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Abstract: (1) Background: Sustained axonal degeneration may play a critical role in prolonged
disorder of consciousness (DOCs) pathophysiology. We evaluated levels of neurofilament light chain
(NFL), an axonal injury marker, in patients with unresponsive wakefulness syndrome (UWS) and in
the minimally conscious state (MCS) after traumatic brain injury (TBI) and hypoxic-ischemic brain
injury (HIBI). (2) Methods: This prospective multicenter blinded study involved 70 patients with
prolonged DOC and 70 sex-/age-matched healthy controls. Serum NFL levels were evaluated at
1–3 and 6 months post-injury and compared with those of controls. NFL levels were compared by
DOC severity (UWS vs. MCS) and etiology (TBI vs. HIBI). (3) Results: Patients’ serum NFL levels
were significantly higher than those of controls at 1–3 and 6 months post-injury (medians, 1729 and
426 vs. 90 pg/mL; both p < 0.0001). NFL levels were higher in patients with UWS than in those
in MCS at 1–3 months post-injury (p = 0.008) and in patients with HIBI than in those with TBI at
6 months post-injury (p = 0.037). (4) Conclusions: Patients with prolonged DOC present sustained
axonal degeneration that is affected differently over time by brain injury severity and etiology.

Keywords: neurofilament light chain; traumatic brain injury; hypoxic-ischemic brain injury; unre-
sponsive wakefulness syndrome; vegetative state; minimally conscious state; secondary brain injury;
biomarkers of brain injury

1. Introduction

Severe acute brain injuries, typically traumatic brain injury (TBI) and hypoxic-ischemic
brain injury (HIBI), disrupt the ability of the brain to support consciousness, leading to
a disorder of consciousness (DOC). Prolonged DOC [1], i.e., unresponsive wakefulness
syndrome (UWS; sleep/wake cycles but no sign of awareness) [2] or a minimally conscious
state (MCS; minimal and fluctuating signs of awareness), is defined as consciousness
impairment lasting for more than 28 days [3]. Acute brain injuries, especially TBI, may
trigger persistent neuronal loss leading to secondary brain damage, which further affects
the chances of recovery in patients with prolonged DOC [4]. In particular, neuroimaging
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studies have shown that moderate to severe TBI induces progressive brain-volume loss
involving the gray and white matter, although the mechanisms underlying this postinjury
atrophy are not well understood [5,6]. Similarly, neuropathological studies have demon-
strated broad white-matter damage of traumatic and nontraumatic etiologies that cannot
be explained entirely by acute injury in patients with prolonged DOC [7,8].

Biomarkers could be useful in the evaluation of persistent secondary brain damage in
patients with prolonged DOC, as they may enable the definition of specific neuroprotec-
tive strategies. In this context, neurofilaments are potential candidates. Neurofilaments,
composed of light-, medium-, and heavy-molecular-weight proteins, are the dominant
intermediate filaments of the neural cytoskeleton and play an important role in the mainte-
nance of axon structure and function [9]. Neurofilament light chain (NFL) levels, which can
be evaluated in cerebrospinal fluid and peripheral blood, are increased in several diseases
characterized by acute or chronic neuronal damage, such as TBI [10], HIBI after cardiac
arrest [11], subarachnoid hemorrhage [12], stroke [13], amyotrophic lateral sclerosis [14],
Alzheimer’s disease [15], and in patients with Parkinson’s disease and cognitive impair-
ment [16]. In particular, serum NFL levels are markedly increased in the acute phase of
TBI and HIBI, and they correlate with poor outcomes [10,11]. Thus, NFL is a promising
biomarker of axonal injury and neurodegeneration, potentially related to the amount of
brain injury and disease progression [17–19].

In a previous study, we found high NFL levels in the cerebrospinal fluid of patients
with post-traumatic DOC [20]; nevertheless, many questions remain unanswered, as we
did not investigate non-traumatic etiologies (e.g., HIBI) or differences among patients with
different DOCs or collect follow-up data. Moreover, the assessment of NFL in cerebrospinal
fluid is not suitable for routine clinical use because of the difficulty of obtaining samples
by lumbar puncture. Thus, this multicenter prospective longitudinal study was designed
to evaluate: (i) whether serum NFL levels in patients with prolonged DOC differ from
those in matched healthy controls at 1–3 months (baseline) and/or 6 months post-injury,
(ii) whether these levels differ according to DOC severity (UWS or MCS) and/or etiology
(TBI or HIBI), and (iii) whether serum NFL levels are related to 6-month outcomes. Results
from this study may improve characterization of the mechanisms of long-term brain injury
in patients with prolonged DOC and the usefulness of NFL as a potential biomarker of
UWS and MCS severity and outcome.

2. Materials and Methods
2.1. Participants

For this study, patients admitted to five Italian centers specialized in the rehabilitation
of patients with prolonged DOC following acute brain injury were recruited between June
2019 and February 2020. Inclusion criteria were: (i) diagnosis of UWS or MCS according to
the Coma Recovery Scale—Revised (CRS-R) [21] at the time of study inclusion, (ii) DOC
caused by TBI or HIBI, (iii) study inclusion at 28 days–3 months after acute brain injury,
and (iv) age of 18–65 years. Exclusion criteria were: (i) previous history of acute brain
injury, pathology affecting the myelin (e.g., multiple sclerosis), or neurodegenerative or
psychiatric disease; (ii) previous history of cancer; (iii) unstable clinical condition (e.g.,
hemodynamic instability, severe respiratory failure, or acute hydrocephalus). Patients’
data were compared with those of sex- and age-matched healthy controls with no previ-
ous history of neurological, psychiatric, or neoplastic disease who were recruited at the
coordinating center among blood donors and healthcare personnel.

2.2. Clinical Evaluation

At the time of study inclusion, all patients underwent standard neurological exam-
ination and assessment with the CRS-R over three consecutive days, with the CRS-R
administered at least five times. The CRS-R is used to diagnose UWS, MCS, and emergence
from MCS and is the most reliable tool available for the assessment of consciousness in
patients with DOC following coma [22]. It consists of 23 hierarchically organized items
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grouped into six subscales addressing auditory, visual, motor, oromotor/verbal, com-
munication, and arousal functions. Total CRS-R scores range from 0 (comatose state) to
23 (emergence from MCS). To reduce the risk of misdiagnosis, diagnoses of UWS and MCS
were accepted only when confirmed at all five evaluations [23]. The same 3-day evaluation
with five CRS-R administrations was repeated 6 months after brain injury. Six-month
outcomes were characterized using the Glasgow Outcome Scale—Extended (GOSE) [24], a
global 1–8 scale with the categories of death (score of 1), vegetative state, severe disability
(lower and upper), moderate disability (lower and upper), and good recovery (lower and
upper; scores of 7 and 8).

2.3. NFL Analysis

At the end of the initial and follow-up clinical evaluations, blood samples for NFL
analysis were collected from the patients by venipuncture into serum-separating tubes, cen-
trifuged at 1500 rpm for 15 min, and stored at −80 ◦C until use. Blood samples from healthy
controls were collected the day of the inclusion in the study. Samples collected outside the
coordinating center were sent to the coordinating center, where the serum was aliquoted
and analyzed using a commercially available NFL enzyme-linked immunosorbent assay
(ELISA) kit as described by the manufacturer (Uman Diagnostics, Umeå, Sweden) for
cerebrospinal fluid analysis. With this ELISA assay, serum NFL levels are correlated to
those in cerebrospinal fluid and to results obtained with other platforms for serum NFL
analysis [25]. The researchers who performed the NFL analysis were blinded to the clinical
data, and those who performed the clinical evaluations were blinded to the NFL data.

2.4. Sample Size Calculation

The preliminary sample size calculation was performed with consideration of our
previous study [20], in which mean NFL levels in cerebrospinal fluid were about 5.7 times
higher in 10 patients with prolonged DOC than in a control population of patients with
Alzheimer’s disease. We postulated that the magnitude of this difference could be main-
tained for the serum NFL levels of patients and healthy controls, assuming an alpha error
level of 5% and a beta error level of 50%. This postulate was rather stringent, as the
patients with Alzheimer’s disease had higher NFL levels than did the healthy subjects
recruited for this study. Based on these criteria, the required sample size was 38 partici-
pants (19 patients and 19 controls). However, the effective sample size for the study was
about 3.7 times larger (70 patients and 70 controls), as we planned to perform comparisons
of patient subpopulations. The sample size calculation was performed with G*Power,
version 3.1 [26].

2.5. Statistical Analysis

Demographic and clinical data are expressed as means (SD); NFL levels are expressed
as medians and 25th and 75th percentiles. The Mann–Whitney U test (for continuous vari-
ables) and Fisher’s exact test (for categorical variables) were used to compare demographic
and clinical data between patients and healthy controls and between subgroups of patients
(UWS vs. MCS, TBI vs. HIBI). We used Spearman’s rank-correlation test to examine
whether NFL levels correlated with GOSE scores at 6 months post-injury. p values < 0.05
were considered to be significant. The statistical analysis was performed with Prism
(GraphPad Software), version 9.1.1.

3. Results
3.1. NFL Levels in Patients and Controls

Seventy patients with prolonged DOC and 70 sex- and age-matched healthy controls
were recruited (Table 1 and Supplementary Table S1). Forty-five patients had UWS and
25 patients were in MCS. DOCs were caused by TBI in 48 patients (37 road accidents, nine
falls, and two assaults) and by HIBI in 22 patients (20 cardiac arrests and two asphyxias).
NFL and other clinical data were available for all 70 patients included in the study. Six-
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month outcomes were available for 67 patients (including eight patients who died before
the follow-up evaluation); three patients dropped out of the study because they were
discharged and not available for the 6-month follow-up evaluation. The 6-month clinical
evaluation was completed for 59 patients, and NFL data were available for 52 of these
patients (Figure 1).

Table 1. Participant characteristics.

Characteristic
All

Patients
(n = 70)

Healthy
Controls
(n = 70)

p UWS
(n = 45)

MCS
(n = 25) p TBI

(n = 48)
HIBI

(n = 22) p

Males 58 58
1

38 20
0.7

41 17
0.5Females 12 12 7 5 7 5

Age (years) 39.2 (14.8) 39.4 (14.5) 0.9 41.6 (14.6) 35.3 (14.8) 0.08 37 (14.7) 44 (14.2) 0.06
Time since brain injury

(days) 47.2 (20) 45.4 (20) 50.8 (20.3) 0.2 47.5 (19.4) 46.7 (21.9) 0.8

CRS-R score
1–3 months post-injury 7.2 (4.7) 4.3 (1.6) 12.4 (3.9) <0.0001 8.2 (5.2) 4.8 (1.8) 0.02

6 months post-injury 13.3 (8.2) 9 (6.6) 19.8 (5.9) <0.0001 15.9 (8) 6.9 (4.5) <0.0001
GOSE score 2.4 (1.5) 2.4 (1.3) 3.3 (1.7) 0.003 3.1 (1.7) 2 (0.6) 0.002

Significant p values are in bold. UWS, unresponsive wakefulness syndrome; MCS, minimally conscious state; TBI, traumatic brain injury;
HIBI, hypoxic-ischemic brain injury; CRS-R, Coma Recovery Scale—Revised; GOSE, Glasgow Outcome Scale—Extended. Values are
means (SD).

Brain Sci. 2021, 11, x FOR PEER REVIEW 5 of 11 
 

 
Figure 1. Study flow and patients’ levels of consciousness at 1–3 and 6 months post-injury. UWS, unresponsive wakeful-
ness syndrome; MCS, minimally conscious state; E-MCS, emergence from a minimally conscious state; NFL, neurofilament 
light chain. 

 
Figure 2. Distribution of NFL values in patients (at 1–3 and 6 months post-injury) and healthy con-
trols. The horizontal lines indicate median values. One datapoint in the 1–3 months group is not 
reported because it fell outside of the axis limit. NFL, neurofilament light chain. 

  

Figure 1. Study flow and patients’ levels of consciousness at 1–3 and 6 months post-injury. UWS, unresponsive wakefulness
syndrome; MCS, minimally conscious state; E-MCS, emergence from a minimally conscious state; NFL, neurofilament
light chain.

Patients’ serum NFL levels at 1–3 months (median, 1729 pg/mL; 25th and 75th per-
centiles, 982 and 2679 pg/mL, respectively) and 6 months (median, 426 pg/mL; 25th
and 75th percentiles, 241 and 959 pg/mL, respectively) post-injury were significantly
higher than those of healthy controls (median, 90 pg/mL; 25th and 75th percentiles,
74 and 131 pg/mL, respectively; U = 159 and 481, respectively; both p < 0.0001; Figure 2).
Moreover, patients’ serum NFL levels were significantly higher at 1–3 months than at
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6 months post-injury (U = 586, p < 0.0001; Figure 2). Comparisons of NFL levels at
1–3 months and 6 months post-injury in patient subgroups are provided in Table 2.
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Figure 2. Distribution of NFL values in patients (at 1–3 and 6 months post-injury) and healthy
controls. The horizontal lines indicate median values. One datapoint in the 1–3 months group is not
reported because it fell outside of the axis limit. NFL, neurofilament light chain.

Table 2. NFL levels at 1–3 and 6 months post-injury.

Patients
Number of NFL

Samples at 1–3 Months
Post-Injury

Number of NFL
Samples at 6 Months

Post-Injury

NFL Level at 1–3
Months Post-Injury

(pg/mL)

NFL Level at 6 Months
Post-Injury (pg/mL) U p

All patients 70 52 1729 (982, 2679) 426 (241, 959) 586 <0.0001

UWS 45 22 2080 (1308, 3658) 434 (250, 997) 130 <0.0001

MCS 25 30 * 1325 (934, 3269) 426 (238, 919) 152 <0.0001

TBI 48 35 1383 (954, 2165) 337 (212, 557) 280 <0.0001

HIBI 22 17 2545 (1708, 3574) 818 (421, 1031) 48 <0.0001

NFL levels are expressed as median (25th, 75th percentiles). * Includes patients with MCS and emerged from MCS. NFL, neurofilament light
chain; UWS, unresponsive wakefulness syndrome; MCS, minimally conscious state; TBI, traumatic brain injury; HIBI, hypoxic-ischemic
brain injury.

3.2. NFL Levels in Patients with Different States of Consciousness

At the time of study inclusion, NFL levels were higher in patients with UWS (median,
2080 pg/mL; 25th and 75th percentiles, 1308 and 3658 pg/mL, respectively) than in those
in MCS (median, 1325 pg/mL; 25th and 75th percentiles, 934 and 3269 pg/mL, respectively;
U = 347, p = 0.008; Figure 3A). This finding was confirmed in a more homogeneous
subgroup of patients; among patients with TBI (n = 48), NFL levels were higher in those
with UWS (n = 25; median, 1797 pg/mL; 25th and 75th percentiles, 1308 and 2945 pg/mL,
respectively) than in those in MCS (n = 23; median, 1218 pg/mL; 25th and 75th percentiles,
913 and 1680 pg/mL, respectively; U = 189, p = 0.04; Figure 3B).
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Figure 3. Distribution of NFL values in patients with UWS and MCS in the total sample (A) and
among patients with TBI (B). The horizontal lines indicate median values. One datapoint in the UWS
(all patients) group is not reported because it fell outside of the axis limit. NFL, neurofilament light
chain; UWS, unresponsive wakefulness syndrome; MCS, minimally conscious state; TBI, traumatic
brain injury.

Of the 52 patients for whom 6-month follow-up NFL data were available, 22 had UWS
and 30 were conscious (11 in MCS and 19 emerged from MCS). Six-month post-injury
NFL levels did not differ between patients with UWS (median, 434 pg/mL; 25th and
75th percentiles, 250 and 997 pg/mL, respectively) and those with MCS and emergence
from MCS (median, 426 pg/mL; 25th and 75th percentiles, 238 and 919 pg/mL, respectively;
U = 314, p = 0.8).

3.3. NFL Levels in Patients with Prolonged DOC of Different Etiologies

At the time of study inclusion, the NFL levels of patients with HIBI (median,
2545 pg/mL; 25th and 75th percentiles, 1708 and 3574 pg/mL, respectively) were higher
than those of patients with TBI (median, 1383 pg/mL; 25th and 75th percentiles, 954 and
2165 pg/mL, respectively; U = 331, p = 0.01). This result can be explained by the higher pro-
portion of patients with UWS among those with HIBI (n = 20/22 (91%)) than among those
with TBI [n = 25/48 (52%)]. Among patients with UWS, NFL levels did not differ between
those with HIBI (median, 2564 pg/mL; 25th and 75th percentiles, 1687 and 3910 pg/mL,
respectively) and those with TBI (median, 1797 pg/mL; 25th and 75th percentiles, 1308 and
2945 pg/mL, respectively; U = 190, p = 0.2).

Of the 52 patients for whom 6-month follow-up NFL data were available, 35 had TBI
and 17 had HIBI. At 6 months post-injury, the NFL levels of patients with HIBI (median,
818 pg/mL; 25th and 75th percentiles, 421 and 1031 pg/mL, respectively) were higher
than those of patients with TBI (median, 337 pg/mL; 25th and 75th percentiles, 212 and
577 pg/mL, respectively; U = 191, p = 0.04; Figure 4A). This finding was not affected by the
difference in the proportions of patients with UWS in the HIBI (n = 13/15 (87%)) and TBI
(n = 9/18 (50%)) groups; among patients with UWS, NFL levels were higher in those with
HIBI (median, 823 pg/mL; 25th and 75th percentiles, 421 and 1157 pg/mL, respectively)
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than in those with TBI (median, 257 pg/mL; 25th and 75th percentiles, 131 and 342 pg/mL,
respectively; U = 27, p = 0.04; Figure 4B).
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3.4. Six-Month Outcomes and Correlation with NFL Levels

Among the 67 patients for whom 6-month clinical outcomes were available, GOSE
scores were 1 in eight patients, 2 in 31 patients, 3 in 17 patients, 4 in two patients, 5 in
two patients, 6 in four patients, and 7 in three patients. Six months post-injury, CRS-R
and GOSE scores were higher for patients in MCS than for those with UWS at admission,
and for patients with TBI than for those with HIBI (Table 1). Baseline NFL levels did
not correlate with 6-month GOSE scores in the total sample (r = −0.004, p = 0.97) or in
subgroups of patients with UWS, MCS, TBI, and HIBI (all p > 0.05).

4. Discussion

In this study, we found that the serum NFL levels of patients with prolonged DOC
after TBI or HIBI were more than 19 times higher than those of matched healthy controls at
1–3 months post-injury, and almost 5 times higher at 6 months post-injury. This increase
was related to the severity and etiology of brain injury, in different ways depending on
the time elapsed since injury; serum NFL levels were higher in patients with UWS than
in those in MCS at 1–3 months post-injury, and in patients with HIBI than in those with
TBI at 6 months post-injury. Finally, serum NFL levels at 1–3 months post-injury did not
correlate with 6-month outcomes.

The pronounced serum NFL elevation seen in patients with prolonged DOC suggests
that severe brain injuries can trigger neurodegeneration with axonal damage lasting at
least 6 months post-injury. The mechanisms responsible for the massive release of NFL
release into the blood at 1–3 months after severe TBI or HIBI are poorly understood, but
some hypotheses can be offered. Axonal injury itself can trigger neurodegeneration and
white matter atrophy [27], likely leading to progressive proteinopathies associated with



Brain Sci. 2021, 11, 1068 8 of 11

neuronal toxicity and death [28]. In patients with prolonged DOC, the cerebrospinal fluid
level of amyloid-β is reduced [29], which may result in predisposition to amyloid-β plaque
formation and then neuronal loss leading to NFL release. Axonal injury with NFL release
also can be induced by the sustained neuroinflammation triggered by acute brain injury.
Long-term microglial activation has been reported after moderate to severe TBI and related
to neurodegeneration with white matter atrophy [30,31]. Moreover, animal models and
human autoptic data suggest that TBI causes blood–brain barrier dysfunction that persists
for several years [32] and may increase NFL release into the blood [33,34]. We also found
remarkable evolution of the serum NFL level 6 months post-injury, which may reflect
progressive mitigation of the processes involved in neurodegeneration and neuronal death
in patients with prolonged DOC. An alternative explanation is that the reduction in the
serum NFL level at 6 months post-injury is caused by progressive brain atrophy with the
reduction in the number of axons susceptible to further degeneration with NFL release. The
latter hypothesis is supported by autoptic [7] and neuroimaging [35] findings of marked
white matter atrophy in patients with prolonged DOC and by a biomarker study showing
reduced baseline release of neuron-specific enolase at 1 year after severe TBI, possibly
because of brain atrophy [36].

Among all patients and those with TBI, patients with the most severe DOC (UWS)
had higher serum NFL levels at 1–3 months post-injury than patients in MCS. Com-
pared with patients in MCS, those with UWS have more severe impairment of the com-
plex networks connecting the cortical areas, basal ganglia, and thalamus that support
consciousness [37–39]. As NFL is expressed mainly in large myelinated axons [40], these
higher NFL levels in patients with UWS likely indicate more marked degeneration of the
projection neurons involved in consciousness. Moreover, this finding supports the idea
of a specific time window in which marked axonal degeneration occurs in patients with
UWS relative to those in MCS, which further compromises the chance of recovery from
this most severe consciousness impairment. Thus, future neuroprotective strategies aiming
to reducing axonal loss and neuronal death should be implemented in the early phase of
prolonged DOC, especially in patients with UWS.

Patients with prolonged DOC etiologies underlain by different pathophysiological
mechanisms had similar NFL levels in the early phase of prolonged DOC; at 6 months
post-injury, patients with HIBI had higher NFL levels than did those with TBI, reflecting
a slower decrease in NFL levels over time. This finding was unexpected; we expected
to find that more NFL release had occurred in patients with TBI at both timepoints, as
result of slow Wallerian degeneration triggered by the post-traumatic diffuse axonal injury.
Recent studies have revealed high serum NFL levels in patients with HIBI immediately
after cardiac arrest, especially in cases of poor outcomes, but no data for post-acute phases
or comparison of patients with DOC of different etiologies have been reported [11,41]. The
processes involved in long-term NFL release after HIBI are not well understood, but data
from neonatal patients with HIBI suggest that chronic inflammation, gliosis, and epigenetic
dysregulation cause sustained brain injury lasting weeks, months, and even years after
hypoxic insult [42,43].

We found that patients in MCS at 1–3 months post-injury had better 6-month out-
comes than did patients with UWS, and that patients with TBI had better outcomes than
did patients with HIBI. These findings are in agreement with current knowledge about
the prognosis of patients with prolonged DOC [44]. Although serum NFL levels at the
time of study inclusion were higher in patients with the most severe DOC, they did not
correlate with GOSE-classified outcomes. A possible explanation for this finding is that
the GOSE allows for very general outcome evaluation, preventing the assessment of corre-
lations between NFL levels and performance in specific cognitive domains. Accordingly,
further studies with more accurate assessment of the prognostic significance of serum
NFL levels in patients with prolonged DOC, using tools enabling detailed functional and
neuropsychological evaluation, are mandatory.
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This study has some limitations. The conventional ELISA kit that we used is less
sensitive than the single-molecule array method for serum NFL detection [25]; however,
the single-molecule array instrument still has limited availability in routine-practice labora-
tories. Comparisons between subpopulations were performed in small numbers of patients.
Moreover, the temporal window of 6 months adopted for clinical and NFL evaluations was
adequate for the evaluation of final outcomes in most patients with HIBI, but some patients
with TBI may show consciousness improvement up to 1 year after brain injury [44].

5. Conclusions

Patients with prolonged DOC are characterized by sustained NFL release that is
differently affected at distinct timepoints by the severity and etiology of brain injury. This
study supports the occurrence of long-term neurodegeneration that counteracts the plastic
reorganization required for the recovery of consciousness and functional independence
and, thus, may have detrimental effects on outcomes in patients with UWS and MCS.
Secondary neurodegeneration after severe brain injury cannot be considered an ineluctable
destiny, and serum NFL can be used as a biomarker to track axonal degeneration in clinical
trials evaluating new neuroprotective treatments for patients with prolonged DOC.
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