RAR + NIBS than RAR − NIBS. The same occurred for the FIM-L,
LEMS, and WISCI II. No significant differences were appreciable concerning the 6MWT and TUG.
Conversely, RAR − NIBS outperformed RAR + NIBS regarding the MAS and VAS. Pairing tvDCS
with rTMS during RAR can improve lower extremity motor function more than RAR alone can do.
Future research with a larger sample size is recommended to determine longer-term effects on motor
function and activities of daily living.

Keywords: gait motor function; neuroplasticity; direct current stimulation; spinal cord injury; robot-
aided gait training

1. Introduction

Spinal cord injury (SCI) affects between 250,000 and 500,000 persons annually world-
wide [1], often causing severe and permanent loss of motor, sensory, or autonomic functions.
In addition, SCI has a striking socio-economic impact, as it often affects young people
of working age. SCI thus requires an intensive rehabilitative approach to counteract the
residual functional impairment [2].

Motor recovery occurs mainly within the first two months after SCI. However, chronic
SCI patients may also have chances to recover further motor function with adequate, in-
tensive training [3]. In this regard, robotic rehabilitation devices have been increasingly
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utilized as an adjunct therapy to the conventional rehabilitation strategies for individu-
als with SCI [4]. The rationale of adopting robot-aided rehabilitation (RAR) consists of
enhancing motor function recovery through highly repeated functional movements and
the entrainment of residual neural plasticity mechanisms subtending functional recovery,
at either the spinal central pattern generator [5] or cortical level [6,7]. Furthermore, RAR
allows counteracting the numerous constraints in providing an individualized training
strategy, including reduced sensorimotor coordination, spasticity, and impaired balance [8].
Finally, RAR serves as a mobility aid beyond orthoses and wheelchairs [4].

Many promising RAR interventions have been shown to improve the mobility, func-
tion, and quality of life of individuals with SCI, in particular regarding lower extremity
robotic exoskeletons. However, the majority of the available works have methodological
and rehabilitation paradigm differences, thus being unable to demonstrate the superiority
of one gait training strategy over another in counteracting the loss of muscle strength
and trophism, walking disability and mobility, sensory dysfunction, autonomic disorders,
spasticity, pain, and overall quality of life [9–15]. Therefore, more extensive studies are
required to prove RAR’s benefits definitively [4].

Similar to RAR research in SCI patients, more innovative ways to stimulate the brain
and spinal plasticity to promote functional recovery have been investigated. Mainly, non-
invasive brain stimulation (NIBS) has been adopted to potentiate the therapeutic benefits
of RAR [16]. The rationale of coupling NIBS with RAR mainly stems from the possibility to
couple bottom-up (RAR) and top-down (NIBS) plasticity processes, thus better targeting
the neural pathways that are responsible for motor (re)learning processes and are entrained
during the rehabilitation processes owing to intensive, repetitive, assisted-as-needed, and
task-oriented approaches [6,16–18]. However, significant concerns remain about NIBS’s
administration time, order effect, and blinding when coupled to RAR. Therefore, further
investigations are required to better assess the effects of this paired approach on motor
function recovery following SCI, as demonstrated in patients with stroke [19,20].

The study aimed at ascertaining whether NIBS paired with RAR could provide SCI
patients with superior outcomes related to gait, spasticity, and pain than stand-alone
RAR. Given that we focused on the potential efficacy of a combined training with RAR
and NIBS on gait, we considered only ambulatory individuals (i.e., incomplete SCI-iSCI-
with ASIA C–D). Moreover, we recruited only chronic iSCI patients (i.e., more than 6 mo
post-injury) so as to have individuals with a stable level of recovery, which could suggest
that the observed improvements may depend on the intervention itself rather than on
a spontaneous recovery [21], and without medical conditions that could preclude RAR
utilization.

2. Materials and Methods
2.1. Participants and Study Design

We consecutively enrolled patients with SCI attending our Neurorobotic Unit between
January 2016 and December 2019. Inclusion criteria were: (i) chronic (onset more than
6 mo), non-progressive (traumatic or non-traumatic), thoracic (between T3 and T10) iSCI
(classified by the ASIA Impairment Scale (AIS) as grades C and D at entry); (ii) age range
18–65 y. In addition, pressure ulcers, severe range of motion limitation due to spasticity or
tendon retraction, severe bone, heart, or pulmonary disease, and NIBS contraindication
(e.g., implanted electromechanical devices) represented the exclusion criteria.

We screened 35 patients, 15 of whom were included in the study. The patients were
evaluated at baseline (T0) using clinical scales as outcome measures. Then, patients were
provided with a NIBS session followed by a RAR session. Each subject was provided
with a daily session of RAR + NIBS in the early afternoon (six sessions weekly), for eight
consecutive weeks. The patients were then evaluated immediately after (T1) and three
months after (T2) the training, using the above clinical scales. The data of these subjects
were compared with those coming from a sample of 20 individuals matched for clinical and
demographic features who previously underwent the same amount or RAR without NIBS
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(RAR − NIBS). The clinico-demographic characteristics of both groups are summarized in
Table 1.

Table 1. Clinico-demographic characteristics (summarized as percentage or mean ± sd).

Gender Age (y) TSO (m) SCI
Level Etiology AIS

Score
Spasticity (Yes/No),

Medication
Pain (Yes/No),

Medication

RAR + NIBS

M 35 6 8 V D yes no
medication yes paracetamol

M 44 6 9 T D
F 37 6 9 T C yes no medication
M 40 6 5 T D yes no medication
F 48 6 6 T D yes tizanidine yes paracetamol
F 46 8 3 T D yes tizanidine
M 34 8 3 TM C yes gabapentin
F 36 9 5 TM C yes tizanidine yes gabapentin
M 22 10 9 V C yes tizanidine yes carbamazepine
F 58 11 5 T D yes clonidine
M 23 12 7 TM C yes clonidine
F 35 13 3 TM C yes baclofen yes amitriptyline
F 32 15 4 V D yes baclofen yes amitriptyline
F 45 16 9 T D yes baclofen
F 42 17 8 T D yes baclofen yes amitriptyline

60% F
40% M 38 ± 9 10 ± 4

27% TM
53% T
20% V

40% C
60% D 73% 67%

RAR − NIBS

F 65 6 6 T D yes no
medication yes amitriptyline

F 53 7 6 TM C yes tizanidine yes amitriptyline
M 38 7 5 V C
M 26 7 10 V D yes carbamazepine
M 29 9 6 T C
F 35 9 3 TM C yes baclofen yes carbamazepine
M 35 10 3 TM C yes clonidine yes carbamazepine
F 51 10 3 T C yes clonidine
F 28 10 9 V D yes no medication
M 61 10 10 V D yes

F 64 12 4 T D yes no
medication

M 45 12 3 T C yes baclofen yes no medication
F 43 12 5 T D yes tizanidine yes gabapentin
F 53 13 6 TM D yes tizanidine yes gabapentin
M 18 13 8 T C
F 48 13 9 T D
M 23 13 6 V D yes baclofen yes amitriptyline
M 22 14 6 TM C yes clonidine yes gabapentin
M 42 14 5 T D yes tizanidine yes paracetamol
F 39 15 7 V C yes tizanidine
F 49 15 4 TM D yes baclofen yes amitriptyline

F 60 16 8 V D yes no
medication yes amitriptyline

F 62 16 7 V D yes no
medication

F 57 17 8 V C yes baclofen
M 55 18 8 T C yes baclofen yes paracetamol

summary 56% F
44% M 44 ± 14 12 ± 3

24% TM
40% T
36% V

48% C
52% D 72% 64%

p-value 0.4 0.1 0.1 0.2 0.2 0.3 0.5 0.4

Legend: RAR, robot-aided rehabilitation; NIBS, non-invasive brain stimulation; AIS, ASIA Impairment Scale; C
and D, AIS grades at study entry; F, female; M, male; m, months; SCI, spinal cord injury; T, trauma; TM, transverse
myelitis; V, vascular; y years; TSO, time from SCI onset. p-value of between-group comparison.

2.2. Outcome Measures

We used the 6 min walk test (6MWT) and the 10 m walk test (10MWT) to measure
ambulatory ability and endurance [22–24]. The timed up and go (TUG) allows testing
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mobility and balance [25,26]. The Walking Index for Spinal Cord Injury (WISCI II; scoring
from 1 to 20) addresses the amount of physical assistance, braces, or devices required to
walk 10 m [27]. The Functional Independence Measure-Locomotion (FIM-L) quantifies the
need for assistance when performing physical, psychological, and social functions [28,29].
The manual muscle testing for lower extremity motor score (LEMS; five key muscles—hip
flexors, knee extensors, ankle dorsiflexor, long toe extensors, and ankle plantar flexors—of
both lower extremities; range 0 to 50) was conducted according to the ASIA standard.
Spasticity was assessed using the modified Ashworth scale (MAS) for lower limbs. The
visual analog scale (VAS) was used to quantify individual estimation of pain [30].

2.3. Non-Invasive Brain Stimulation

NIBS consisted of a repeated transcranial magnetic stimulation (rTMS) paradigm
carried out simultaneously with a cathodal transvertebral direct current stimulation (tvDCS)
(also known as transcutaneous spinal direct current stimulation) paradigm.

rTMS was delivered using a Magstim Super-Rapid2 stimulator (Magstim Company,
Whitland, U.K.) equipped with a double-cone coil (each wing measuring 110 mm in
diameter) perpendicularly held over the vertex, in order to trigger both legs’ primary motor
areas. According to a brain MRI scan, the stimulation site was identified and marked
on a personal head-cap. Coil positioning was carefully documented (including position,
angulation, and inclination) to keep it constant along with rTMS sessions. The coil was held
in position by a mechanical support. The stimulation intensity was set at 90% of the right
tibialis anterior muscle resting motor threshold (RMT). Each session consisted of 60 bursts
of 20 pulses at 10 Hz with inter-train intervals of 10 s, for 1200 pulses.

tvDCS was delivered using a Brain Stim device (EMS; Bologna, Italy) equipped with
two rubber electrodes of 49 cm2 inserted in a saline-soaked sponge, which were fixed over
two metameres above the site of spinal lesion, serving as the active electrode, and over the
left deltoid, serving as the reference electrode. Skin impedance was adequately reduced
using abrasive gel and then wiped clean with alcohol swabs. The stimulation intensity
was set at 2 mA and lasted 20 min (current density of 0.041 mA/cm2 and charge density
of 0.048 C/cm2). The current was ramped up to the full intensity over 30 s at the onset of
tvDCS and ramped down over 30 s at the end.

2.4. Robot-Aided Rehabilitation

RAR consisted of a neurorobotic treatment using the LokomatPro (i.e., a Lokomat with
an Augmented Performance Feedback) (Hocoma; Volketswil, Switzerland). Lokomat is a
robotic device consisting of powered gait orthoses with integrated computer-controlled
linear actuators at each hip and knee joint, a body-weight support system (BWSS), and a
treadmill [31]. The augmented performance feedback guarantees motivating, challenging,
and instructive functional feedback in virtual environments. Patients performed a forty-
minute session per day, in the early afternoon, from Monday to Friday, for eight consecutive
weeks, for a total of forty sessions. The amount of BWS was initially set at 70% of the
patient’s weight, then decreased according to the patient’s load tolerance, and the gait
speed was adjusted to make the exercise comfortable for the patient. A Lokomat-trained
physiotherapist supervised each session. In addition to RAR sessions, patients underwent
conventional physical therapy (CPT) twice a day and five-times a week using the Bobath
principles, occupational therapy, and functional electrical stimulation.

2.5. Statistical Analysis

The primary analysis sought the changes of the 6MWT, 10MWT, TUG, and WISCI II
(all gait-related outcome measures) in the two groups from the baseline over the treatment
period (T1 vs. T0 and T2 vs. T0). In this regard, ANCOVA was used, adjusting for the
baseline value. This analysis was also performed for all the other outcome measures.

The secondary analysis sought the changes from the baseline over the treatment period
(T1 vs. T0 and T2 vs. T0) of the outcome measures depending on the baseline ASIA scorings
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using a two-way ANOVA with group (2 levels: RAR + NIBS and RAR − NIBS) and time
(3 levels: T0, T1, and T2) as factors. Pairwise comparisons with Bonferroni correction were
tested.

Finally, we categorized the subjects as improved (WISCI II changes superior to the
MCID) or not improved (WISCI II changes non-superior to the MCID) to identify possible
predictors of recovery after rehabilitation. To this end, we used a multivariable logistic
regression with the clinico-demographic features at the baseline (age, gender, time since
SCI, NLI, etiology, AIS score, presence of spasticity, presence of pain, and LEMS value) as
candidate predictors.

All the analyses were conducted according to an intention-to-treat analysis, thus
including all participants for which data were available. The significance level of the
statistical data was set at α < 0.05.

We estimated that 64 individuals should be studied assuming 80% power, a type I
error of 0.05, a mean difference of 30% on the WISCI II, and a dropout rate of 10%.

The experimenters who analyzed the data were blinded to the patients’ allocation.

3. Results

There were no significant differences in the clinico-demographic features and treatment
periods between the groups. Most participants were taking medications (as shown in
Table 1). However, all participants were hospitalized at the Neurorobotic Unit of our
Institute so that the patients’ medication status was easily controlled. Further, patients
were not provided with any medication change during the experimental period.

All patients completed the trial, and none reported any side effects during or after
the training. The 10MWT improved in both groups, but the increase was more significant
following RAR + NIBS than RAR − NIBS (Table 2). The same occurred for the FIM-L,
LEMS, and WISCI II. No significant differences were appreciable concerning the 6MWT and
TUG. Conversely, RAR − NIBS outperformed RAR + NIBS concerning the MAS and VAS.

Table 2. Outcome measures and statistical data.

T0 T1 T2
ANCOVA Between-Group Within-Group
F p T1–T0 T2–T0 T1–T0 T2–T0

10MWT
RAR + NIBS 0.75 ± 0.49 0.98 ± 0.58 0.8 ± 0.53 10 0.002 <0.0001 0.003 <0.0001 0.01
RAR − NIBS 0.65 ± 0.35 0.72 ± 0.39 0.78 ± 0.36 <0.0001 <0.0001

6MWT
RAR + NIBS 206 ± 15 248 ± 21 227 ± 24

0.3
<0.0001 <0.0001

RAR − NIBS 212 ± 16 235 ± 23 224 ± 17 <0.0001 <0.0001

FIM-L
RAR + NIBS 3 ± 1 4 ± 1 4 ± 1

5 0.02 0.01 0.01
<0.0001 <0.0001

RAR − NIBS 3 ± 1 3 ± 1 3 ± 1 <0.0001 <0.0001

LEMS
RAR + NIBS 31 ± 7 37 ± 8 34 ± 8

9 0.005 <0.0001 0.002
<0.0001 <0.0001

RAR − NIBS 30 ± 6 33 ± 7 31 ± 6 <0.0001 <0.0001

MAS
RAR + NIBS 1.3 ± 1 1 ± 0.7 1.1 ± 0.8

10 0.002 <0.0001 <0.0001
0.0006 0.001

RAR − NIBS 1.4 ± 1.1 1.2 ± 1 1.3 ± 1.1 <0.0001 0.0002

TUG
RAR + NIBS 62 ± 27 51 ± 22 55 ± 23

0.5
<0.0001 0.0002

RAR − NIBS 64 ± 26 57 ± 25 60 ± 24 <0.0001 <0.0001

VAS
RAR + NIBS 3 ± 2 2 ± 2 3 ± 2

12 0.0009 <0.0001 <0.0001
0.001 0.0009

RAR − NIBS 3 ± 3 3 ± 3 3 ± 3 0.0002 0.0006

WISCI II
RAR + NIBS 8 ± 4 9 ± 5 9 ± 5

10 0.002 <0.0001 <0.0001
0.0004 0.0001

RAR − NIBS 6 ± 4 7 ± 4 7 ± 4 <0.0001 <0.0001

Legend: robot-aided rehabilitation (RAR), non-invasive brain stimulation (NIBS), 6 min walk test (6MWT), 10
m walk test (10MWT), timed up and go (TUG), Walking Index for Spinal Cord Injury (WISCI II), Functional
Independence Measure-Locomotion (FIM-L), lower extremity motor score (LEMS), modified Ashworth scale
(MAS), visual analog scale for pain (VAS), Analysis of Covariance (ANCOVA), F-value (F), p-value (p).

There was no significant effect of patients’ stratification depending on ASIA on clinical
outcome measure changes (all p > 0.1).

The significant predictors of recovery were the LEMS, age, and time since injury (all
p < 0.0001).
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4. Discussion

RAR has been proven effective in post-SCI gait rehabilitation, as it can bypass the
constraints in providing an individualized training strategy and the main limitations of
iSCI individuals in overground walking ability, i.e., sensorimotor coordination, spasticity,
impaired balance, and muscle weakness [8,32–36]. Consistently, the RAR − NIBS group
showed a significant improvement in ambulation (including walking speed and indepen-
dence and lower limb muscle strength) with a reduced requirement of assistance after the
treatment. In addition, significant spasticity and pain reduction were also appreciable.

These effects could depend on the fact that RAR provides repetitive, intensive, assisted-
as-needed, and task-oriented treatment, which can entrain the sensorimotor cortex and the
cerebellar regions involved in gait control, thus leading to a motor performance improve-
ment [37]. Furthermore, RAR provides proprioceptive inputs to the lower extremities that,
consistent with gate control theory, block noxious small fiber afferents, which cause pain
and spasticity, thus contributing to gait improvement [38,39].

Therefore, RAR combined with CPT offers some valuable clinical benefits. Contrarily,
other studies showed no significant difference between RAR and CPT [9–12,40]. Therefore,
further investigation is necessary to find additional strategies to RAR that may further
promote rehabilitation outcome achievement.

NIBS has been shown to contain motor impairment and promote spinal fiber func-
tional restoration [41,42]. However, to the best of our knowledge, only a few studies have
investigated the feasibility and potential efficacy of RAR paired with NIBS on gait perfor-
mance in individuals with iSCI [43–46]. Remarkably, no study assessed both rTMS and
tvDCS contemporarily with RAR.

We found that RAR + NIBS was safe and feasible, as all patients completed the trial
and none reported any side effects during or after the training. In addition, all patients
were well compliant with the NIBS protocol. The RAR + NIBS group outperformed the
RAR − NIBS group concerning gait speed, muscle strength, ambulation autonomy, and
disability burden. Conversely, both groups significantly improved in gait endurance,
balance, spasticity, and pain, without any between-group difference.

The combined approach could be thus preliminarily considered a training strategy to
provide safe and more effective neuromuscular re-education for iSCI patients compared
to RAR alone. Another advantage coming from the implementation of NIBS in the RAR
strategy lies in its extensive applicability to SCI patients, as its aftereffects were independent
of patients’ ASIA. However, this requires confirmation by randomized trials, as we adopted
a propensity matching analysis for observational studies. Furthermore, some clinical
features may critically influence outcome achievement, including baseline LEMS (the better
the LEMS, the higher outcomes scores), patients’ age (the younger the patient, the higher
the outcomes scores), and time since injury (the earlier the rehabilitation period begins,
the higher the outcomes scores are). When selecting patients to be submitted to NIBS
paradigms, these issues should be taken into account, but clarification and confirmation
are needed from randomized clinical trials.

The neurophysiological underpinnings of RAR + NIBS are not clear. The paradigm we
implemented, i.e., rTMS paired with tvDCS, is entirely new. Neurophysiological measures
were not pursued in this study. Therefore, we can only hypothesize that this double-NIBS
may have triggered both spinal and supraspinal mechanisms mediating N-methyl-D-
aspartate (NMDA) receptor and gamma-aminobutyric acid (GABAergic) activity-mediated
neuroplastic changes [47–60]. These mechanisms are also triggered by RAR [5]. Based
on these issues and our data, the hypothesis that cathodal tvDCS paired with RAR could
induce more evident changes in neuroplasticity and gait compared to RAR alone is plausible.
Specifically, the efficacy of the coupled intervention may lie in a shared target by NIBS
and RAR, i.e., the activity of spinal interneurons within the central pattern generator. In
addition, both approaches may provide sufficient sensory–motor stimulation to optimize
neural plasticity [5]. Therefore, a synergistic effect is hypothesized, despite the underlying
neurophysiological mechanism remaining partially unclear [61]. These may consist of
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cell death limitation, regeneration and replacement, remyelination, and spinal plasticity
mechanisms’ modulation [62]. Consistent with our previous findings in stroke models, we
suggest that NIBS and RAR potentiate each other in a sort of paired associative stimulation,
thanks to either direct cortico-spinal or trans-synaptic spinal effects [61–65].

Limitations

Our study did not use randomization, which is the major study limitation. Random-
ized trials enable the unbiased estimation of treatment effects and imply that treatment
groups are balanced on average for each covariate. Conversely, the propensity matching
analysis of the subjects we adopted may have a limited strength of the beneficial effect of
the experimental approach. In addition, there is a non-negligible possibility of bias due to a
difference in the treatment outcomes (such as the average treatment effect) because a factor
predicts treatment rather than the treatment itself. Unfortunately, for observational studies
such as ours, treatment assignment to research subjects is typically not random. However,
between-group patient matching (as we did in our study) attempts to reduce the treatment
assignment bias and mimic randomization by making a sample of units that receive the
treatment comparable to a sample of units that do not receive the treatment concerning all
observed covariates. Furthermore, given the novelty of the current approach (combined
neuromodulation strategies with RAR), we preferred to implement a pilot trial to examine
the safety and feasibility of such a combined neuromodulation approach for iSCI patients,
giving insights for further randomized trials. Finally, the propensity matching analysis we
adopted also has some advantages, including the estimation of the covariates that predict
receiving the treatment and the reduction of the biases due to confounding variables that
could be found in an estimate of the treatment effect obtained from simply comparing
outcomes among units that receive the treatment versus those that do not [66].

Other limitations of our study include the non-homogenous etiology (traumatic/non-
traumatic), the short-term follow-up (up to three months), the lack of neurophysiological
measures, the lack of control groups such as sham tvDCS, and tvDCS paired with CPT
(only RAR without any NIBS was available). Furthermore, we included in our study
only patients in the chronic phase. On the one hand, this limits the applicability of our
approach; on the other hand, this sample selection was intended to avoid the bias related
to spontaneous recovery, which is commonly observed in acute/subacute patients.

This notwithstanding, our study was intended to preliminarily focus on the safety,
feasibility, and potential effectiveness of RAR + NIBS as compared to RAR alone and
to provide basic information on determining the appropriateness of candidates and the
optimal timing, to design the maximal efficacy of RAR in SCI patients for future randomized
clinical trials.

5. Conclusions

Cathodal tvDCS paired with rTMS is promisingly safe, feasible, and effective in poten-
tiating RAR plus CPT outcome achievement. Furthermore, RAR alone was confirmed as
effective to improve function ambulation in motor iSCI. This combined approach could
be considered an effective training strategy to provide safe and efficacious neuromuscular
re-education for iSCI patients once these promising data are confirmed by more exten-
sive randomized controlled trials incorporating objective clinical and neurophysiological
measures of corticospinal and spinal excitability.
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