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Abstract: Some eating patterns, such as restrained eating and uncontrolled eating, are risk factors for
eating disorders. However, it is not yet clear whether they are associated with neurocognitive differ-
ences. In the current study, we analyzed whether eating patterns can be used to classify participants
into meaningful clusters, and we examined whether there are neurocognitive differences between the
clusters. Adolescents (n = 108; 12 to 17 years old) and adults (n = 175, 18 to 40 years old) completed
the Three Factor Eating Questionnaire, which was used to classify participants according to their
eating profile using k means clustering. Participants also completed personality questionnaires and a
neuropsychological examination. A subsample of participants underwent a brain MRI acquisition.
In both samples, we obtained a cluster characterized by high uncontrolled eating patterns, a cluster
with high scores in restrictive eating, and a cluster with low scores in problematic eating behaviors.
The clusters were equivalent with regards to personality and performance in executive functions. In
adolescents, the cluster with high restrictive eating showed lower cortical thickness in the inferior
frontal gyrus compared to the other two clusters. We hypothesize that this difference in cortical
thickness represents an adaptive neural mechanism that facilitates inhibition processes.

Keywords: restrictive eating; dieting; uncontrolled eating; binge eating; executive functions; person-
ality; impulsivity; eating disorders; cortical thickness; subcortical volume

1. Introduction

Eating disorders, such as anorexia nervosa, bulimia nervosa, and binge eating disorder,
are common mental health problems. For instance, in the United States, their life-time
prevalence is estimated to be around 0.80%, 0.28%, and 0.85%, respectively [1]. Independent
studies have identified that some eating patterns constitute risk factors for the development
of eating disorders [2]. For example, restrictive eating patterns, also referred to as dieting,
seem to precede the onset of both anorexia nervosa and bulimia nervosa in some individu-
als [2–4]. Along similar lines, uncontrolled eating, which might be referred to as overeating,
seems to predict the onset of bulimia nervosa and binge eating disorder [3,4]. A focus on
non-clinical eating behaviors might thus represent a valuable opportunity for nutrition
studies since they can offer new insights about the subclinical stages of eating disorders.

Cluster analysis facilitates a way to characterize eating behaviors by classifying par-
ticipants into subgroups according to their eating profiles. Using self-reported data on
eating tendencies, previous studies have found at least two clusters that signal potentially
problematic eating patterns: a restrictive eating cluster (in one publication this group was
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referred to as “food avoidance”) and a cluster with high scores in uncontrolled eating [5–7].
It is currently not known, however, if these clusters are kept stable across different age
groups. This might be particularly relevant, since it is known that the majority of patients
with anorexia and bulimia nervosa show an early onset of the disease, i.e., before the
patients reach the age of 22 years [8].

Previous work in cognitive neuroscience has examined the relationship between
eating behaviors, brain differences in structure and function, and cognitive function. Eating
patterns that are potentially problematic, such as restrictive eating or uncontrolled eating,
seem to be modulated by at least three brain circuits: the mesolimbic circuit, the cognitive
control network and the stress system [9].

The mesolimbic circuit processes the motivational and rewarding aspects of food and
is key in subjective valuation [10]. It arises from midbrain dopamine signals projected to
the striatum, and it includes other limbic areas connected to the midbrain or to the striatum,
such as the orbitofrontal cortex, thalamus, hippocampus, and amygdala [10,11]. Alterations
in the mesolimbic network could potentially trigger impulsive eating by increasing the
incentive salience of food [12]. The cognitive control network might be especially relevant
in sustaining restrictive eating patterns. Functional MRI studies have shown that, when
participants exert dietary self-control, a set of brain regions that conform the cognitive con-
trol network become activated. Some of these regions are the anterior insula, inferior frontal
gyrus/ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, and temporal–parietal
junction [13]. Finally, stress is known to induce marked changes in eating behaviors. Upon
the detection of an acute stressor, the hypothalamus releases the corticotropin-releasing
hormone, provoking the activation of the hypothalamus–pituitary–adrenal (HPA) axis.
Corticotropin-releasing hormone, moreover, is known to act as an appetite suppressor [14].
However, chronic stress is known to stimulate appetite [14] and, for some people, it can lead
to unhealthy weight gain [15]. In addition to the HPA axis, two medial temporal regions
are also important for stress responses: the amygdala and the hippocampus. The amygdala
has a crucial role in salience detection [16] and is robustly engaged during the visualization
of negatively-valenced stimuli [17]. Its projections via the sensory cortex might enable the
organism to increase attentional processes towards stressful stimuli [18]. Potentially, these
three circuits could be involved in different manifestations of a given eating disorder (for
example, in the case of patients with the binge purge subtype of anorexia nervosa, the three
circuits could hypothetically play a role in different symptoms).

Neuroimaging studies have examined the associations between eating patterns and
neuroanatomical differences. Initial evidence, however, is scarce and heterogeneous. High
scores in restrictive eating seem to be associated with lower gray matter volume in the
putamen nucleus, along with higher gray matter volume in the dorsolateral prefrontal cor-
tex [19]. Another study found that restrictive eating was correlated with lower gray matter
volume in the precuneus [20]. On the other hand, higher scores in uncontrolled eating have
been associated with increases in gray matter volume in the nucleus accumbens [21]. In
contrast, other studies have found uncontrolled eating to be related with decreases in gray
matter volume in the dorsolateral prefrontal cortex [19] and orbitofrontal cortex [22].

It is possible that some of these neuroanatomical differences associated with eating
patterns, in turn, relate to differences in cognitive function. In that regard, some studies
have examined the association between eating patterns and executive functions. In two
studies, restrictive eating was not related to executive function performance [23,24]. How-
ever, another study reported that, in participants with lower scores in executive functions,
restrained eating was correlated with higher sensitivity to punishment and higher reward
responsivity [25]. With regards to uncontrolled eating patterns, we found null associations
between this eating trait and performance in executive functions across 10 independent
studies [26]. One possible explanation for this is that eating traits might be associated
with specific subdomains of executive function performance (such as working memory,
cognitive flexibility, or planning), rather than with general executive function deficits.
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An extensive evaluation of different subdomains of executive functions in relation with
non-clinical eating traits is, however, missing.

The current study has two main goals. First, we seek to explore whether we can classify
participants into subtypes based on their eating patterns. Specifically, we will examine
participants classified in two age groups: adolescence and young adulthood. Second, we
aim to define the neurocognitive profile of each eating behavior cluster. To this aim, we will
test for differences in regions of the brain belonging to the mesolimbic, cognitive control or
stress circuits of the brain, as well as for differences in executive functions and personality
across clusters.

2. Materials and Methods
2.1. Participants

Participants were recruited as part of two broader projects aimed at identifying the
neuro-behavioral correlates of overweight and obesity in adolescence [27] and adult-
hood [28,29]. Participants gave their informed consent following the Helsinki′s declaration,
and the Committee of Bioethics of the University of Barcelona approved the projects. The
age of the participants was between 12 and 40 years old, and they were split into two
independent samples: (i) adolescents (n = 108; age range from 12 to 17 years old), and
(ii) adults (n = 175; aged 18 to 40 years old). This classification was done by considering
that adulthood starts at the same time as the most common voting age. Exclusion criteria
were clinical history of psychiatric illness (including addictive and/or eating disorders),
and clinical history of developmental, neurological, or systemic diseases (such as hyper- or
hypothyroidism, diabetes, or cardiovascular diseases). Being claustrophobic and being a
bearer of non-removable metallic objects (such as orthodontics) were additional exclusion
criteria for the MRI.

2.2. Eating Behavior Scales

Eating patterns were examined using the Three Factor Eating Questionnaire (TFEQ) [30]
and the Bulimia Inventory Test of Edinburgh (BITE) [31].

The TFEQ was administered in its 18 items revised form, which provides three mea-
sures of human eating behavior: cognitive restraint, or the tendency to suppress food
intake, uncontrolled eating, or the tendency to feel losses of control over food intake, and
emotional eating, or the tendency to eat in response to negative emotional states. The scores
of the TFEQ were used in the cluster analysis to define different subgroups of participants.

The BITE test provides a symptom score reflecting binge eating and bulimic tendencies.
Since none of the participants presented purging symptoms, high scores in this test should
be interpreted as high binge eating tendencies (similar to the uncontrolled eating scale
from the TFEQ). Scores were used to test for the validity of the cluster classification.

2.3. Clinical Variables

We measured weight, height, and waist circumference in order to calculate body
mass index (BMI) and waist-to-height ratio. The waist-to-height ratio was used as an
indicator of central adiposity, since it is considered a strong predictor of type 2 diabetes
and cardiovascular disorders, in adults [32] as well as in pediatric populations [33]. BMI
was additionally used to categorize participants in obese, overweight, and lean groups,
following the standard categorization of the World Health Organization. Moreover, in
the adolescent sample, age and sex were taken into account in the definition of obese,
overweigh, and lean groups, as proposed by Cole et al. [34]. We tested whether results
changed if groups reflecting body-weight status were entered in the analyses instead of
waist-to-height ratio, but the significant results obtained remained the same.

Participants completed the Hospital Anxiety and Depression Scale (HADS) [35], and
the total sum of items was computed.



Brain Sci. 2021, 11, 978 4 of 12

2.4. Executive Functions

We used the following neuropsychological tests to examine executive function per-
formance. We administered a computerized version of the Wisconsin card sorting test
(WCST) [36] and recorded the total number of errors, and the Trail Making Test part B
minus part A [37]. These tests are generally considered to measure cognitive flexibility [38].
To assess working memory [38], we administered letter-number sequencing from the Wech-
sler Intelligence Scales (WISC or WAIS). Finally, to evaluate inhibitory control [38], we
recorded the interference score from the Stroop test [39], and number of commission errors
from the Continuous Performance Test, 2nd Edition (CPT-II) [40].

2.5. Personality

We administered the Temperament and Character Inventory Revised (TCI-R). The
TCI-R evaluates personality based on Cloninger’s psychobiological model of personality. It
provides measures for four temperament dimensions: novelty seeking, harm avoidance, re-
ward dependence and persistence; along with three character dimensions: self-directedness,
cooperativeness and self-transcendence [41,42].

As a measure of impulsivity, we used a self-report delay discounting question-
naire [43], which evaluates the tendency to choose immediate small rewards over large
delayed ones.

We additionally administered the Barratt Impulsivity Scale 11 (BIS-11) to the adult
sample, which provides three subscales of impulsivity: cognitive, motor, and non-planned.

Finally, we also evaluated self-esteem in adolescents with the Rosenberg’s self-esteem scale.

2.6. MRI Acquisition

Participants were asked to participate in a brain MRI acquisition, performed on a
separate day. A number of participants did not perform this session, which reduced the
adolescent MRI subsample to n = 60 and the adult MRI subsample to n = 106. The main rea-
sons why participants dropped out of the MRI sub-study were schedule incompatibilities
and meeting exclusion criteria for the MRI (see Section 2.1.).

We acquired a high resolution T1-weighted 3D using an MPRAGE echo sequence
with the following parameters: repetition time 2300 ms., echo time 2.98 ms., inversion time
900 ms. We acquired 2401 mm contiguous slices using a 256 × 256 matrix with an in-plane
resolution of 1 × 1 mm2.

2.7. MRI Processing: Cortical and Subcortical Brain Regions

We performed the preprocessing and analysis of cortical thickness and subcortical
volumes using FreeSurfer software (Version 6.0; https://surfer.nmr.mgh.harvard.edu (ac-
cessed on 1 May 2016)). The process included volume correction and average of T1, removal
of non-brain tissue, intensity normalization, and tessellation of gray/white matter tissue.
After the processing, we performed visual inspection to ensure accuracy of registration,
skull stripping, segmentation, and cortical surface reconstruction. Data resulting from this
processing has been published in two studies examining the association between obesity
and brain morphometry in adolescence [27] and adulthood [29].

We extracted mean subcortical volume of the following regions of interest, by using
the Desikan atlas: caudate, putamen, accumbens, pallidum, amygdala and hippocampus.
Data from the left and right side of the brain were added, and the value obtained was
divided by total subcortical gray matter volume.

Additionally, we extracted mean thickness values from the following cortical struc-
tures: orbitofrontal cortex (medial and lateral), inferior frontal gyrus (opercularis, orbitalis,
and triangularis), insula, and anterior cingulate cortex (caudal and rostral). We divided the
values obtained by global cortical thickness.

These regions were chosen because of their involvement in the mesolimbic circuitry
(e.g., caudate, putamen, accumbens, pallidum, amygdala, insula, and orbitofrontal cortex),

https://surfer.nmr.mgh.harvard.edu
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in the cognitive control circuit (e.g., inferior frontal gyrus, insula, and anterior cingulate
cortex), as well as in the stress system (e.g., hippocampus and amygdala).

2.8. Cluster Analysis

The three scales of the TFEQ were centered and entered into a k-means cluster analysis
using the “cluster” package (Version 2.1.0.) available in R (Version 4.0.0.) [44]. In both
samples, we chose k = 3 since this number allowed us to keep a relatively large sample in
each cluster. This decision was in congruence with the elbow method. More specifically,
for a range of different values of k (2 to 15) we calculated the total within-cluster sum
of square (WSS) and plotted it (Supplementary Material: Figure S1). For both samples,
k values superior to 3 did not substantially improve the WSS value.

To examine the meaningfulness of the cluster classification, we tested for cluster
differences in the BITE test (extra-cluster validation).

2.9. Minimally- and Fully-Adjusted ANCOVA Models

We analyzed the effect of cluster classification on executive functions, personality
variables, and brain anatomy. To do so, we built minimally adjusted ANCOVA models that
included cluster classification as main covariate of interest, along with those demographic
and clinical variables that showed statistical differences between clusters.

In adolescents, clusters showed differences in waist-to-height ratio (Table 1), so we
included this variable in the minimally adjusted models. In adults, clusters differed in
terms of waist-to-height ratio, sex distribution, and anxiety/depression symptoms (see
Table 2). These variables were then included in the minimally adjusted models.

When a significant effect of cluster classification was found, we additionally built a
fully adjusted ANCOVA model that accounted for the possible effects of demographic and
clinical variables. In both samples, the fully adjusted ANCOVA models included cluster
classification along with age, sex distribution, waist-to-height ratio, and anxiety/depression
symptoms.

We adjusted our significant level threshold to account for multiple testing using Bon-
ferroni correction. In adolescents, we calculated 23 models (i.e., five models examining
executive functions, nine models testing personality, and nine models examining neu-
roanatomical regions of interest). The significance level in this sample was set to p < 0.002
(0.05/23). In adults, we performed 25 models (i.e., five models examining executive func-
tions, 11 models testing personality, and nine models examining brain regions of interest),
so the significant p value was set to p < 0.002 (0.05/25).

Table 1. Description of eating patterns, demographical variables, and clinical characteristics of the three clusters in the
adolescent sample.

Domains Variables Uncontrolled Eating
(n = 35)

Restrained
Eating (n = 29)

Low Problematic
Eating (n = 44) F p

Intra-cluster variables
(TFEQ; centered)

Cognitive restraint 0.04 (0.87) 1.08 (0.57) −0.75 (0.56) 63.54 <0.001
Disinhibited eating 0.98 (0.77) −0.69 (0.68) −0.33 (0.70) 51.15 <0.001
Emotional eating 1.10 (0.84) −0.36 (0.64) −0.63 (0.43) 76.71 <0.001

Extra-cluster
validation (BITE) BITE symptoms 6.65 (4.26) 2.71 (2.19) 2.66 (2.07) 19.93 <0.001

Demographic and
clinical variables

Age 14.63 (1.70) 14.27 (1.50) 14.28 (1.60) 0.55 0.556

Sex 19 females (54%)
16 males (46%)

14 females (48%)
15 males (52%)

21 females (48%)
23 males (52%) X2(2) = 0.3825 0.826

Waist (cm)/Height
(cm) 0.53 (0.08) 0.55 (0.09) 0.48 (0.08) 12.17 <0.001

BMI 28.11 (5.91) 28.82 (5.47) 23.5 (5.59) 9.60 <0.001

Body weight status
10 lean (29%)

5 overweight (14%)
20 obese (57%)

5 lean (17%)
4 overweight

(14%)
20 obese (69%)

26 lean (59%)
7 overweight

(16%)
11 obese (25%)

X2(2) = 17.57 0.002

Anxiety and
depression (HADS) 8.18 (4.23) 7.34 (4.24) 6.31 (4.35) 1.81 0.170
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Table 2. Description of eating patterns, demographical variables and clinical characteristics of the three clusters in the
adult sample.

Domains Variables Uncontrolled Eating
(n = 54)

Restrained
Eating (n = 61)

Low Problematic
Eating (n = 60) F p

Intra-cluster variables
(TFEQ; centered)

Cognitive
restraint 0.27 (0.88) 0.70 (0.68) −0.96 (0.53) 89.18 <0.001

Disinhibited eating 1.01 (0.88) −0.22 (0.47) −0.10 (0.75) 85.22 <0.001
Emotional eating 1.20 (0.62) −0.19 (0.55) −0.88 (0.39) 227.4 <0.001

Extra-cluster
validation (BITE) BITE symptoms 10.45 (5.80) 4.77 (3.29) 2.49 (2.61) 55.45 <0.001

Demographic and
clinical variables

Age 31.15 (7.60) 30.69 (9.61) 30.67 (18.14) 0.06 0.945

Sex 37 females (68.5%)
17 males (31.5%)

39 females (64%)
22 males (36%)

28 females (47%)
32 males (53%) X2 = 6.42 0.040

Waist (cm)/Height
(cm) 0.60 (0.11) 0.56 (0.10) 0.51 (0.10) 12.17 <0.001

BMI 31.60 (7.68) 29.80 (7.15) 25.81 (7.74) 8.97 <0.001

Body weight status
12 lean (22%)

9 overweight (17%)
33 obese (61%)

16 lean (26%)
24 overweight

(39%)
21 obese (34%)

41 lean (68%)
5 overweight

(23%)
14 obese (8%)

X2 = 44.68 <0.001

Anxiety and
depression (HADS) 7.54 (4.79) 5.39 (3.55) 5.80 (3.78) 7.19 0.001

3. Results
3.1. Adolescent Sample (n = 108)
3.1.1. Cluster Analysis

The three cluster solution provided a cluster characterized by high scores in uncon-
trolled eating and emotional eating (“uncontrolled eating”), a second group with high
scores in cognitive restraint (“restrained eating”), and a third cluster with low scores in the
three eating scales (“low problematic eating”) (Figure 1).
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Figure 1. Radar charts depicting the three clusters obtained in the adolescent sample.

The three clusters differed from each other with regards to the scales of the TFEQ
(intra-cluster variables), and with regards to binge eating symptoms (extra-cluster variable).
This suggests that the segregation of participants into three groups was meaningful. The
three clusters differed with regards to waist-to-height ratio, with no differences in the
other demographic and clinical variables examined (i.e., age, sex distribution, anxiety and
depression symptoms) (see Table 1). The minimally-adjusted ANCOVA models were then
corrected for waist-to-height ratio, while age, sex, and anxiety/depression symptoms were
included in the fully-adjusted ANCOVA models.
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3.1.2. Executive Functions and Personality

There were no significant differences between the three groups in executive func-
tions, nor there was a cluster effect in any of the personality measurements evaluated
(Supplementary Material: Table S1).

3.1.3. Neuroanatomical Results (Subsample: n = 60)

In the neuroimaging subsample, the proportion of participants was distributed as
follows: uncontrolled eating n = 19, restrained eating n = 15, low problematic eating n = 26.
Clinical characteristics of the neuroimaging subsample are shown in the Supplementary
Material (Table S2). We found a cluster effect in cortical thickness of the inferior frontal
gyrus. This effect was found both in the minimally-adjusted model (F = 8.855; Bonferroni-
corrected p = 0.011), which controlled for waist-to-height ratio, as well as in the fully
adjusted model (F = 8.574; Bonferroni-corrected p = 0.014), which controlled for waist-to-
height ratio, age, sex distribution, and anxiety/depression symptoms. Compared to the
low problematic eating cluster, participants in the restrained eating cluster showed lower
cortical thickness in the inferior frontal gyrus (Bonferroni-corrected p = 0.013) (Figure 2).
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3.2. Adult Sample (n = 175)
3.2.1. Cluster Analysis

The three cluster solution provided a cluster with highs scores in uncontrolled eating
and emotional eating (“uncontrolled eating”), a group characterized by high scores in
cognitive restraint (“restrained eating”), and a group of participants with low scores in the
three eating scales (“low problematic eating”) (Figure 3).
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This cluster solution provided a meaningful separation of participants, since the three
groups differed from each other with regards to the TFEQ scales (intra-cluster scales), and
also with regards to binge eating symptoms from the BITE test (extra-cluster variable). The
three clusters differed with regards to the three obesity-related variables (waist-to-height
ratio, BMI, and obesity status), anxiety and depression symptoms and sex distribution.
These variables were then selected as covariates in the minimally adjusted ANCOVA
models (Table 1).

3.2.2. Executive Functions and Personality

There were no significant differences between the three groups in executive functions
(Supplementary Material: Table S3), nor there was a cluster effect on any of the personality
measurements evaluated (TCI-R and BIS-11).

3.2.3. Neuroanatomical Results (Subsample n = 106)

In the neuroimaging subsample, the proportion of participants was distributed as
follows: uncontrolled eating n = 32, restrained eating n = 42, low problematic eating
n = 32. The Supplementary Material (Table S4) displays clinical characteristics of this
neuroimaging subsample. We did not find group differences in any of the subcortical
and cortical regions examined.

4. Discussion

In this study, we examined whether eating patterns can be used to group participants
into meaningful clusters. To do so, we analyzed two independent samples divided by age:
participants in adolescence (aged 12 to 17 years) and adult participants (aged 18 to 40 years
old). In both samples, we obtained three subtypes of participants: a group characterized by
uncontrolled eating behavior, a cluster characterized by restrained eating, and a cluster
with low scores in problematic eating. Next, we sought to define the neurobehavioral
profile associated with each of these clusters. Clusters were similar with regards to cogni-
tive function and personality profile across the two samples. In adolescents, there was a
group effect of cortical thickness in the inferior frontal gyrus, in which participants in the
restrained eating group showed lower thickness than both the uncontrolled eating and the
low problematic eating groups. This difference was not observed in adults.

Eating patterns such as uncontrolled eating and restrictive eating constitute well-
known risk factors for the development of eating disorders [2–4]. In the present study, we
found that across two samples of non-clinical participants we obtained a cluster of partici-
pants showing high scores in uncontrolled eating patterns, and a cluster of participants
showing high scores in restrained eating. The result suggests that the classification is rela-
tively robust, and seems to show a certain stability from adolescence to middle adulthood.
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The three clusters did not differ in terms of executive functions and personality. In
a previous meta-analysis we showed that non-clinical uncontrolled eating patterns seem
unrelated to performance in executive functions [26]. This stands in clear contrast with
findings from clinical eating disorders, where different studies have shown that these
patients perform worse than healthy controls in executive functions [26,45–47] (but see [48]
for negative findings). The magnitude of these effects ranges from small, in the case of
binge eating disorder [26], to medium size, in the case of anorexia nervosa and bulimia
nervosa [45]. Together with our current finding, these results support the idea that non-
clinical variations in eating behaviors are not accompanied by any conclusive differences
in cognitive processing. Cognitive problems, however, might be observed in clinical
populations (i.e., in patients with eating disorders), or in cases where the severity of the
problematic eating patterns significantly interferes with daily activities.

In adults, there was a small tendency for participants with restrained eating behavior
to show more symptoms of anxiety and depression. This effect, however, was not detected
in the adolescent sample. This small difference might suggest that, taken to the extreme,
restrained eating (or “dieting”) can potentially lead to anorexia nervosa [3], a psychiatric
diagnosis with a frequent association with emotional symptoms [49].

With regards to neuroanatomical differences, in the adult sample there was no signifi-
cant difference across clusters in the regions of interest examined. In the adolescent sample,
however, participants classified into the group of restrictive eating showed lower cortical
thickness in the inferior frontal gyrus. This effect was found while controlling for poten-
tial confounding factors, such as age, sex, waist-to-height ratio, and anxiety/depression
symptoms. Brain cortical development during adolescence is characterized by an accel-
erated thinning with increasing age, which seems to be especially prominent in frontal
lobe regions [50]. Hypothetically speaking, restrictive eating behaviors could interact with
the neural development in the inferior frontal gyrus, a region associated with general
inhibitory processes [51] and, more specifically, with dietary self-control [13]. This is purely
speculative, since we would need longitudinal designs to trace this interaction. Moreover,
we strongly argue against considering this possible variation of normal brain development
as pathological. This is particularly so since the three groups showed similar scores in cog-
nitive and personality measures. Alternatively, we suggest that it might reflect an adaptive
neural mechanism that facilitates self-control processes in these participants.

In the following, we outline several limitations of the study and we suggest future
research directions. First, the neuropsychological tests administered here were standard
cognitive tests that have been widely used to evaluate executive functions [38]. How-
ever, these tests might not necessarily detect differences in executive functions that are
specifically linked with food stimuli. For instance, participants with uncontrolled eating
might show lower inhibitory control in response to food items, but that this might not
necessarily translate to their performance in the classic Stroop or CPT-II tests. For this
reason, the inclusion of food-related measures of executive functions would have been
desirable and is a future line of research. Second, sex differences might have an influence
on the neurobehavioral correlates of eating patterns. Pathological eating patterns seem
to affect females and males differently. For instance, the prevalence of anorexia nervosa
and bulimia nervosa is much higher in females than in males (e.g., [1]). While the current
sample sizes were not robust enough to test for sex effects, future studies could examine if
sex has an influence on the cognitive and personality profile of participants showing high
scores in restrictive or uncontrolled eating. Finally, it would be interesting to investigate
how changes in affective symptoms (such as anxiety and depression) might appear before
or after certain eating behaviors, and to evaluate the neurocognitive correlates of affective
symptomatology in clinical and subclinical eating disorders.

5. Conclusions

In this study we provide a comprehensive examination of the neurobehavioral cor-
relates of non-clinical eating patterns in two samples: an adolescent sample (12–17 years
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old) and an adult sample (18 to 40 years old). To this aim, we classified participants into
groups by using cluster analysis and obtained three clusters: a group characterized by high
uncontrolled eating patterns, a group with high restrictive eating behavior, and a group
with low problematic eating behavior. The three groups were equivalent in executive
function performance and personality differences. In the adolescent sample, we found that
participants with high restrictive eating behavior showed lower cortical thickness in the
inferior frontal gyrus. There were no neuroanatomical differences in the adult sample. We
suggest that the differences observed might reflect a greater engagement of self-control
mechanisms in these participants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/brainsci11080978/s1, Figure S1: Within clusters sum of squares in the adolescent and the
adult samples, Table S1: Executive function performance in adolescents, Table S2: Description of
eating patterns, demographical variables, and clinical characteristics of the three clusters in the
neuroimaging subsample of adolescents, Table S3: Executive function performance in adults, Table
S4: Description of eating patterns, demographical variables, and clinical characteristics of the three
clusters in the neuroimaging subsample of adults.
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