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Abstract: Robot-assisted surgery systems are a recent breakthrough in minimally invasive surgeries, 

offering numerous benefits to both patients and surgeons including, but not limited to, greater visual-

ization of the operation site, greater precision during operation and shorter hospitalization times. 

Training on robot-assisted surgery (RAS) systems begins with the use of high-fidelity simulators. 

Hence, the increasing demand of employing RAS systems has led to a rise in using RAS simulators to 

train medical doctors. The aim of this study was to investigate the brain activity changes elicited dur-

ing the skill acquisition of resident surgeons by measuring hemodynamic changes from the prefrontal 

cortex area via a neuroimaging sensor, namely, functional near-infrared spectroscopy (fNIRS). 

Twenty-four participants, who are resident medical doctors affiliated with different surgery depart-

ments, underwent an RAS simulator training during this study and completed the sponge suturing 

tasks at three different difficulty levels in two consecutive sessions/blocks. The results reveal that cor-

tical oxygenation changes in the prefrontal cortex were significantly lower during the second training 

session (Block 2) compared to the initial training session (Block 1) (p < 0.05). 

Keywords: functional near-infrared spectroscopy; neuroimaging; fNIRS; clinical skill acquisition; 

robot-assisted surgery; simulation-based training 

 

1. Introduction 

Robot-assisted surgery (RAS) systems have changed the way surgeons operate and 

teach surgery in the last two decades [1]. RAS systems have enhanced several surgical tech-

niques and are now widely used in the surgical disciplines including urology, general sur-

gery, gynecology, cardiovascular surgery, endocrine surgery and thoracic surgery [1–4]. As 

such robotic systems provide numerous benefits for both patients and surgeons, an expo-

nential increase in surgical operations has been expected, and just in 2015, more than 650,000 

surgical procedures had been performed by using RAS all over the world [5]. Among many 

other advantages, less postoperative pain due to smaller incisions, less risk of postoperative 

infections and shorter hospitalization periods and recovery times are the main benefits for 

the patient. By performing surgical procedures through robot-assisted surgery, surgeons 

have the following advantages: high-quality vision of the surgical site due to ten times mag-

nification, better hand–eye coordination compared to laparoscopic surgery, less risk of 
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tremor, more comfort due to a better ergonomic position and having a high precision of 

motion in terms of speed and range of the motion. On the other hand, this increasing trend 

of use in various surgical disciplines creates new challenges and requirements, particularly 

in the area of teaching and training, that need to be studied and addressed for the proper 

use and efficacy of RAS systems [6].  

The essential parts of RAS training are to understand robotic technology, become 

familiar with the system itself and the device functions, gain a basic knowledge of trou-

bleshooting during the operation and realize the limitations of the system [6]. To ensure 

the safety of the patient during robot-assisted surgical procedures, trainees must practice 

in a safe environment to improve their basic robotic skills, and to perform complex ma-

neuvers. There are different training courses such as the Robotic Training Network (RTN), 

the Fundamentals of Robotic Surgery (FRS) Program, the Fundamental Skills of Robotic 

Surgery (FSRS) Program and the Morristown Protocol [7–9]. FRS is a widely used course 

for robotic surgery training, which consists of a multi-specialty, proficiency-based curric-

ulum of basic technical skills to train surgeons and assess their performance [7,9].  

The aforementioned clinical programs have become more common training sessions 

with the simulator-based metric that the robotic simulator tracks for each task to be com-

pleted. Besides complementing these performance-tracking systems and metrics, brain-

based measures via wearable functional brain imaging systems can also enable us to better 

understand and evaluate trainees’ performance [10]. Hence, the aim of this research was 

to study brain activation through measures of the changes in hemodynamic responses 

from the cortical regions associated with attention and working memory while trainees 

were engaged with robot-assisted surgery training. The central hypothesis is that the cor-

tical responses, i.e., mental workload changes, are correlated with varying task difficulty 

levels. Studying these measures and the correlation with a simulator-based metric and 

brain-based assessment techniques will help enhance these RAS simulators’ performance 

assessment methods.  

Nowadays, neuroimaging techniques including electroencephalography (EEG), 

functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), posi-

tron emission tomography (PET) and functional near-infrared spectroscopy (fNIRS) are 

the candidates for such performance assessment scoring systems. Due to its advantages 

of being noninvasive, wearable and easy to use for measures from the prefrontal cortex in 

field settings, fNIRS was utilized as the neuroimaging technique for this research study.  

fNIRS is an optical system which utilizes near-infrared (NIR) light in brain activity 

assessment by measuring light absorption differences in the changes in oxy-hemoglobin 

and deoxy-hemoglobin concentrations [11]. Light-emitting diodes (LED) are used as the 

light source, and photons interacting with the brain through tissue absorption and scat-

tering are acquired via photodiodes. The modified Beer–Lambert law is used to calculate 

and convert the light intensity measures acquired from the brain to hemodynamic 

changes [12,13]. Hemodynamic responses in the prefrontal cortex (PFC) region of the 

brain elicited by different stimuli can be monitored with these optical systems [14-17]. 

Further, fNIRS has been used as an assessment tool in medical simulation training in ad-

dition to the current scoring systems [18,19]. The objective of this study was to investigate 

whether neurophysiological measures of trainees could be used as an additional monitor-

ing tool for assessing the training effect of robotic surgery simulators. Hence, the experi-

mental protocol focused on acquiring hemodynamic changes via fNIRS from the prefron-

tal cortex regions of the trainees during robotic surgery simulation sessions. 
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2. Materials and Methods 

2.1. Participants 

Twenty-four surgery residents between the ages of 26 and 32 volunteered to partici-

pate in this study (mean age ± SD = 28.25 ± 1.98 years, 18 females, 6 males). Nineteen of 

the participants were from an obstetrics and gynecology (OB&GYN) department, and the 

remaining five residents were from a general surgery department. Prior to the study, all 

the participants agreed and signed written informed consent for voluntary participation 

in the study. The informed consent was reviewed and approved by the Ethical Committee 

of Acıbadem Mehmet Ali Aydinlar University, Istanbul, Turkey. 

2.2. Experimental Protocol 

All participants had a familiarization session, before the actual experimental protocol 

began. During the familiarization session, an expert RAS instructor not only introduced the 

participants to the components of the simulator system but also demonstrated the RAS sys-

tem (Da Vinci Surgical System Xi console with backpack simulation module: Intuitive Sur-

gical Inc., Sunnyvale, CA, USA). The task and RAS familiarization session lasted between 

10 and 12 min, and the following topics were covered: surgeon console adjustments, robotic 

arms and clutch control, zoom in and out, camera targeting. After the familiarization ses-

sion, the participants performed a ring walk exercise at the easiest level with aids from the 

instructor. The goal for this short tutorial session was to acclimate the participants to the 

RAS simulator as much as possible. After an fNIRS sensor headband was placed on the 

forehead, the participants were instructed to begin the actual training protocol.  

Each participant completed two blocks of sponge suturing tasks. Both blocks con-

sisted of the same three tasks. In Block 1, tasks were presented in difficulty order, starting 

with the easiest task and ending with the hardest task. Block 2 presented the same tasks 

in a randomized order (Figure 1). 

Robot-Assisted Surgery (RAS) Simulator. In this study, we utilized the Da Vinci Sur-

gical System Xi console (Intuitive Surgical Inc., Sunnyvale, CA, USA) as the RAS simula-

tor. The simulator is an attachment to the surgeon console of the Da Vinci Surgical System. 

The RAS simulator has a simulator-based metric (embedded scoring system), and we uti-

lized the simulator’s logged scores as the assessment for each task performance. The sim-

ulator-based metric of the simulator evaluates the participants based on various perfor-

mance metrics, as provided in Table 1. This RAS system combines these metrics and gen-

erates a composite score to evaluate the overall performance of the trainee surgeons. The 

range of scores varies from a maximum of 1440 to a minimum of 0 (zero) points. 

Table 1. Behavioral measure LME model and log-likelihood test results. 

Dependent Variable Term logLik Chisq (χ2) df p-Value 

Score Block −982.33 21.92 1.00 0.000 

Score Task Difficulty −968.57 27.52 2.00 0.000 

Score Block:Difficulty −962.88 11.37 2.00 0.003 

Completion Time Block 119.03 114.37 1.00 0.000 

Completion Time Task Difficulty 122.38 6.70 2.00 0.035 

Completion Time Block:Difficulty 136.71 28.68 2.00 0.000 
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Figure 1. Experimental protocol sessions, timeline and detailed description of the steps in each block. 

Surgical Tasks. All participants completed a total of six suture sponge tasks in two 

blocks. The system did not allow participants to start the next task before finishing the 

task at hand. On all suture sponge tasks, all the participants were asked to insert and ex-

tract the needle through several pairs of targets located at the edge of the sponge. The 

variations in the target positions and operations with the console increased with the diffi-

culty of the levels (see Figure 2).  

Functional Near-Infrared Spectroscopy. A continuous-wave fNIRS system, Imager 

1200 (fNIR Devices LLC., Potomac, MD, USA), was utilized to monitor and record brain 

activity changes from the prefrontal cortices. The fNIRS sensor headband provides 16-

optode scans at a sampling rate of 2 Hz from the PFC region by employing light sources 

with 730 nm and 850 nm wavelengths (four LEDs) and detector (ten photodetectors) pairs 

(Figure 3b). 
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Figure 2. Suture sponge task difficulty levels include easy, medium and hard levels. Detailed de-

scriptions for each level are provided to illustrate examples of standard training tasks as part of a 

professional simulator (dV-Trainer®, Mimic Technologies, Inc. Seattle, WA, USA). 

 
(a) 
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(b) 

Figure 3. (a) A participant performing a task while the fNIRS headband acquires the data; (b) 16-optode fNIRS sensor 

configuration depicted on the PFC region covering the left and right hemispheres. 

2.3. Data Processing and Analysis 

The trainee surgeons’ performance data during RAS training consist of the cortical 

oxygenation changes from the prefrontal cortex acquired via fNIRS, proficiency scores 

assigned by the simulator and the times recorded for each task completion.  

fNIRS Data. The non-cortical signals, mainly systemic changes which have a higher 

frequency than the hemodynamic changes, should be teased out; hence, a low-pass finite 

impulse response filter was applied with a 0.1 Hz cut-off frequency to the raw light inten-

sity data. Raw data from each optode (Figure 3b) were examined for saturated and noisy 

signals for the manual optode rejection. A sliding window motion artifact rejection filter 

was applied to exclude artifacts caused by the head motions from the data [20]. The fNIRS 

data then were processed by applying the modified Beer–Lambert law to convert the raw 

light intensity measures to hemodynamic changes, i.e., oxygenated hemoglobin (HbO) 

and deoxygenated hemoglobin (HbR). The biomarker of interest in this study was calcu-

lated using values of HbO and HbR for each optode from the PFC region, namely, oxy-

genation (Oxy = HbO − HbR). The fNIRS measures of HbO, HbR and Oxy were included 

in the analysis for each PFC quadrant, namely, left dorsolateral PFC (DLPFC), left anterior 

medial PFC (AMPFC), right AMPFC and right DLPFC. Corresponding optode locations 

for each quadrant are as follows: left DLPFC (optodes 1–4); left AMPFC (optodes 5–8); 

right AMPFC (optodes 9–12); right DLPFC (optodes 13–16). 

Statistical Analysis. Linear mixed effect (LME) models allow additional control for 

variation between subjects, and mitigating errors resulting from missing data and unbal-

anced groupings [21,22]. Hence, statistical analyses were conducted using R (ver. 3.6.1) by 

employing the lme4 [23] and lmerTest [24] packages in R for construction and evaluation 

of LME models. LME models were used to investigate the main and interaction effects of 

training blocks (Block 1, Block 2) and task difficulty levels (easy, medium and hard) on 

behavioral (score and task completion time) and fNIRS (HbO, HbR and Oxy from left 

DLPFC, left AMPFC, right AMPFC and right DLPFC) measures. The significance of fixed 

effect terms was evaluated using likelihood ratio tests, where the full effects model was 

compared against a model without the effect in question (e.g., 1 + Block + (1|Subject) vs. 

1 + (1|Subject) when evaluating a significant main effect of Block). Post hoc analysis was 

conducted to evaluate differences between levels per model term. A total of twelve 

planned post hoc comparisons were performed. Three comparisons were between task 

difficulty levels (e.g., easy vs. hard), three were between blocks of the same difficulty level 

(e.g., Block 1 vs. Block 2 of easy) and six were between task difficulty levels per block (e.g., 
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easy vs. hard in Block 1). Descriptive statistics are presented as mean ± standard deviation 

(Tables A1–A3). Homogeneity of variance, and normality of residuals and random effects 

were assessed using visual inspection. If model predictions showed heteroscedasticity or 

a non-normal distribution, then log10 transformations were performed on the response 

variables. Satterthwaite approximation of degrees of freedom was used in post hoc anal-

yses. For all statistical analyses, the level of significance was set at α = 0.05. Adjustments 

using the false discovery rate (FDR) were made on p-values to account for Type I error 

inflation. Cohen’s d was used to examine post hoc effects. A d of 0.2 was considered a 

small effect, while 0.5 and 0.8 represent medium and large effects, respectively. 

3. Results 

The main effects between participants’ task performance (simulation-assigned scores 

and task completion times) and on participants’ hemodynamic responses (Oxy, HbO, 

HbR) across two blocks and task difficulty levels were investigated. As it is depicted in 

Figure 1, the tasks were presented in difficulty order, i.e., starting with the easiest task and 

ending with the hardest task in Block 1, whereas the same tasks were administered in a 

randomized order during Block 2. 

Behavioral Results. The main effect of block and task difficulty was significant for 

score (χ2(1) = 21.92, p < 0.001; χ2(2) = 27.52, p < 0.001), and task completion time (χ2(1) = 

114.37, p < 0.001; χ2(2) = 6.70, p = 0.035). These changes are also shown in Figure 4 for both 

behavioral measures. Post hoc testing between task difficulty levels indicated significant 

decreases in score from easy to hard (p < 0.001, d = 1.10) and medium to hard (p < 0.001, d 

= 0.89), and increases in completion time from medium to hard (p < 0.022, d = −0.59). The 

effect of the interaction between block and task difficulty was significant for both score 

(χ2(2) = 11.37, p = 0.003), and task completion time (χ2(2) = 28.68, p < 0.001). Post hoc testing 

of the same difficulty levels across blocks revealed a significantly higher score in Block 2 

than in Block 1 for the easy (p < 0.001, d = −1.72) and medium (p = 0.023, d = −0.71) levels. 

Similar testing on task completion time revealed a significantly lower time spent in Block 

2 than in Block 1 for the easy (p < 0.001, d = 3.59), medium (p < 0.001, d = 2.89) and hard (p 

< 0.001, d = 1.37) levels. Post hoc testing between task difficulty levels of Block 1 indicated 

significant decreases in score from medium to hard levels (p = 0.023, d = 0.74), and com-

pletion time from easy to medium (p = 0.041, d = 0.64) and easy to hard (p = 0.012, d = 0.81). 

Alternatively, in Block 2, significant decreases in score were observed from easy to me-

dium (p = 0.023, d = 0.71), medium to hard (p = 0.001, d = 1.05) and easy to hard (p < 0.001, 

d = 1.76), while significant increases in completion time were observed from medium to 

hard (p < 0.001, d = −1.35) and easy to hard (p < 0.001, d = −1.42). 

 

Figure 4. Score and task completion time: comparison of measurements between blocks for simulator performance data 

with error of the mean. 
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fNIRS Results. The fNIRS measures in Oxy, HbO and HbR at the PFC region were 

analyzed by using changes in four regions: left DLPFC; left AMPFC; right AMPFC; right 

DLPFC. The main effect of block was significant in left DLPFC (HbO: χ2(1) = 15.47, p < 

0.001; HbR: χ2(1) = 9.76, p = 0.002; Oxy: χ2(1) = 25.42, p < 0.001), left AMPFC (HbO: χ2(1) = 

6.34, p = 0.012; HbR: χ2(1) = 8.13, p = 0.004; Oxy: χ2(1) = 12.82, p < 0.001) and right DLPFC 

(HbO: χ2(1) = 31.21, p < 0.001; HbR: χ2(1) = 16.07, p < 0.001; Oxy: χ2(1) = 42.53, p < 0.001). 

These results are also depicted in Figure 4. The main effect of task difficulty was signifi-

cant primarily in left DLPFC (HbO: χ2(2) = 15.54, p < 0.001; HbR: χ2(2) = 6.19, p = 0.045; 

Oxy: χ2(1) = 10.66, p = 0.005). Post hoc testing between task difficulty levels indicated sig-

nificant decreases in activity within left DLPFC from easy to medium (HbO: p < 0.001, d = 

0.96; Oxy: p = 0.002, d = 0.82) and easy to hard (HbO: p = 0.005, d = 0.71; Oxy: p = 0.009, d = 

0.70). The interaction between block and task difficulty was significant primarily in left 

DLPFC (HbO: χ2(2) = 8.71, p = 0.013; HbR: χ2(2) = 6.61, p = 0.037; Oxy: χ2(1) = 8.21, p = 0.016). 

Post hoc testing of the same difficulty levels across blocks revealed a significantly lower 

activity in Block 2 than in Block 1 for the easy (HbO: p < 0.001, d = 1.65; HbR: p = 0.002, d 

= −1.29; Oxy: p < 0.001, d = 1.93) level. Post hoc testing between task difficulty levels of 

Block 1 indicated significant decreases in activity from easy to medium (HbO: p < 0.001, d 

= 1.42; HbR: p = 0.006, d = −1.10; Oxy: p < 0.001, d = 1.45) and easy to hard (HbO: p < 0.001, 

d = 1.38; HbR: p = 0.020, d = −0.92; Oxy: p = 0.002, d = 1.20). In Block 2, no significant dif-

ferences in activity between levels were observed. 

In the second block, participants’ oxygen changes (OXY and HbO) in the PFC 

dropped for all task difficulty levels (Figure 5a,b), while their scores increased, as did their 

task completion time, which was the time spent to complete the tasks (Figure 4). 

 
(a) OXY changes for each quadrant-left DLPFC; left AMPFC; right AMPFC; right DLPFC 
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(b) HbO changes for each quadrant-left DLPFC; left AMPFC; right AMPFC; right DLPFC 

 
(c) HbR changes for each quadrant-left DLPFC; left AMPFC; right AMPFC; right DLPFC 

Figure 5. (a) Oxygenation changes (OXY); (b) oxygenated hemoglobin (HbO) changes; (c) deoxygenated hemoglobin 

(HbR) changes with error of the mean. 
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Additional analysis was performed on the individual fNIRS optodes. Within the scope 

of this study, we primarily focused on the left dorsolateral prefrontal cortex region, specifi-

cally optode-3 and optode-4, as shown in Figure 3b, as both optodes acquire hemodynamic 

changes from the PFC region, which is known to be associated with working memory and 

learning [15,25]. The topographic mapping and the relative oxygenation changes are de-

picted on the left dorsolateral prefrontal cortex (left DPFC) for each task block in Figure 6. 

Oxygenation changes in the left DPFC were significantly lower during the second training 

session (Block 2) compared to the initial training through Block 1 (p < 0.05). 

 

Figure 6. Oxygenation differences (Oxy) from left PFC between Block 1 and Block 2 initial tasks. 

At the individual spatial analysis, the differences in relative oxygen changes for the 

easy tasks of the two blocks were found to be statistically significant (p < 0.05) on optode-

3. Similarly, there was a statistically significant difference between Block 1’s and Block 2’s 

oxygenation measurement for the easy and medium task difficulty levels (p < 0.05) on 

optode-4 (Figure 7). 

 

Figure 7. Decrease in oxygenation from the measures on optode-3 and optode-4 for each level between the blocks, with 

error of the mean bars. 

4. Discussion 

This study focused on investigating brain activity changes through fNIRS data anal-

ysis to understand the training effect of RAS modules and their relationship with the per-

formance scores acquired from the simulation system. As it was reported in other studies, 

fNIRS data enable us to reveal the interaction between cortical regions dedicated to task 

execution during visuomotor learning [26]. In agreement with these studies, the results 
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here also reveal that relative oxygenation changes in the prefrontal cortex were signifi-

cantly lower during the second training session compared to the first session while the 

trainees were performing the tasks with varying difficulty levels. This finding was con-

firmed by the post hoc testing of the same difficulty levels across blocks (Table 2), which 

indicated significantly lower oxygenation in Block 2 than in Block 1 for the easy level 

(HbO: p < 0.001, d = 1.65; Oxy: p < 0.001, d = 1.93). We posit that this decrease in HbO and 

Oxy within Block 2 could be due to the lower demand at the corresponding attentional 

and working memory areas in response to increased task proficiency. Our findings are in 

line with prior studies which examined task practice and found decreases in the extent or 

intensity of activations, particularly in the attentional and control areas [27]. There is con-

siderable evidence that practicing a task tends to be associated with overall lower brain 

activity in the prefrontal areas [28]. Hence, a significant decrease in oxygenation changes 

was expected when comparing Block 2 with Block 1. On the other hand, the increase in 

HbR suggests that, even though there could be a decrease in cerebral blood flow due to 

the lower demand, the local rate of oxygen consumption may still be elevated to stay on 

task, as verified by the increased task proficiency in Block 2. This result also reveals an 

association with an inverse bold response mechanism which has been observed in prior 

fMRI studies [29].  

Table 2. fNIRS measure (Oxy, HbO, HbR) LME model and log-likelihood test results. 

Dependent Variable Term logLik Chisq (χ2) df p-Value 

OXY 

Left DLPFC Block −165.83 25.42 1.00 0.000 

Left DLPFC Task Difficulty −160.50 10.66 2.00 0.005 

Left DLPFC Block:Difficulty −156.39 8.21 2.00 0.016 

Left AMPFC Block −177.53 12.82 1.00 0.000 

Left AMPFC Task Difficulty −174.02 7.01 2.00 0.030 

Left AMPFC Block:Difficulty −171.87 4.30 2.00 0.116 

Right AMPFC Block −192.93 17.20 1.00 0.000 

Right AMPFC Task Difficulty −183.12 19.63 2.00 0.000 

Right AMPFC Block:Difficulty −181.97 2.31 2.00 0.316 

Right DLPFC Block −180.78 42.53 1.00 0.000 

Right DLPFC Task Difficulty −173.71 14.14 2.00 0.001 

Right DLPFC Block:Difficulty −169.11 9.21 2.00 0.010 

HbO 

Left DLPFC Block −161.33 15.47 1.00 0.000 

Left DLPFC Task Difficulty −153.56 15.54 2.00 0.000 

Left DLPFC Block:Difficulty −149.21 8.71 2.00 0.013 

Left AMPFC Block −197.71 6.34 1.00 0.012 

Left AMPFC Task Difficulty −195.44 4.54 2.00 0.103 

Left AMPFC Block:Difficulty −194.42 2.05 2.00 0.359 

Right AMPFC Block −202.85 9.39 1.00 0.002 

Right AMPFC Task Difficulty −202.20 1.29 2.00 0.526 

Right AMPFC Block:Difficulty −200.13 4.16 2.00 0.125 

Right DLPFC Block −173.56 31.21 1.00 0.000 

Right DLPFC Task Difficulty −168.14 10.84 2.00 0.004 

Right DLPFC Block:Difficulty −163.48 9.32 2.00 0.009 

HbR 

Left DLPFC Block −124.97 9.76 1.00 0.002 

Left DLPFC Task Difficulty −121.88 6.19 2.00 0.045 
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Left DLPFC Block:Difficulty −118.57 6.61 2.00 0.037 

Left AMPFC Block −144.26 8.13 1.00 0.004 

Left AMPFC Task Difficulty −144.18 0.15 2.00 0.929 

Left AMPFC Block:Difficulty −141.22 5.93 2.00 0.052 

Right AMPFC Block −156.38 1.71 1.00 0.191 

Right AMPFC Task Difficulty −153.64 5.47 2.00 0.065 

Right AMPFC Block:Difficulty −150.83 5.62 2.00 0.060 

Right DLPFC Block −142.37 16.07 1.00 0.000 

Right DLPFC Task Difficulty −139.50 5.73 2.00 0.057 

Right DLPFC Block:Difficulty −136.88 5.26 2.00 0.072 

In support of these neurophysiological findings, the behavioral task performances of 

the participants were improved in the second block for all task difficulty levels. Statisti-

cally significant decreases in terms of task completion time for tasks with easy, medium 

and hard levels were also observed when task completion times in the first and second 

block were compared. In support of this finding, the post hoc testing of the same difficulty 

levels across blocks revealed a significantly higher score in Block 2 than in Block 1 for the 

easy (p < 0.001, d = −1.72) and medium (p = 0.023, d = −0.71) levels (Table 1). On the other 

hand, the same post hoc test of task completion time showed a significantly lower time 

spent in Block 2 than in Block 1 for the easy (p < 0.001, d = 3.59), medium (p < 0.001, d = 

2.89) and hard (p < 0.001, d = 1.37) levels.  

Training Effect across Task Difficulty: We observed higher oxygenation and behav-

ioral performance changes in the ‘easy’ condition. This may present conflict with other 

cognitive workload studies as the main hypothesis in such studies would be that there is 

a significant main effect between task difficulty and mental workload, as measured by 

Oxy [14, 30]. That is, it is hypothesized to observe lower oxygenation in the easy condition 

compared to the difficult condition. However, there is an inconsistency here, where one 

possible explanation would be a lack of enough block designs for each difficulty condi-

tion. In this study, the scope was to investigate the training effect; hence, the experimental 

protocol aimed to elicit cortical changes in response to skill acquisition or familiarization. 

This is also supported by the behavioral score changes, and it is clearly observed that the 

trainees could have leveraged the first condition (easy) in order to become familiar with 

the task using a high level of mental engagement. This ‘easy’ condition was the first one 

and thus would have served as a training task for novice participants. This should also be 

considered as a limitation of this study, as task difficulty is a primary factor that can affect 

the development of neuroimaging-based biomarkers for an assessment of the level of ex-

pertise. To test the hypothesis related to the task difficulty and oxygenation changes in 

the PFC region, studies should include novice and expert participants. The participants in 

this study were all novice subjects, and this may also be another possible explanation of 

our mixed findings relative to workload levels. Shewokis et al. [31] studied novices, pre-

senting different hemodynamic patterns, and also reported surgical simulation studies 

with optical brain imaging, which mainly found higher prefrontal activation across novice 

surgeons [32].  

Advances in the measurement of neurophysiological biomarkers, such as brain ac-

tivity changes, bring promising new assessment alternatives within reach for traditional 

training scenarios and modules. Currently, the most widely used brain activity measures 

are functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), in 

addition to the technique described here, namely, fNIRS. fMRI is widely used to study the 

operational organization of the human brain and has demonstrated validity in mapping 

changes in brain hemodynamics produced by human mental tasks [33]. However, use of 

fMRI in field operations is limited due to the restrictions imposed on participants regard-

ing movement. EEG measures of cognitive workload have been reported in a broad range 

of studies and provide a high temporal resolution compared to fNIRS and fMRI [34].  
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Both behavioral and neurophysiological measurement methods in practical training 

programs will help to assess operational readiness, which is one of the overarching goals 

for safety-critical task training. Quantitative assessments of joint human–system perfor-

mance in military and clinical settings, such as integration of autonomous systems or new 

VR-based training, or designing training curricula derived from measures of expertise de-

velopment through neural efficiency, are just a few examples illustrating the potential role 

of these methods. For instance, previous studies posited that the systems assessing brain 

activation during surgical tasks may be used as assessment methods for endoscopic sur-

gical skills [35,36]. As suggested in similar studies using fNIRS systems, this study also 

suggests utilizing brain-based measures as an additional monitoring tool for assessing the 

training effect of robotic surgery simulators via hemodynamic changes in the prefrontal 

cortex regions of trainees during robotic surgery simulation sessions [37,38]. Future stud-

ies should include expert surgeons as a control group, and further blocks with different 

difficulty levels which should be designed and administered in a random order. Further-

more, one of the limitations of this study is the lack of short source–detector pairs which 

would allow fNIRS measures from the superficial layers. fNIRS signals could be con-

founded by systemic changes due to the heart, respiratory, myogenic and scalp blood flow 

[39]. Hence, use of fNIRS sensors with capability of multi-distance measures can help to 

tease out these confounding factors, enabling one to reliably distinguish neural changes 

elicited by cognitive stimuli. 

5. Conclusions 

Neurophysiological measures from the prefrontal cortex can serve as a performance-

monitoring metric while a trainee surgeon moves from novice to expert. This study 

showed significant differences in PFC activation during basic skill acquisition via a high-

fidelity Da Vinci surgical system, suggesting that they can be used as an additional assess-

ment tool. Our work reports a correlation analysis with the standard behavioral perfor-

mance metrics and brain activity changes. The findings suggest that integration of neuro-

physiological measures, such as hemodynamic changes assessed by wearable fNIRS sen-

sors, with a built-in performance-tracking system in the training simulator, such as task 

scores and completion time, would enable a reliable performance assessment of joint hu-

man and training systems in clinical skill acquisition. 
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Appendix A 

Table A1. Comparison of relative oxygenation (Oxy) changes between blocks across different regions. 

  Task Difficulty 

Block 1 Block 2   

Mean ± SD Mean ± SD p-Value 

Med. (Min–Max) Med. (Min–Max)   

  Easy 
1.78 ± 0.76 0.13 ± 0.69   

1.46 (0.76–3.29) 0.32 (−1.53–0.89) <0.001 2 

Left DLPFC 

(Optodes 1–4)  
Medium 

0.55 ± 0.79 0 ± 0.93 0.034 1 

0.55 (−1.23–1.86) −0.04 (−1.32–1.5)   

  Hard 
0.79 ± 1.24 −0.07 ± 1.15 0.029 1 

0.8 (−1.83–3.31) −0.29 (−1.99–3.08)   

  Easy 
1.16 ± 1.31 −0.08 ± 1.1   

1.12 (−1.45–3.86) −0.29 (−2.32–2.3) 0.007 1 

Left AMPFC 

(Optodes 5–8)  
Medium 

0.27 ± 1.1 −0.35 ± 1.25 0.064 1 

0.08 (−1.5–2.86) −0.39 (−2.54–2.82)   

  Hard 
0.25 ± 1.02 −0.1 ± 1.18 0.246 2 

0.4 (−3.09–2.28) −0.24 (−2.24–2.17)   

  Easy 
1.52 ± 1.31 0.15 ± 1.11   

1.19 (−0.45–4.73) 0.08 (−1.73–2.29) <0.001 1 

Right AMPFC 

(Optodes 9–12) 
Medium 

0.33 ± 1.22 −0.48 ± 1.37 0.031 2 

0.51 (−3.28–2.08) −0.49 (−3.49–1.83)   

  Hard 
0.32 ± 1.09 −0.5 ± 1.44 0.102 1 

−0.01 (−0.93–3.18) −0.63 (−3.61–2.84)   

  Easy 
1.85 ± 1.09 0.23 ± 0.67   

2.03 (−0.35–4.2) 0.28 (−1.46–1.52) <0.001 1 

Right DLPFC 

(Optodes 13–16) 
Medium 

0.83 ± 0.87 −0.02 ± 0.71 0.002 1 

0.82 (−0.7–2.68) −0.05 (−1.18–1.27)   

 Hard 
0.93 ± 0.99 0.17 ± 0.98 0.013 2 

0.52 (−0.83–2.83) 0.34 (−2.14–1.97)   
1 Paired samples t test, 2 Wilcoxon test. 

Table A2. Comparison of score between blocks: task performance measures logged by the simulator for each participant 

and given tasks. 

  Task Difficulty 

Block 1 Block 2   

Mean ± SD Mean ± SD p-Value 

Med.(Min–Max) Med.(Min–Max)   

  Easy 
487.73 ± 179.46 774.47 ± 250.83 

<0.001 2 
508.12(114.72–892.8) 681.37(314.4–1396.8) 

Score (points) Medium 
537.79 ± 206.69 656.17 ± 353.94 

0.056 1 
544.2(214.89–1050.13) 644.43(0–1229.59) 

  Hard 
415 ± 238.64 481.24 ± 191.3 

0.081 1 
404.35(31.66–1065.6) 477.25(165.9–964.8) 

1 Paired samples t test, 2 Wilcoxon test. 
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Table A3. Task completion time comparison between blocks. 

  Task Difficulty 

Block 1 Block 2   

Mean± SD Mean± SD p-Value 

Med.(Min–Max) Med.(Min–Max)  

Task Completion 

Time (seconds) 

Easy 
540.21 ± 177.3 274.17 ± 64.52  

515.38 (263–974.83) 265.34 (165–400.04) <0.001 1 

Medium 
479.5 ± 138.47 278.34 ± 71.44 <0.001 1 

499.79 (174–745.07) 283.86 (176–495.55)  

Hard 
459.69 ± 128.09 358.74 ± 99.99 <0.001 1 

438.9 (264–769.4) 336.94 (221.47–557.64)  

1 Paired samples t test. 

Appendix B. Individual Subject Data 

Changes across blocks for each subject. 

Behavioral Measures: 

 

Figure A1. Simulator performance score for individual subjects per difficulty level (easy, medium, hard). The black lines 

represent scores for each individual measure. Blue lines represent mean across subjects. The scores are higher in the second 

training block. 

 

Figure A2. Completion time (seconds) for individual subjects per difficulty level (easy, medium, hard). The black lines 

represent times for each individual measure. Blue lines represent mean across subjects. The completion times are lower in 

the second training block, as expected. 
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fNIRS Measures: 

 
(a) Left DLPFC 

 
(b) Left AMPFC 

Figure A3. fNIRS measures from left DLPFC and AMPFC for each individual subject per difficulty level (easy, medium, 

hard). The black lines represent changes for each individual measure. Blue lines represent mean across subjects. The oxy-

genation changes are lower in the second training block. 

 

(a) Right DLPFC 
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(b) Right AMPFC 

Figure A4. fNIRS measures from right DLPFC and AMPFC for each individual subject per difficulty level (easy, medium, 

hard). The black lines represent changes for each individual measure. Blue lines represent mean across subjects. The oxy-

genation changes are lower in the second training block. 
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