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Abstract: Advances in magnetic resonance imaging, particularly diffusion imaging, have allowed
researchers to analyze brain connectivity. Identification of structural connectivity differences between
patients with normal cognition, cognitive impairment, and dementia could lead to new biomarker
discoveries that could improve dementia diagnostics. In our study, we analyzed 22 patients (11 control
group patients, 11 dementia group patients) that underwent 3T MRI diffusion tensor imaging
(DTI) scans and the Montreal Cognitive Assessment (MoCA) test. We reconstructed DTI images
and used the Desikan–Killiany–Tourville cortical parcellation atlas. The connectivity matrix was
calculated, and graph theoretical analysis was conducted using DSI Studio. We found statistically
significant differences between groups in the graph density, network characteristic path length,
small-worldness, global efficiency, and rich club organization. We did not find statistically significant
differences between groups in the average clustering coefficient and the assortativity coefficient. These
statistically significant graph theory measures could potentially be used as quantitative biomarkers
in cognitive impairment and dementia diagnostics.

Keywords: DTI; MRI; brain connectivity; MCI; dementia; mild cognitive impairment; neurodegener-
ative diseases

1. Introduction

In recent years, scientists have been able to study the brain in ways they never could
before, due to advancements in imaging technologies. One of these advances is diffusion
tensor imaging (DTI), which tracks water movement through the brain’s white matter [1].
DTI has allowed researchers to analyze DTI metrics and brain connectivity differences
between patients with cognitive impairment and normal cognition [2,3]. Brain connectivity
plays an important role in sustaining the function of the human brain and cognition. Thus,
analyzing brain connectivity could potentially lead us to imaging biomarker discoveries
that could aid in cognitive impairment diagnostics [4,5].

It is important to distinguish between functional and structural connectivity. Func-
tional connectivity can be tracked, measured, and analyzed using functional methods,
i.e., functional magnetic resonance imaging (fMRI), positron emission tomography (PET),
electroencephalography (EEG), magnetoencephalography (MEG), and others [6,7].

On the other hand, white matter bundles and tracts can be visualized by utilizing
diffusion imaging on magnetic resonance machines, particularly diffusion tensor imaging
(DTI). By utilizing DTI, it is possible to visualize white matter tracts, reconstruct them, and
apply graph theory measures to analyze differences in these tracts among individuals [8].
These measurements can be used in specific brain regions (specific white matter tracts) or
could be used in a whole-brain connectometry analysis [9].
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To perform whole-brain connectometry analysis, it is necessary to define which cortical
atlas would be used for brain parcellation. Several available cortical parcellation atlases are
used in neuroimaging and network analysis, i.e., the Desikan–Killiany–Tourville (DKT)
atlas [10], the automated anatomical labeling 3 (AAL3) atlas [11], Brainnetome Atlas [12],
and others. In our study, we used DKT cortical parcellation.

In graph theory, numerous measures could be used as a quantitative variable to assess
brain connectivity patterns, for example, measures of integration (degree level, shortest
path length, number of triangles, characteristic path length, global efficiency, clustering
coefficient, transitivity, local efficiency, modularity), measures of centrality (closeness cen-
trality, betweenness centrality, within-module degree, participation coefficient), network
motifs (anatomical and functional motifs, motif z-score, motif fingerprint), measures of
resilience (degree distribution, average neighbor degree, assortativity coefficient), and
other measures [13].

In our study, we analyzed undirected and unweighted graph relationships and included:

1. Graph density (the mean network degree);
2. Average clustering coefficient (fraction of triangles around an individual node);
3. Network characteristic path length (the average shortest path length between all pairs of

nodes in the network);
4. Small-worldness (small-world networks are significantly more clustered than random net-

works, yet have approximately the same characteristic path length as random networks);
5. Global efficiency (average inverse shortest path length);
6. Assortativity coefficient (correlation coefficient between the degrees of all nodes on two

opposite ends of a link);
7. Rich club coefficient, k = 5; 10; 15; 20 (network high-degree nodes that, on average, are

more intensely interconnected than lower-degree nodes).

The goal of this research was to identify the changes in structural connectivity between
the control group and the dementia group.

2. Materials and Methods
2.1. Participants

Participants were admitted to a neurologist with suspected cognitive impairment. All
participants were evaluated by a board-certified neurologist, and the Montreal Cognitive
Assessment (MoCA) was performed.

All participants in the control group and dementia group had at least 16 years of
education. For the control group, we used MoCA cutoff scores of ≥23, and for the dementia
group, we used a cutoff of ≤22, as these values can produce a high sensitivity, specificity,
and AUC [14,15].

Based on the neurological assessment and MoCA test results, patients were divided
into two groups: the control group (patients with no severe cognitive impairment), and the
dementia group (patients with cognitive impairment who need supervision or some help
during daily activities).

The patient demographic data and MoCA scores are shown in Table 1.

Table 1. Patient age and MoCA scores in study groups (D—dementia group, C—control group).

MoCA Age

D C D C

Participants 11 11 11 11
Mean 12.818 26.182 75.000 62.273

Median 13 25 71 69
Std. Deviation 5.036 2.750 10.488 15.395

Minimum 4 23 65 35
Maximum 20 30 96 77
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Exclusion criteria for study patients were clinically significant neurological diseases
(tumors, major stroke, malformations, etc.), drug use, and alcohol abuse. All study patients
did not have any other significant abnormalities on magnetic resonance (MR) scans.

Based on the neurological assessment and MRI scans, all patients had a mixed type
of dementia.

2.2. Magnetic Resonance Imaging (MRI) Data Acquisition and Image Reconstruction

MRI was performed at a single-site university hospital to avoid inter-scanner dif-
ferences. All scans were converted from DICOM format to Neuroimaging Informatics
Technology Initiative (NIfTI) format, and further to SRC and FIB format to perform tractog-
raphy analysis.

The diffusion images were acquired on a GE SIGNA Architect 3T scanner using a
diffusion sequence (TE = 101.5 ms, TR = 14,884 ms). A DTI diffusion scheme was used, and
a total of 30 diffusion sampling directions were acquired. The b-value was 1000.59 s/mm2.
The in-plane resolution was 0.9375 mm. The slice thickness was 2 mm. The b-table
was checked by an automatic quality control routine to ensure its accuracy [16]. The
b-table was flipped by 0.012 fz. The restricted diffusion was quantified using restricted
diffusion imaging [17]. The diffusion data were reconstructed using generalized q-sampling
imaging [18], with a diffusion sampling length ratio of 1.25. A deterministic fiber tracking
algorithm [19] was used with augmented tracking strategies [20] to improve reproducibility.
A seeding region was placed at the whole brain. The anisotropy threshold was randomly
selected. The angular threshold was randomly selected from 15 degrees to 90 degrees. The
step size was randomly selected from 0.5 to 1.5 voxels. Tracks with a length shorter than 30
or longer than 300 mm were discarded. A total of 10,000,000 seeds were placed.

Free Surfer DKT was used as the brain parcellation, and the connectivity matrix was
calculated by using the count of the connecting tracks. The connectivity matrix and graph
theoretical analyses were conducted using DSI Studio (http://dsi-studio.labsolver.org,
accessed on 3 may 2021) [21].

Acquired images after tractography reconstruction, fiber tracking, and connectivity
matrix analysis are shown in Figure 1.

2.3. Statistical Analysis

Data were analyzed using statistical analysis software JASP Version 0.14.1. The Mann–
Whitney U test was used to determine statistically significant differences between the
control group and the dementia group. Results with a p-value smaller than 0.05 were
considered statistically significant. Descriptive statistics for statistically significant network
measures were calculated.

http://dsi-studio.labsolver.org
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Figure 1. The control group patients’ DTI tractography with overlayed DKT cortical parcellation 
regions and connectivity matrix reconstruction in sagittal (upper left), coronal (upper right), axial 
(lower left), and oblique (lower right) projections. 
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considered statistically significant. Descriptive statistics for statistically significant net-
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3. Results 
In total, 22 patients were included in this study: 11 patients in the control group (7 

females, 4 males; average age 62.2 years, standard deviation 15.4, median age 69, mini-
mum 35, maximum 77), and 11 patients in the dementia group (7 females, 4 males, average 
age 75.0 years, standard deviation 10.5, median age 71, minimum 65, maximum 96). 

The Mann–Whitney U test results between study groups are shown in Table 2. 

Table 2. Mann–Whitney U test comparing control group and dementia group. 

Mann–Whitney U Test 
 W p 

Graph Density 27.000 0.030 * 
Average Clustering Coefficient 34.000 0.088 

Network Characteristic Path Length 94.000 0.028 * 
Small-Worldness 30.000 0.047 * 
Global Efficiency 26.000 0.023 * 

Figure 1. The control group patients’ DTI tractography with overlayed DKT cortical parcellation
regions and connectivity matrix reconstruction in sagittal (upper left), coronal (upper right), axial
(lower left), and oblique (lower right) projections.

3. Results

In total, 22 patients were included in this study: 11 patients in the control group (7 fe-
males, 4 males; average age 62.2 years, standard deviation 15.4, median age 69, minimum
35, maximum 77), and 11 patients in the dementia group (7 females, 4 males, average age
75.0 years, standard deviation 10.5, median age 71, minimum 65, maximum 96).

The Mann–Whitney U test results between study groups are shown in Table 2.

Table 2. Mann–Whitney U test comparing control group and dementia group.

Mann–Whitney U Test

W p

Graph Density 27.000 0.030 *
Average Clustering Coefficient 34.000 0.088

Network Characteristic Path Length 94.000 0.028 *
Small-Worldness 30.000 0.047 *
Global Efficiency 26.000 0.023 *

Assortativity Coefficient 69.000 0.606
Rich Club (k = 5) 27.000 0.030 *
Rich Club (k = 10) 29.000 0.042 *
Rich Club (k = 15) 27.000 0.028 *
Rich Club (k = 20) 30.000 0.047 *

* p < 0.05.
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We found statistically significant differences between groups in the graph density, net-
work characteristic path length, small-worldness, global efficiency, and rich club coefficient
(k = 5; 10; 15; 20). We did not find statistically significant differences between groups in the
average clustering coefficient and the assortativity coefficient. Additionally, we analyzed
descriptive statistics for statistically significant measures.

3.1. Graph Density

The graph density is the fraction of present connections to possible connections [13].
Our findings on the graph density are shown in Table 3. The graph density was higher in
control group patients.

Table 3. Graph density descriptive statistics in dementia group (D) and control group (C).

Graph Density

D C

Mean 0.621 0.679
Std. Error of Mean 0.017 0.018

Median 0.625 0.687
Std. Deviation 0.057 0.059

Minimum 0.537 0.563
Maximum 0.689 0.753

3.2. Average Clustering Coefficient

The clustering coefficient represents the degree to which nodes in a graph tend to
cluster together [22]. Our findings on the average clustering coefficient are shown in
Table 4. The average clustering coefficient was higher in the control group patients.

Table 4. Average clustering coefficient descriptive statistics in dementia group (D) and control
group (C).

Average Clustering Coefficient

D C

Mean 0.807 0.825
Std. Error of Mean 0.008 0.011

Median 0.802 0.832
Std. Deviation 0.027 0.036

Minimum 0.759 0.739
Maximum 0.841 0.860

3.3. Network Characteristic Path Length

The network characteristic path length (or average path length) is defined as the aver-
age distance between all pairs of vertices [23]. Our findings on the network characteristic
path length are shown in Table 5. The network characteristic path length was shorter in
control group patients.

3.4. Small-Worldness

A small-world network is a graph where most nodes are not neighbors, but the
neighbors of any given node are likely to be neighbors of each other, and most nodes can
be reached from every other node by a small number of edges [24]. Our findings on the
small-worldness coefficient are shown in Table 6. The small-worldness coefficient was
higher in control group patients.
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Table 5. Network characteristic path length descriptive statistics in dementia group (D) and control
group (C).

Network Characteristic Path Length

D C

Mean 1.393 1.334
Std. Error of Mean 0.018 0.018

Median 1.388 1.324
Std. Deviation 0.059 0.059

Minimum 1.330 1.260
Maximum 1.483 1.448

Table 6. Small-worldness descriptive statistics in dementia group (D) and control group (C).

Small-Worldness

D C

Mean 0.580 0.620
Std. Error of Mean 0.012 0.016

Median 0.589 0.624
Std. Deviation 0.041 0.051

Minimum 0.511 0.510
Maximum 0.633 0.682

3.5. Global Efficiency

Global efficiency is defined as the average inverse shortest path length in the net-
work [25]. Our findings on global efficiency are shown in Table 7. Global efficiency was
higher in control group patients.

Table 7. Global efficiency descriptive statistics in dementia group (D) and control group (C).

Global Efficiency

D C

Mean 0.797 0.826
Std. Error of Mean 0.009 0.009

Median 0.798 0.830
Std. Deviation 0.029 0.029

Minimum 0.754 0.769
Maximum 0.830 0.862

3.6. Rich Club

Rich club regions are a set of highly interconnected nodes forming a tight subnetwork
within a network. In rich club analysis, k represents the number of connections attached
to each network node [26]. In our analysis, we used k values of 5, 10, 15, and 20. In all
cases, there were statistically significant differences between groups, and higher results
were found in control group patients. Our findings on rich club organization are shown in
Table 8.
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Table 8. Rich club descriptive statistics with different k values in the dementia group (D) and control group (C).

Rich Club(k = 5) Rich Club(k = 10) Rich Club(k = 15) Rich Club(k = 20)

D C D C D C D C

Mean 0.621 0.679 0.628 0.685 0.657 0.702 0.704 0.736
Std. Error of Mean 0.017 0.018 0.017 0.017 0.014 0.016 0.011 0.015

Median 0.625 0.687 0.625 0.687 0.677 0.714 0.702 0.753
Std. Deviation 0.057 0.059 0.057 0.058 0.046 0.054 0.035 0.051

Minimum 0.537 0.563 0.538 0.563 0.558 0.597 0.656 0.619
Maximum 0.689 0.753 0.689 0.753 0.705 0.753 0.764 0.796

4. Discussion

There are different approaches on how to analyze structural connectivity in brain. It is
possible to analyze whole-brain connectivity patterns or focus on specific brain regions and
DTI metrics (fractional anisotropy, mean diffusivity, number of streamlines etc.) [27,28].
In our study, we performed whole-brain connectometry analysis and compared graph
theory measures between patients with normal cognition and patients with cognitive
impairment. We used the DKT cortical parcellation atlas to estimate graph theory values
and quantitative measurements.

In general, connectometry analysis in patients with cognitive impairment could be a
promising diagnostic method that provides quantitative biomarkers [29].

Our results on global efficiency are consistent with other studies that compared brain
network global efficiency and cognitive abilities, i.e., global efficiency was a significant
predictor of working memory performance [25]. Lower global efficiency values are a signif-
icant predictor factor in conversion to dementia in patients with small vessel disease [30].

In our study, the characteristic path length was higher in patients with cognitive
impairment, which is consistent with Alzheimer’s dementia (AD)-related changes [31], and
was found to be consistent with a functional network study where a longer path length
was observed in AD patients [32].

In our study, the small-worldness coefficient was lower in patients with cognitive
impairment. There are reports where patients with AD tend to lose small-worldness
properties [31–33].

There were statistically significant differences in rich club organization with all mea-
sured coefficients (k = 5, 10, 15, 20), with higher values in the control group. Rich club
organization is very important for global brain communication and global integration of
information [34,35]. Rich club disruption could be connected to early-onset AD [36], and,
in general, it is associated with MCI and AD-related changes in the brain [37,38].

Although we did not find statistically significant differences between groups in the
clustering coefficient, in other research papers, it was stated that in patients with AD, the
clustering coefficient is higher than in control subjects [31].

Limitations

This was an exploratory research study with a limited patient cohort. To confirm the
theses stated in this article, we intend to continue the research and validate the results on a
larger patient cohort.

5. Conclusions

In our study, the graph density, network characteristic path length, small-worldness,
global efficiency, and rich club coefficient showed statistically significant differences be-
tween control and dementia patient groups.

Thus, these graph theory measures could potentially be used as quantitative biomark-
ers in cognitive impairment and dementia diagnostics.

Further studies with a larger patient cohort should evaluate and validate the diagnostic
certainty and prognostic value of these graph theory measures.
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