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Abstract: Cerebral palsy (CP) is the most prevalent pediatric neurologic impairment and is associated
with major mobility deficiencies. This has led to extensive investigations of the sensorimotor network,
with far less research focusing on other major networks. The aim of this study was to investigate
the functional connectivity (FC) of the main sensory networks (i.e., visual and auditory) and the
sensorimotor network, and to link FC to the gait biomechanics of youth with CP. Using resting-state
functional magnetic resonance imaging, we first identified the sensorimotor, visual and auditory
networks in youth with CP and neurotypical controls. Our analysis revealed reduced FC among
the networks in the youth with CP relative to the controls. Notably, the visual network showed
lower FC with both the sensorimotor and auditory networks. Furthermore, higher FC between
the visual and sensorimotor cortices was associated with larger step length (r = 0.74, pFDR = 0.04)
in youth with CP. These results confirm that CP is associated with functional brain abnormalities
beyond the sensorimotor network, suggesting abnormal functional integration of the brain’s motor
and primary sensory systems. The significant association between abnormal visuo-motor FC and
gait could indicate a link with visuomotor disorders in this patient population.

Keywords: walking; resting-state fMRI; sensorimotor network; visual network

1. Introduction

Cerebral palsy (CP) is the most prevalent pediatric neurologic impairment diagnosed
in the United States and often results in lifelong mobility challenges [1]. The breadth of the
muscular performance and sensory acuity deficiencies in youth with CP have largely fueled
the impression that the altered spatiotemporal gait biomechanics primarily originate from
aberrations in sensorimotor cortical activity [2–5]. Despite this impression, a growing body
of literature has highlighted that youth with CP also have altered activity in the primary
occipital cortices and visual MT areas while processing visual stimuli [6–8]. These studies
imply that the perinatal insult likely impacts several key brain networks that expend
beyond the sensorimotor cortices. However, the possible connection between the altered
sensorimotor activity and other key brain networks has not been widely considered.

Resting-state functional magnetic resonance imaging (rs-fMRI) has been increasingly
used to reveal the integrity of brain networks [9–12]. The spatiotemporal configuration
of resting-state networks (RSNs) is based on their functional connectivity (FC), which
represents the temporal correlation of the blood oxygen level-dependent signals between
their constituent brain regions [9]. This technique has been instrumental in mapping
the brain functional connectome and how networks remain interconnected [11,12]. Our
previous work and other studies have described that the brain networks can be divided
into two opposite systems supporting different mental processes: the intrinsic system,
involved in internally guided, higher-order mental functions, and the extrinsic system,
supporting externally driven, specialized sensory and motor processing [11–13]. This latter
is composed of the networks largely covering the primary cortices, namely the sensorimotor
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(SMN), auditory (AUD) and visual (VIS) networks, which have been shown to be strongly
positively correlated in healthy populations [11,13]. Furthermore, each of these brain
networks relies on established white matter pathways [14–16], has been consistently and
robustly defined by its spatiotemporal configuration and functional roles [17–20], and
shows relatively low interindividual variability in anatomical morphology [21] and in
resting-state FC [22–24].

Over the past decade, rs-fMRI has provided unique insights on how the perinatal
brain injuries in youth with CP impact the integrity of the RSNs [25–29]. These studies
have revealed that youth with a spastic diplegic presentation have higher FC within
the sensorimotor cortices than their neurotypical peers [25,26]. In contrast, FC between
the sensorimotor cortex and the cerebellum, contralateral sensorimotor cortex, cingulate
motor area, visual cortices and parietal lobes have been described as weaker in youth
with CP compared to controls [25,28,30,31]. Furthermore, the strength of the respective
connections tends to be reduced even further in those with more severe gross motor
presentations [28,29]. Conversely, youth with a hemiplegic presentation that has resulted
from hemispheric specific volume loss due to a stroke tend to display stronger FC within
the sensorimotor cortices and default-mode network than controls [27,32]. These youth also
tend to display more diffuse activity in the sensorimotor area of the hemisphere without
volume loss when compared with the hemisphere that has incurred the perinatal vascular
insult [29,33]. Altogether, there is mounting evidence that the developmental brain injuries
in youth with CP disturb the integrity of the RSNs.

Despite the field’s growing understanding of RSNs in youth with CP, it is currently un-
clear whether alterations in FC among the SMN and other primary networks (e.g., auditory
and visual) are linked to the extent of mobility deficits. The purpose of this investigation
was to use rs-fMRI to map the SMN, AUD and VIS networks in youth with CP, and to
determine if the FC emerging from these RSNs is linked with their altered spatiotemporal
gait biomechanics. Based on prior rs-fMRI work [26,28], we hypothesized that the youth
with CP would display weaker FC for the SMN, AUD, and VIS networks. Lastly, we hy-
pothesized that youth with CP who have weaker FC in the SMN and VIS networks would
be more likely to have greater alterations in their spatiotemporal gait biomechanics. Con-
versely, since hearing is not a primary factor for gait, we speculated that the strength of FC
in the AUD network would not be related to the altered spatiotemporal gait biomechanics
seen in youth with CP.

2. Material and Method
2.1. Participants

In total, 65 participants were included in the study. Of these participants, 27 were
youth with CP that had a spastic presentation (mean (SD) age: 16.39 (4.90) years, Gross Mo-
tor Function Classification Scale (GMFCS) levels: I-IV), and 38 demographically matched
neurotypical controls (mean (SD) age: 14.44 (2.35) years) (Table 1). Youth with CP were
excluded from the study if they had an orthopedic surgery or anti-spasticity treatments
within the last 6 months, dorsal rhizotomy, metal in their body that would preclude an MRI
and/or clinical diagnosis of an arterial ischemic stroke or middle cerebral artery stroke.
The respective stroke cases were excluded, as they are associated with a large hemisphere
specific volume loss that has previously been reported to have different effects on the
RSN FC than the other structural insults in youth with CP with spastic diplegic presenta-
tion [27,32,33]. The Institutional Review Board reviewed and approved the protocol for
this investigation. All parents provided written consent that their child could participate in
the investigation, and the youth assented.
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Table 1. Demographic information.

Patients with Cerebral Palsy
(n = 27)

Healthy Controls
(n = 38)

Case-Control Differences
(p-Value)

Age, mean (SD) 16.39 (4.90) 14.44 (2.35) n.s.
Sex (%, N of females) 44.44 (12) 36.84 (14) n.s.

Preferred Average Velocity,
mean (SD, m/s) 0.93 (0.28) 1.17 (0.18) <0.001

Preferred Average Cadence,
mean (SD, steps/min) 100.64 (23.86) 103.73 (9.96) n.s.

Preferred Average Left step
length, mean (SD, m) 0.56 (0.12) 0.67 (0.08) <0.001

Preferred Average Right step
length, mean (SD, m) 0.55 (0.11) 0.68 (0.08) <0.001

Preferred average width,
mean (SD, m) 0.13 (0.06) 0.09 (0.03) <0.001

Spastic diplegic CP (n, %) 17 (62.96) -
Hemiplegic CP (n, %) 10 (37.04) -

2.2. MRI Data Acquisition

All participants underwent an MRI scan on a 3-T Siemens Skyra MRI scanner using
a 32-channel head coil. High-resolution T1-weighted images were collected using an
MPRAGE sequence (192 slices, TR = 2400 ms, TE = 1.94 ms, FOV = 256 mm, flip angle = 8◦,
voxel size = 1 × 1 × 1 mm). The rs-fMRI sequence was collected using a single-shot
echoplanar gradient echo imaging sequence acquiring a T2* signal with the following
parameters: 645 volumes, 48 axial slices acquired parallel to the AC-PC line, TR = 0.46 s,
TE = 29 ms, FOV = 82 mm, flip angle = 44◦. The in-plane resolution was 3.3 × 3.3 mm2,
and the slice thickness was 3 mm. The participants were instructed to keep their eyes open
and focus their gaze on a fixation cross while they remained still throughout the scan.

2.3. Preprocessing Analyses

The rs-fMRI data were preprocessed using SPM12 and the DPABI Toolbox [34]. Pre-
processing procedures included removal of the first 5 volumes, motion correction to the
first volume with rigid-body alignment, co-registration between the functional scans and
the anatomical T1-weighted scan, linear detrending, and regression of motion parame-
ters and their derivatives (24-parameter model) [35], as well as white matter (WM) and
cerebrospinal fluid (CSF) timeseries. The WM and CSF signals were computed using a
component-based noise reduction method (CompCor, 5 principal components) [36]. Spa-
tial normalization of the functional images into Montreal Neurological Institute (MNI)
stereotaxic standard space, and spatial smoothing with a full width of 6 mm full width at
half-maximum Gaussian kernel, were then conducted. Last, bandpass filtering was applied
at 0.01–0.1 Hz [37].

2.4. Quality Control

Each participant’s structural scan was individually reviewed. None of the participants
had visible volume loss that would have affected the integrity of the cortical surface in
neural areas of interest (i.e., primary cortices). However, we excluded eight participants
with CP and one control who had excessive head movement based on maximum transient
(volume-to-volume) head motion above 3 mm translation or degree rotation during the
rs-fMRI scan. After exclusion, head motion did not differ between the two groups (mean
framewise displacement: p = 0.1). To ensure that the results were not related to head
motion, mean framewise displacement was added as a covariate of no interest in all group
analyses (see below).
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2.5. Seed-Based Functional Connectivity Analyses
2.5.1. Definition of the Seed Regions

To map the sensorimotor, visual and auditory networks, we selected three previously
validated seed regions [38,39] and located these regions in the left precentral cortex (MNI
coordinates: x = −41, y = −20, z = 62), left lingual gyrus (MNI coordinates: x = −16, y = −74,
z = −7) and left Heschl gyrus (MNI coordinates: x = −40, y = −24, z = 9), respectively. We
created a 6 mm-radius sphere centered on each coordinate and calculated the mean signal
time course for each seed and each participant. Each participant’s anatomical scan was
individually checked to ensure that the seed covered the expected gyrus and was located
in a grey matter area.

2.5.2. First-Level Analyses

For each participant, a correlation map was created by computing the correlation
between the mean time course from each seed and the time course from all other brain
voxels. Next, these maps were submitted to a Fisher r-to-Z transformation (Z(r)). All
further analyses were conducted on these transformed data.

2.5.3. Second-Level Analyses

First, we validated the location of each seed by identifying the sensorimotor, visual
and auditory networks within the participants. For each seed separately, the individual Z(r)
values maps were entered into a one-sample t-test, adding age, sex and mean framewise
displacement as covariates of no interest. Each independent test resulted in a spatial map
for each seed. A height threshold at p < 0.0001 (uncorrected, cluster size > 50 voxels) was
chosen. Second, individual Z(r) values maps were entered into a second-level random-
effects analyses to determine if differences in FC were present between the two diagnostic
groups. Significant differences were considered at a whole-brain height threshold fixed
at p < 0.001 (uncorrected), and the spatial extent consistent with image smoothness and
the expected number of voxels per cluster was utilized (k > 20). In each analysis, age,
sex and mean framewise displacement were added as covariates of no interest. If the
two-sample t-test results associated with a seed region showed significant clusters, these
clusters were extracted as regions of interest (ROIs). The mean timeseries of these ROIs
were then computed.

2.6. Spatiotemporal Gait Biomechanics

The spatiotemporal gait biomechanics of the participants while walking at a preferred
speed were assessed with a GAITRite digital mat (CIR systems, Franklin, NJ, USA). The
participant’s walking velocity, step width, cadence and step length were quantified from
two walking trials with an average of 6 steps each. The participants with CP used a
walker or forearm crutches if needed. The trace of the assistive device was later removed
using the GAITRite mat software. The average of the respective trials was used as the
primary outcome variable, and separate independent t-tests were used to evaluate the
group differences at the 0.05 alpha level.

To determine the potential association between the abnormal RSN FC and gait in
the youth with CP, the individual Z(r) computed between the seed region and each ROI
identified during the second-level analyses were correlated with the respective spatiotem-
poral gait biomechanics using nonparametric Spearman’s correlation analyses. Significant
results were reported at a significant level of at p < 0.05 after applying a False-Discovery
Rate (FDR) correction.

3. Results
3.1. Demographics

After quality control, the final samples were 19 youth with CP (mean age (std) = 16.93 (4.90);
GMFCS level I: n = 6; II, n = 7, III: n = 3, IV: n = 3) and 37 neurotypical controls (mean
age (std) = 14.51 (2.35)). Among the 19 youth with CP, 14 (74%) had spastic diplegic
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presentation and 5 (26%) had hemiplegic presentation. No significant difference in age
(p = 0.054) or sex (p = 0.2) was found between the controls and youth with CP.

3.2. Sensorimotor Network Functional Connectivity

After seeding the left precentral gyrus, we identified a typical sensorimotor network in
the youth with CP. This network largely covered the pre- and post-central gyri, bilaterally,
as well as the supplementary motor area (Figure 1A).

Brain Sci. 2021, 11, x FOR PEER REVIEW 5 of 12 
 

3. Results 
3.1. Demographics 

After quality control, the final samples were 19 youth with CP (mean age (std) = 16.93 
(4.90); GMFCS level I: n = 6; II, n = 7, III: n = 3, IV: n = 3) and 37 neurotypical controls (mean 
age (std) = 14.51 (2.35)). Among the 19 youth with CP, 14 (74%) had spastic diplegic 
presentation and 5 (26%) had hemiplegic presentation. No significant difference in age (p 
= 0.054) or sex (p = 0.2) was found between the controls and youth with CP. 

3.2. Sensorimotor Network Functional Connectivity 
After seeding the left precentral gyrus, we identified a typical sensorimotor network 

in the youth with CP. This network largely covered the pre- and post-central gyri, bilater-
ally, as well as the supplementary motor area (Figure 1A). 

The two-sample t-test revealed four clusters with significantly lower FC in the youth 
with CP, compared with the controls (Table 2, Figure 2A). All the clusters were localized 
in the occipital lobe, covering the lingual and calcarine gyri, the cuneus and the superior 
occipital cortex. No significant clusters with higher FC in the youth with CP were de-
tected. 

 
Figure 1. Group maps of the sensorimotor (A), visual (B) and auditory (C) networks for the youth 
with cerebral palsy, based on resting-state functional connectivity. Functional connectivity maps 
were constructed using a seed located in the (A) left precentral cortex (x = −41, y = −20, z = 62), (B) 
left lingual gyrus (x = −16, y = −74, z = −7) or (C) left Heschl gyrus (x = −40, y = −24, z = 9). Results are 
presented in radiological view. 
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  Mean (SD) Mean (SD)      

Seed: Left Precentral Gyrus (Sensorimotor Network) 
Contrast: Controls—CP 

Lingual gyrus R −0.05 (0.16) 0.10 (0.13) 4.25 110 24 −72 0 
Calcarine L −0.06 (0.17) 0.08 (0.11) 4.21 224 −8 −88 −12 
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Seed: Left Lingual Gyrus (Visual Network) 
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Figure 1. Group maps of the sensorimotor (A), visual (B) and auditory (C) networks for the youth
with cerebral palsy, based on resting-state functional connectivity. Functional connectivity maps were
constructed using a seed located in the (A) left precentral cortex (x = −41, y = −20, z = 62), (B) left
lingual gyrus (x = −16, y = −74, z = −7) or (C) left Heschl gyrus (x = −40, y = −24, z = 9). Results
are presented in radiological view.

The two-sample t-test revealed four clusters with significantly lower FC in the youth
with CP, compared with the controls (Table 2, Figure 2A). All the clusters were localized
in the occipital lobe, covering the lingual and calcarine gyri, the cuneus and the superior
occipital cortex. No significant clusters with higher FC in the youth with CP were detected.

Table 2. Whole-brain functional connectivity differences between the neurotypical controls and youth with cerebral palsy.

Regions Hemisphere FC in CP FC in Controls Z Cluster Size x y z

Mean (SD) Mean (SD)

Seed: Left Precentral Gyrus (Sensorimotor Network)

Contrast: Controls—CP

Lingual gyrus R −0.05 (0.16) 0.10 (0.13) 4.25 110 24 −72 0
Calcarine L −0.06 (0.17) 0.08 (0.11) 4.21 224 −8 −88 −12

Superior Occipital gyrus R −0.03 (0.20) 0.13 (0.17) 4.07 25 2 −40 −46
Cuneus R −0.05 (0.21) 0.07 (0.15) 3.87 37 2 −94 16

Seed: Left Lingual Gyrus (Visual Network)

Contrast: Controls—CP

Heschl gyrus L −0.02 (0.15) 0.17 (0.13) 4.00 105 −38 −22 12
Rolandic Operculum R −0.06 (0.16) 0.12 (0.15) 3.85 22 40 −14 24

Seed: Left Heschl Gyrus (Auditory Network)

Contrast: Controls—CP

Inferior parietal lobule R 0.02 (0.15) 0.24 (0.15) 4.04 37 42 40 4
Cerebellum L 0.03 (0.14) 0.25 (0.14) 3.90 30 −36 −36 −30
Calcarine R −0.02 (0.14) 0.12 (0.15) 3.88 141 16 −62 10

Frontal superior gyrus R −0.06 (0.09) 0.13 (0.17) 3.85 34 14 −4 78
Calcarine L 0.01 (0.15) 0.19 (0.14) 3.84 315 −18 −62 8

Superior occipital gyrus R −0.08 (0.15) 0.06 (0.12) 3.49 24 18 −80 38
Superior occipital gyrus L −0.05 (0.18) 0.13 (0.14) 3.38 26 −22 −84 32

All coordinates are provided in MNI Space. FC are Z(r). CP= Cerebral Palsy.
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Figure 2. Clusters of significantly lower functional connectivity in the youth with CP relative to
the controls. (A) Lower functional connectivity between the left precentral gyrus (seed) and the
right cuneus; (B) lower functional connectivity between the left lingual gyrus (seed) and the right
Heschl gyrus; (C) lower functional connectivity between the left Heschl gyrus (seed) and the right
and left lingual gyri. Detail of the clusters can be found in Table 2. Significant threshold was set at a
whole-brain level of p < 0.001 uncorrected, clusters > 20 voxels. The scale shows the z-score.

3.2.1. Visual Network Functional Connectivity

After seeding the left lingual gyrus, we identified a typical bilateral medial visual
network in the youth with CP. This network largely and bilaterally covered the lingual gyri,
calcarine and cuneus, as well as the middle and superior occipital gyri and the posterior
section of the thalamus (Figure 1B).

The two-sample t-test revealed two clusters with significantly lower FC in the youth
with CP, located in the left Heschl gyrus and the right rolandic operculum, compared to
the controls (Table 2, Figure 2B). No significant clusters with higher FC in the youth with
CP were detected.

3.2.2. Auditory Network Functional Connectivity

After seeding the left Heschl gyrus, we identified a typical bilateral auditory network
in the youth with CP. This network largely and bilaterally covered Heschl gyri, the Rolandic
operculum, superior temporal gyri and the thalamus (Figure 1C).

The two-sample t-test revealed several clusters with significantly lower FC in the
youth with CP compared to the neurotypical controls. Whereas the significant clusters
were widespread across cerebrum and cerebellum (Table 2, Figure 2C), the majority of
them were present in the occipital lobe, in the right and left calcarine and the left superior
occipital gyrus. No significant clusters with higher FC in the youth with CP were detected.
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3.3. Association with Spatiotemporal Gait Biomechanics

Consistent with the biomechanical literature, the youth with CP walked slower
(CP = 0.929 ± 0.24 m/s; control= 1.16 ± 0.18 m/s; p = 0.0004), had a larger step width
(CP = 0.147 ± 0.063 m; control = 0.089 ± 0.031 m; p = 0.00003) and had a shorter right
(CP = 0.55 ± 0.09 m; control = 0.60 ± 0.08 m; p = 0.0001) and left (CP = 0.54 ± 0.11m;
control = 0.67 ± 0.08 m; p = 0.00002) step length. There was no difference in the cadence be-
tween the respective groups (CP = 103.15 ± 24.6 steps/min; control = 103.43 ± 9.9 steps/min;
p = 0.966).

Using the regions displaying a significant reduction of FC in the youth with CP, we
sought to determine whether these observed FC differences were correlated with the noted
aberrant gait biomechanics. For the group with CP, higher FC between the left precentral
and lingual gyri was associated a larger right step length (ρ = 0.74, pFDR = 0.04; Figure 3).
This association remained significant after excluding the participants that had a hemiplegic
presentation (ρ = 0.76, p = 0.01). We did not observe significant associations between the
gait biomechanic variables and FC involving the other two seeds, even at an uncorrected
threshold. Furthermore, none of these FCs were linked with the gait biomechanics seen in
the controls (p > 0.05) or with the GMFCS level in the youth with CP (all p > 0.05).
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Figure 3. Association between resting-state functional connectivity (FC) and gait biomechanics.
Correlation between the FC of the left precentral gyrus (seed) and right lingual cluster and the
preferred average right step length. This association was significant in the CP group (pFDR ≤ 0.05),
but not in the neurotypical controls (p > 0.05). Light blue dots refer to the youth with spastic diplegic
presentation, while the dark blue dots refer to the youth with a hemiplegic presentation. This
association implies that youth with cerebral palsy who have weaker FC between the motor and
occipital cortical areas tend to have a reduced step length.

4. Discussion

In this study, we found that youth with CP showed consistently lower functional
connectivity among the three primary networks, particularly between the visual network
and the sensorimotor and auditory regions. Furthermore, weaker functional connectivity
between the precentral and the lingual gyri was associated with shorter step length in the
youth with CP. Altogether, these results imply that altered connectivity between the motor
and occipital regions might play a role in the uncharacteristic mobility seen in youth with
CP. These results further fuel the impression that the brain functional abnormalities seen in
youth with CP extent beyond the sensorimotor cortex. Further discussion of these findings
is provided in the following paragraphs.

In neurotypical individuals, the SMN, AUD and VIS networks have been defined as
part of the extrinsic system because they all respond to external stimuli [9,40] and show
robust positive functional connectivity among the respective networks [11,13]. In contrast,
our results demonstrated that youth with CP had mostly weaker connectivity among these
three networks. First, this finding corroborates previous fMRI studies, which have shown
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that youth with CP have abnormalities that are not limited to the SMN but rather extend to
other brain networks [26,28,41]. Second, this also suggests a potential reorganization of
the brain extrinsic system, through a loss of functional integration. CP and other perinatal
brain insults have been associated with neuronal plasticity not just in the lesioned area but
also in intact brain areas [29,31,42]. Altered integration of both lesioned and non-lesioned
primary motor cortices has also been reported in youth with CP using other neuroimaging
modalities, such as task-based fMRI [43,44] and diffusion tensor imaging [30,45]. Together,
these findings strongly underline the need of future studies on the neurophysiology of CP
in the context of the whole-brain functional organization and the interdependency of the
neural networks, especially those responding to external stimuli.

Another notable result of the study was the fact that the visual cortex was consistently
found to be abnormally connected to the other two primary cortices (namely, the motor
and auditory cortices). Both functional and structural studies have reported abnormalities
related to the visual network [6–8,26,29] and visual tracks [30,45] in CP. Our finding
supports the idea that the disconnectivity of the visual network from the other primary
networks might reflect a pathophysiological mechanism leading to visual perception
impairment in CP. In fact, visual dysfunction is now recognized as a core, co-occurring
disorder affecting between 50% and 90% of individuals with CP [46–49]. This is also
consistent with our previous works in MEG showing that children with CP had weaker
cortical oscillations in the visual MT/V5 cortices and occipital cortices [6–8]. The altered
connectivity seen between the motor and visual cortices might be partially a result of the
white matter damage often seen in the peritrigonal region, as the optic radiation fibers
are neighbors to the corticospinal tracts in this area [50]. Essentially, damage to these
neighboring fiber pathways might impact the functional connectivity seen between the
visual and motor cortices.

In contrast to previous rs-fMRI studies [26,27], we did not detect significantly higher
FC emerging from the seed regions relative to the controls. Such differences are likely due to
variances in the sample composition. Compared with the previous investigations, our study
population was larger and slightly older than the sample in the previous investigations.
During adolescence, it is well known that the brain networks undergo maturation and
intense structural and functional reconfiguration [51–53]. For instance, in this age window,
the SMN, which is a network that matures among the earliest, shows the reduction of
functional connectivity with age [51]. In addition, it seems that the composition of the
patient sample and the side and location of the seeds significantly impact the detection
of higher FC in the patient groups [27]. A longitudinal examination of the functional
integration of the SMN in CP on independent larger samples may provide a more definitive
answer among these alternatives.

Lastly, we found positive associations between FC between the SMN and the VIS
network and spatiotemporal gait biomechanics in the youth with CP. This implies that a
greater FC between the motor-visual connections (i.e., higher SMN-VIS FC) is associated
with a longer step length (i.e., closer to controls). This was only true for the right step
length, which is likely related to the direct structural connections linking it to the left-sided
precentral gyrus (hemisphere of the seed). Whereas it is fairly well accepted that the
primary motor and somatosensory cortices areas are involved in the control of gait [54–59],
our finding further supports the notion that impairment in the extrinsic system, not just in
the SMN, may play a role in the extent of the motor dysfunction in youth with CP. This
specific association may be related by the existence of physiologically relevant occipito-
motor, but not auditory-motor, functional connections [60]. Several previous MEG studies
have supported the idea that greater motor impairments may be directly linked with
altered integration between sensorimotor and visuo-perceptual modalities in youth with
CP [2,61,62]. Together with the current work, these results further support the premise that
the uncharacteristic gait seen in youth with CP may be driven by a disconnectivity between
the sensorimotor and visual networks [63]. Importantly, this finding also opens new
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doors, potentially identifying new functional biomarkers that could be used to measure
the effectiveness of physical therapy and its impact on neuroplasticity of those with CP.

The current data should be considered in light of some limitations. First, our sample
size was modest. However, the breadth of published studies in CP using rs-fMRI have
also been composed of relatively small sample sizes, which reflects the difficulty in ob-
taining valid neuroimaging data in youth with CP. The smaller sample size also reflects
our efforts to ensure that the significant associations were not driven by outliers, and
we applied stringent multiple comparison correction (FDR) to prevent the identification
of false positives. We also ensured that our main results remained significant when we
excluded those participants with a hemiplegic presentation. Another possible limitation
is that we used a seed-based approach, and results may vary with different seed loca-
tions [25,27] or another FC approach (i.e., independent component analysis) [28]. Since
there was not a large hemispheric volume loss in our participants, we chose the seed
location (i.e., left hemisphere) based on previously validated studies performed in large
independent samples of healthy participants (for the motor and visual networks [39], for
the auditory network [38]). We cannot exclude the possibility that some participants with
CP may have had structural reorganization of their primary cortices that influenced the
ideal location of the seed. However, we believe it is unlikely, because (1) we individually
checked the location of each seed on the anatomical scan of each participant to ensure
the correct location, and (2) we individually checked each individual and group FC map
to ensure the identification of the networks of interest in the group with CP. Lastly, we
acknowledge the relative heterogeneity of the sample with CP. Nevertheless, heterogeneity
is typically the case for the population with CP.

5. Conclusions

This study suggests that youth with CP show a loss of functional integration between
the three major brain networks responding to external sensorial stimuli. Furthermore,
more abnormal gait biomechanics appear to be linked with a reduction in the functional
connectivity between the sensorimotor and visual networks. Overall, the current findings
support the emerging argument that there is significant overlap in the etiology of the motor
and visual deficits in youth with CP. Lastly, these findings suggest rs-fMRI might be an
important addition to other neuroimaging tools that can be used to better understand
the plasticity of brain networks in relation to both the severity of CP and potentially
rehabilitative outcomes.
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