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Abstract: Alcohol consumption is now common practice worldwide, and functional brain networks
are beginning to reveal the complex interactions observed with alcohol consumption and abstinence.
The autonomic nervous system (ANS) has a well-documented relationship with alcohol use, and
a growing body of research is finding links between the ANS and functional brain networks. This
study recruited everyday drinkers in an effort to uncover the relationship between alcohol abstinence,
ANS function, and whole brain functional brain networks. Participants (n = 29), 24–60 years-of-age,
consumed moderate levels of alcohol regularly (males 2.4 (±0.26) drinks/day, females 2.3 (±0.96)
drinks/day). ANS function, specifically cardiac vagal tone, was assessed using the Porges-Bohrer
method for calculating respiratory sinus arrhythmia (PBRSA). Functional brain networks were
generated from resting-state MRI scans obtained following 3-day periods of typical consumption
and abstinence. A multi-task mixed-effects regression model determined the influences of HRV and
drinking state on functional network connectivity. Results showed differences in the relationship
between the strength of network connections and clustering coefficients across drinking states,
moderated by PBRSA. Increases in connection strength between highly clustered nodes during
abstinence as PBRSA increases demonstrates a greater possible range of topological configurations
at high PBRSA values. This novel finding begins to shed light on the complex interactions between
typical alcohol abstinence and physiological responses of the central and autonomic nervous system.

Keywords: alcohol; brain networks; heart rate variability; abstinence; respiratory sinus arrhythmia

1. Introduction

Alcohol use is a leading risk factor for declining health and global disease burden [1],
but cessation of alcohol consumption is highly associated with stress and craving which
drive the risk of relapse [2–5]. Stress and craving responses include visceral sensations and
central neural processes such as the drive to consume alcohol, a motive directly related
to the reward or “wanting” properties of alcohol [6]. As described in Polyvagal Theory
(PVT; [7,8]), the vagus nerve is the major bidirectional pathway of the nervous system
linking the body to the brain. Through evolution, the ventral root of the vagus in mammals
has evolved as a key biological structure supporting sociality in humans and providing a
dynamic system of monitoring threat to the organism through a process termed nociception.
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Increased threat reduces cardiac vagal tone (CVT) which subsequently leads to a coping
response orchestrated by the central nervous system. As described in PVT, coping often
involves an “active” response which can involve cognition, emotion and/or behavior.
For example, people consume alcohol as a means to reduce unpleasant states induced
by stress. In extreme stress, such as trauma, research has shown that the vagal system
can shift control to the dorsal root of the vagus nerve and induce a powerful “passive”
form of coping known as the freeze response. Porges and Bohrer [9] have developed
a valid metric of CVT, which represents activity in the ventral root of the vagus nerve
and is abbreviated as PBRSA. This abbreviation is used to distinguish it from the peak-
to-trough method for determining RSA, PTRSA, which is common in the literature but is
less desirable. Research has consistently shown that higher levels of CVT are associated
with psychological resilience, improved physiological recovery following exposure to
stressors [10], greater emotional flexibility [11], and most relevant to the current study,
improved ability to cope with alcohol cravings [12]

Alcohol craving in patients with an alcohol use disorder (AUD) has been associated
with high frequency heart rate variability (HF-HRV), another metric used to assess CVT,
with acute consumption being related to decreasing HF-HRV [13–16]. Conceptually RSA
is equivalent to HF-HRV when the frequency band is inclusive of the frequencies of
spontaneous breathing and RSA is an accurate estimate of CVT when RSA is calculated
with the PBRSA metric. Alcohol craving ratings in the everyday drinking population are
higher with lower dynamic PBRSA [17]. Long-term alcohol use has also been associated with
decreased HF-HRV with studies finding lower HF-HRV in alcohol dependent inpatients
compared to age and gender matched controls [18–20]. However, only a moderate period
of abstinence (i.e., 4 months) is needed to improve HF-HRV in individuals with AUD [20].
Another recent study has documented decreased PTRSA in conjunction with greater anxiety
and stress and overall poor mood in abstinence alcoholic men [21].

The relationship between CVT and everyday drinking has been less thoroughly ex-
plored, a shortcoming that is the focus of the current study. Specifically, our goal was
to examine fundamental neural mechanisms underlying the influence of the autonomic
nervous system (ANS) on brain responses to alcohol abstinence in regular drinkers. To do
so, ANS activity was assessed using PBRSA in an effort to capture the functional relation-
ship between heart rate, respiration, and brainstem function [22,23]. We are aware that
Thayer and colleagues [24,25] have proposed a hierarchical neurovisceral integrative (NVI)
model to increase understanding of vagal control with both cognitive performance and
emotional/physical health. However, in the current paper, we are examining whole brain
functionality as opposed to regional specificity inherent to the NVI model. Our approach
is consistent with the foundational research conducted by Nobel Laureate Walter Hess
(1949) [26], who focused on a model of an integrated nervous system regulating both brain
and body. Also, as described above, we have elected to use PBRSA as a metric of CVT, since
our work is based on PVT. PVT provides an adaptive hierarchical model of autonomic
function that parallels phylogeny and maturation. It is this hierarchical model of autonomic
regulation that is disrupted by AUD.

The majority of existing alcohol-related brain imaging studies have focused on prob-
lematic alcohol consumers or those with AUD. The limited number of studies in non-AUD
individuals have not explored the effects of a brief period of alcohol abstinence. Given the
known rewarding properties of alcohol [27] and the aversive effects of abstinence [28,29], it is
important to assess if everyday drinkers exhibit distinct neural responses during abstinence,
compared to periods of typical consumption. In the current study, the relationship of PBRSA
to brain activity during abstinence was assessed using functional imaging. It is conceptu-
ally relevant to consider potential interactions between PBRSA and brain state changes, as
PBRSA decreases with increases in threat to the organism. Alcohol craving, especially during
abstinence, is highly associated with relapse in individuals recovering from AUD, and has
been associated with distinct patterns of brain activity [30] and connectivity [31–33]. Chronic
alcohol use is associated with reductions in grey and white matter volumes, with additional
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disruption to white matter tracts, neurotransmitter systems, and glucose metabolism [30].
When examining whole brain functional connectivity using graph theory metrics, few global
differences were found between AUD patients and healthy controls. However, in males at
high-risk of developing AUD, subnetworks (such as the attention network, executive control
network, salience network, and default mode network) show a general expansion [32], marked
by decreased clustering, small-worldness, and local efficiency [31]. In alcohol dependent
inpatients, a negative relationship exists between average clustering coefficient and severity
of alcohol use, and between dependence duration and global efficiency and clustering [33].
However, there is a lack of knowledge surrounding brain responses to temporary cessation
of alcohol consumption when also accounting for functioning of the ANS. Combining these
assessments of central and peripheral nervous system function has the potential to illuminate
the broader underlying physiological consequences of alcohol abstinence. In an effort to test
for these potential abstinence-driven changes in brain state, this study analyzes whole brain
functional networks to achieve a comprehensive examination of the interaction of brain re-
gions at a systematic level [34], rather than using activation analyses or connectivity measures
from an a priori defined region of interest.

To best capture the mechanistic relationships between the central and peripheral
nervous system, this study recruited everyday drinkers without behavioral problems
associated with their consumption patterns. This allowed for comparison within individual
participants, tracking brain network changes in response to their normal drinking patterns
and to a brief period of imposed abstinence. The analyses performed focused primarily
on clustering coefficient and global efficiency as network features that capture regional
specificity and distributed processing, respectively. We hypothesized that changes in brain
network topology between normal drinking and abstained states would be significantly
associated with resting PBRSA. Specifically, individuals with higher resting PBRSA would
exhibit greater topological changes between the normal and abstained states, consistent
with greater cognitive and emotional flexibility associated with higher resting PBRSA.

2. Materials and Methods
2.1. Study Overview

The data used in this analysis come from a multi-part study examining neurobiological
variables in everyday alcohol consumers. Previous manuscripts published from this same
dataset examine patterns of craving and stress across the day and how RSA moderates
patterns of craving. The drinking population studied in this protocol consisted of healthy
adults whose lifestyle includes routine alcohol consumption above low risk levels [35]
with infrequent binging episodes [36]. The study protocol consisted of a baseline visit
and two magnetic resonance imaging (MRI) visits. After passing an initial telephone
screening, a baseline visit was conducted to complete informed consent, ensure eligibility,
administer self-report questionnaires, and collect cardiac functioning data. The MRI
visits included self-report questionnaire administration and functional MRI (fMRI) scans.
One visit occurred after three consecutive days of each participant’s normal drinking
routine, and the other followed three consecutive days of imposed abstinence. This study
implemented three-day experimental periods to achieve physiological consequences of
abstinence in everyday drinkers without causing excess participant burden. Although
the participants selected for this study were frequent drinkers, a single day of abstinence
could be a common experience and subsequently not cause biological or psychological
stress. A period of abstinence longer than three days was considered inconvenient and
unpleasant to participants and was therefore a complication to recruitment and retention.
The scanning order (normal versus abstained) was randomized with a crossover design,
with a minimum of six days between scans. This report focuses on the relationship between
resting state fMRI data (collected following abstinence and normal drinking) with resting
RSA calculated from heart rate recordings from the baseline visit.
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2.2. Participants

Thirty-four everyday drinkers were recruited from the community using various
advertisement techniques including posted flyers, mailers, and inter/intranet postings.
The final sample included 29 participants (13 males) after excluding for missing data (4 RSA,
1 fMRI). Enrollment criteria included adults aged 24–60, alcohol consumption on an average
of ≥50% of days, and an average daily consumption of 1–3 drinks/day for females and
2–4 drinks/day for males. Drinking patterns were collected with the Timeline Followback
(TLFB), a well-established retrospective measure of alcohol consumption [37]. Exclusion
criteria included current or historical clinical AUD diagnosis, binge drinking [35,36] more
than 3 occasions/month, a history of severe medical conditions stabilized for <2 months, a
score of ≥20 on a depression inventory [38], history of neurological disease, consumption
of >500 mg of caffeine per day, smoking >1.5 packs of cigarettes per day, or a positive
urine drug screening (detecting for methamphetamine, cocaine, marijuana, amphetamines,
opiates, and benzodiazepines). Due to the association between body mass index (BMI) and
blood-alcohol concentration (BCA), BMI was restricted to a range of 18.5–39 [39]. Due to
the MRI protocol, participants had to be right-handed, not claustrophobic, and have no
contraindications to MRI.

2.3. Heart Rate Assessment and Data Processing for RSA Calculation

The primary research question raised in this study examined resting levels of PBRSA,
a phenotypic index of vagal health. As such, PBRSA was calculated from heart rate data
collected at baseline, before the study-imposed abstinence period. PBRSA was then analyzed
in conjunction with functional MRI data collected following the normal drinking and
abstinence experimental periods. An electrocardiogram (ECG) was collected via a Biopac
MP150 system during the baseline visit. A three-electrode configuration was used in
conjunction with a pulse oximeter. Participants were instructed to refrain from speaking
and remain still throughout data collection. Heart rate was recorded for 5 min while
participants were seated comfortably. CardioEdit software (Brain-Body Center, University
of Illinois at Chicago, 2007) was used to visually inspect and edit off-line heart rate data.
CardioBatch Plus software (Brain-Body Center for Psychophysiology and Bioengineering,
University of North Carolina at Chapel Hill, 2016) was used to calculate heart rate and
PBRSA from the ECG data consistent with procedures developed by Porges [40]. This
baseline calculation was used because not all intercorrelated parasympathetic metrics
are equivalent, and RSA metrics do not need to be statistically adjusted for ventilatory
parameters to accurately estimate CVT [41].

These methods have been documented to extract a single amplitude of PBRSA as a valid
index of HRV [41]. CardioBatch Plus quantified the amplitude of PBRSA using age-specific
parameters that are sensitive to the maturational shifts in the frequency of spontaneous
breathing. The method, when applied to adults, includes: (1) timing sequential R-R
intervals to the nearest millisecond; (2) producing time-based data by resampling the
sequential R-R intervals into 500 ms intervals; (3) detrending the time-based series with a
21-point cubic moving polynomial stepped through the data to create a smoothed template,
then subtracting the template from the original time-based series to generate a detrended
residual series; (4) bandpass filtering the detrended time series to extract the variance in
the heart period pattern associated with spontaneous breathing in adults (0.12–0.40 Hz);
and (5) transforming the variance estimates with a natural logarithm to normalize the
distribution of PBRSA estimates [42]. These procedures [40] are statistically equivalent to
frequency domain methods (i.e., spectral analyses) for the calculation of the amplitude of
RSA when heart period data are stationary [23]. This calculation method is not moderated
by respiration rate or amplitude, and is equivalent to applying spectral methods following
our filtering technique [41]. PBRSA was quantified during each sequential 30 s epoch and
the averages within each condition were used in the data analysis.
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2.4. Brain Imaging and Functional Brain Network Analysis
2.4.1. MRI Study Visits

At the beginning of each MRI session, participants completed surveys regarding any
changes to their typical routine, and probing alcohol craving [43], stress [44], anxiety [45],
and mindfulness [46,47]. Following the abstinence experimental period, participants
also completed the Clinical Institute Withdrawal Assessment for Alcohol-revised (CIWA-
Ar) [48] to ensure no participants experienced withdrawal symptoms. These scales were
administered to help determine any differences between these participants’ emotional and
physical states across the two experimental periods. No significant differences were found
between the drinking states on any of these measures (Supplemental Table S4). These
scores were not included in statistical modeling with brain networks as they may be causal
intermediaries.

2.4.2. Image Collection

MRI data was obtained on a 3T Siemens Skyra scanner equipped with a 32-channel
head coil, a rear projection screen, and MRI compatible headphones. The imaging pro-
tocol consisted of a T1-weighted structural scan followed by a 6 min blood oxygen level
dependent (BOLD)-weighted resting state scan. During the resting state scan, participants
were instructed to focus on a fixation cross projected on the rear projection screen. High
resolution (1 mm isotropic) T1-weighted structural scans were acquired in the sagittal
plane using a single-shot 3D MPRAGE GRAPPA2 sequence (repetition time (TR) = 2.3 s,
echo time (TE) = 2.99 ms, 192 slices). The resting state BOLD-weighted image sequences
were acquired in the transverse plane using an echo-planar imaging sequence
(3.5 mm × 3.5 mm × 5 mm resolution, acquisition time = 6 min, TR = 2.0 s, TE = 25 ms,
flip angle = 75◦, 35 slices per volume, 177 volumes).

2.4.3. Image Processing and Network Generation

The first 20 s (10 image volumes) were discarded to allow the signal to achieve
equilibrium. Initial steps for image processing were performed using SPM12 software
(www.fil.ion.ucl.ac.uk/spm/, accessed on 12 October 2018). The functional images were
slice time corrected and realigned to the first image of the series. Preprocessing for the
structural image consisted of skull removal with the remaining image segmented into grey
matter, white matter, and cerebrospinal fluid (CSF) maps using a unified segmentation
algorithm [49]. The structural image was warped to the Colin template [50] using Advance
Normalization Tools (ANTS) [51]. The resulting inverse warp deformation map was
applied to the Shen functional atlas [52], warping the atlas to each subject’s original (native
space) anatomical image. The atlas was then co-registered and resliced to match functional
data. The Shen atlas contains 268 functionally defined regions, specifically defined for
brain network analyses [52].

Physiological noise and low frequency drift were reduced by regressing out the
mean signals for grey matter, white matter, and CSF and applying band-pass filtering
(0.009–0.08 Hz) [53]. Motion correction was performed to eliminate scan volumes with
excessive frame-wise displacement and BOLD signal change [54]. Each participant’s native
space atlas was used to extract the mean time series for each region of the Shen atlas. It is
of note that all brain networks examined in this study were created and analyzed in each
participant’s native space to limit manipulation and interpolation of the fMRI time series.
These functional atlas time series data were used to generate functional brain networks
by performing node-by-node Pearson’s correlations using the WFU_MMNET toolbox [55].
Statistical analysis focused on unthresholded positive correlation matrices with negative
correlation values set to 0. The mixed-model framework used in this brain network analysis
relies on graph theory metrics that cannot accommodate negative correlations [56].

www.fil.ion.ucl.ac.uk/spm/
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2.4.4. Statistical Analysis and Mixed-Effects Modeling Framework

Full details regarding the methodology used for statistical modeling are included in
the Supplementary Materials.

A mixed-effects regression was used to assess the relationship between whole brain
network connectivity, participants’ drinking state, PBRSA as a continuous measure of CVT,
and possible confounding variables [56–58]. This framework is able to account for brain
network correlations within each participant (within subject variables) across two states
(following normal drinking and abstinence), and allows the inclusion of network and
non-network variables (between subject variables) in the model. Significant results were
determined by a critical p-value <0.05, with p-values adjusted for multiple comparisons us-
ing the adaptive False Discovery Rate procedures detailed by Benjamini and Hochberg [59].
Analyses were conducting using the WFU_MMNET toolbox [55], Matlab (R2016), and SAS
v9.4 software.

The goal of this analysis was to determine if brain network differences observed
across drinking states were driven by HRV. To test this relationship, the model allowed
for the comparison of these variables with the strength of network connections, or the
similarity of the data recorded from each brain region. More simply, this regression model
determined how much each of these variables affected the similarity of data collected
from different brain regions, indicating how connected they are as nodes in the whole
brain functional network. The variables included average clustering coefficient (local
segregation), average global efficiency (global integration), difference in degree (number
of connections) between each nodal pair, and overall network modularity (the extent to
which the network subdivides into densely interconnected communities that are scarcely
connected to the rest of the network) [60] as well as age, sex, and BMI [39,61,62]. These non-
network variables were included as covariates in the model to control for any associations
with network organization.

3. Results

The mixed-model framework tested the hypothesis that the effects of drinking state
on brain network topology are resting levels of PBRSA. The results section highlights key
findings with the full model results being available in the Supplemental Materials.

Descriptive statistics related to participants’ demographic characteristics and variables
included in the statistical model are listed in Table 1. A total of 29 participants (13 males)
completed the full study protocol. Participants averaged an age of 38.8 years with an aver-
age BMI of 24.8. Of the full sample, 6.89% of participants identified as African American or
black, 3.45% identified as Asian, and 89.66% identified as white. The participants had been
consuming alcohol for an average of 18.9 years and consumed an average of 2.3 drinks on
an average of 81.2% of days in the last three months (as determined with the TLFB). There
were no significant differences between males and females for any demographic variable,
including our alcohol consumption variables. Age, sex, and BMI were not significant
predictors of brain network structure.

The primary finding from the brain network analysis was a significant interaction be-
tween the connection strength, clustering coefficient, drinking state, and PBRSA (β = 0.01186,
p = 0.0004), as shown in Table 2. This finding indicates that the magnitude of the strength-
clustering relationship differs more across drinking states as PBRSA values increase. Thus,
higher PBRSA values are associated with networks that have the strongest connections
between highly clustered nodes during abstinence. At lower PBRSA values, only a small
difference was observed in the clustering-strength relationship across drinking states, with
weak network connections between highly clustered nodes during abstinence. These differ-
ences are meaningful as stronger network connections support synchronization of neural
signals across regions, leading to efficient information sharing between clusters. The slope
of the regression captures the magnitude of the strength-clustering relationships and is
shown for each state at higher and lower PBRSA values in Figure 1.
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Table 1. Sample demographics. Listed as Mean (Standard Deviation) or Frequency (Percentage),
[range]. There were no significant differences between males and females in any variable.

Variable Overall (n = 29) Male (n = 13) Female (n = 16)

Age 38.8 (10.9)
[24–60]

36.6 (6.6)
[24–46]

40.5 (13.3)
[24–60]

BMI 24.8 (3.8)
[18.9–39]

25.6 (3.5)
[20.4–33.4]

24.2 (4.0)
[18.9–39]

Race n (%)

African American or Black 2 (6.89%) 2 (15.38%) 0
Asian 1 (3.45%) 1 (8.34%) 0
White 26 (89.66%) 10 (83.34%) 16 (100%)

Alcohol Use

Total Years Drinking 18.9 (10.8)
[4–40]

17.3 (7.2)
[6–30]

20.1 (13.1)
[4–40]

Timeline Followback 1

Percent of Days that were Drinking Days 81.2% (16.0)
[55–100%]

78.6% (16.4)
[55.21–100%]

83.4% (15.8)
[55–100%]

Average Drinks Consumed on Drinking Days 2.3 (0.73)
[1.02–5.43]

2.4 (0.26)
[2.02–2.78]

2.3 (0.96)
[1.02–3.88]

Cardiac Vagal Tone

PBRSA
5.8 (1.69)

[0.44–7.90]
6.0 (0.93)

[4.44–7.49]
5.6 (2.13)

[0.44–7.90]
1 Drinking pattern during the previous 90 days

Table 2. Relevant mixed-model strength results. Full model results are available in the Supplemen-
tary Material.

Effect Estimate Standard Error p-Value

Drinking State 0.2340 0.004659 <0.0001
PBRSA −0.00994 0.004340 0.0220

Drinking State × PBRSA 0.01180 0.006157 0.0553
Clustering Coefficient 0.06825 0.002450 <0.0001

Global Efficiency 0.02923 0.002528 <0.0001
Drinking State × Clustering Coefficient 0.001887 0.003163 0.5509

Drinking State × Global Efficiency −0.00456 0.003046 0.1344
PBRSA × Clustering Coefficient −0.00532 0.002651 0.0449

PBRSA × Global Efficiency 0.000041 0.002713 0.9879
Drinking State × PBRSA × Clustering Coefficient 0.01186 0.003357 0.0004

Drinking State × PBRSA × Global Efficiency −0.00518 0.003357 0.1087
Age −0.00116 0.003233 0.7187
Sex −0.00012 0.005968 0.9843
BMI −0.00348 0.003519 0.3221

A second connection strength relationship was found with global efficiency, drinking
state, and PBRSA but this finding only trended toward significance (β = −0.00518, p = 0.1087).
This statistical trend is presented here because it may be critical for understanding the
mechanistic relationships between PBRSA and brain networks. Across all observed PBRSA
values, highly globally efficient nodes were more strongly connected during abstinence.
The slope of this relationship was steeper at lower PBRSA values, indicating the strength
of connections between highly globally efficient nodes increases more rapidly at lower
PBRSA values than at higher PBRSA values. This would result in a higher probability
of synchronization between highly globally efficient nodes, increasing the distribution
of information globally. The slope of these relationships can be observed in Figure 2.
Although this relationship did not reach significance, the topology differences observed
across drinking states were large, and the directionality of the findings conceptually fit with
the highly significant clustering findings. One would expect that as clustering increases,
global efficiency should decrease, and vice versa, as a tradeoff should be expected between
local segregation and global communication in a network.



Brain Sci. 2021, 11, 817 8 of 14

Brain Sci. 2021, 11, x FOR PEER REVIEW 7 of 14 
 

[18.9–39] [20.4–33.4] [18.9–39] 
Race n (%)    

African American or Black 2 (6.89%) 2 (15.38%) 0 
Asian 1 (3.45%) 1 (8.34%) 0 
White 26 (89.66%) 10 (83.34%) 16 (100%) 

Alcohol Use    

Total Years Drinking 18.9 (10.8) 
[4–40] 

17.3 (7.2) 
[6–30] 

20.1 (13.1) 
[4–40] 

Timeline Followback 1    
Percent of Days that were 

Drinking Days 
81.2% (16.0) 
[55–100%] 

78.6% (16.4) 
[55.21–100%] 

83.4% (15.8) 
[55–100%] 

Average Drinks Consumed 
on Drinking Days 

2.3 (0.73) 
[1.02–5.43] 

2.4 (0.26) 
[2.02–2.78] 

2.3 (0.96) 
[1.02–3.88] 

Cardiac Vagal Tone    

PBRSA 5.8 (1.69) 
[0.44–7.90] 

6.0 (0.93) 
[4.44–7.49] 

5.6 (2.13) 
[0.44–7.90] 

1 Drinking pattern during the previous 90 days. 

The primary finding from the brain network analysis was a significant interaction 
between the connection strength, clustering coefficient, drinking state, and PBRSA (β = 
0.01186, p = 0.0004), as shown in Table 2. This finding indicates that the magnitude of the 
strength-clustering relationship differs more across drinking states as PBRSA values in-
crease. Thus, higher PBRSA values are associated with networks that have the strongest 
connections between highly clustered nodes during abstinence. At lower PBRSA values, 
only a small difference was observed in the clustering-strength relationship across drink-
ing states, with weak network connections between highly clustered nodes during absti-
nence. These differences are meaningful as stronger network connections support syn-
chronization of neural signals across regions, leading to efficient information sharing be-
tween clusters. The slope of the regression captures the magnitude of the strength-clus-
tering relationships and is shown for each state at higher and lower PBRSA values in Figure 
1. 

 
Figure 1. The bars capture the slope of the relationship between clustering coefficient and connec-
tion strength, across drinking states and as PBRSA increases. Numbers above the bar are slope values, 
and numbers in parentheses are standard error. At lower RSA values, there is minimal difference in 

Figure 1. The bars capture the slope of the relationship between clustering coefficient and connection
strength, across drinking states and as PBRSA increases. Numbers above the bar are slope values, and
numbers in parentheses are standard error. At lower RSA values, there is minimal difference in the
relationship between drinking states, whereas at higher PBRSA values, there is a much larger change
in the slope of the relationship between clustering and strength.
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At lower PBRSA values, the slope decreased minimally during abstinence, whereas at higher PBRSA

values, the slope decreased to a more significant degree following abstinence.

Table 2 shows these key results from the mixed-model, and full results are included
in the Supplemental Material. In addition to these significant 3-way interactions, there
was also a significant main effect of drinking state, meaning the strength of connections
across the network were stronger during normal drinking (β = 1.2340, p < 0.0001). We also
observed a significant main effect of PBRSA, indicating that as PBRSA increases network
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connectivity strength decreases (β = −0.00994, p = 0.0220). Additionally, there was an
interaction between drinking state and PBRSA that did not reach statistical significance
but exhibited a notable positive trend (β = 0.01180, p = 0.0553). Clustering coefficients
(β = 0.06825, p < 0.0001) and global efficiency (β = 0.02923, p < 0.0001) were both significant
positive predictors of connection strength. Finally, there was an interaction of PBRSA with
clustering (β = −0.00532, p = 0.0004) but not with global efficiency.

4. Discussion

This study examined how HRV relates to brain network topology changes between
periods of normal drinking and alcohol abstinence in everyday drinkers. The main study
hypothesis was supported by the results found in this study: differences in the relationship
between the strength of network connections and clustering coefficients across drinking
states was mediated by PBRSA measured at rest. These results showed increasing connection
strength between highly clustered nodes during abstinence as PBRSA increases, and these
network changes suggest a greater range of possible topological configurations at high
PBRSA values. A thorough understanding of the biological effects underlying alcohol
abstinence will help lay a foundation of alcohol research focused on development of
clinical treatment and prevention strategies related to alcohol consumption.

To fully understand the implications of these findings, we must remember what the
statistical network model is evaluating. In a traditional functional brain network built with
Pearson’s correlations, as a network feature such as clustering coefficient or global efficiency
between two nodes increases, the strength of the edge connecting those nodes should also
increase [56]. The strength of connection between nodes, or how similar the fMRI data
collected from each brain region is, can have important implications for overall network
topology and resultant information processing. The stronger an edge connecting two nodes,
the more likely those nodes will synchronize and share information effectively [63], which
is important because synchronization between brain regions is believed to be an essential
component of neural processing [64]. However, weak connections are not irrelevant; that is,
although two nodes connected by a weak link are not as likely to synchronize, they can be
a bridge for one node to introduce novel information to a group of nodes to which it is not
strongly connected [65,66]. Our results showed that network organization was influenced
by drinking state more as individuals’ PBRSA values increased. Among those with higher
PBRSA values following abstinence, we found strong connections between highly clustered
nodes and weaker connections between globally efficient nodes. However, during normal
drinking, we would expect weaker connections between highly clustered nodes. At lower
PBRSA values, the edges connecting highly globally efficient nodes would be expected
to be weaker during abstinence. When considering combined effects, the clustering and
global efficiency findings suggest that as PBRSA values increase, the network takes on a
more lattice-like structure during abstinence, and a more small-world topology during
normal drinking [67], with a more intermediate network structure at lower PBRSA values.
These findings have substantial implications for the exchange of information across the
whole brain.

As biomedical sciences take a broader approach to examining alcohol disorders, treat-
ment, and prevention, there is a growing relevance of novel translational biomarkers. HRV
has potential as a translational biomarker, in relation to alcohol consumption, and more
broadly with emotional or cognitive deficits, as dysfunction in HRV is observed in many
psychiatric disorders [68–70]. Low HRV is a cardiovascular risk factor, commonly caused
by persistent activation of the sympathetic nervous system [71]. Optimal heart rate should
change throughout the day in response to environmental changes resulting in excitement,
anger, anxiety, or other emotional experiences. Low HRV may reflect heart rate pattern that
inefficiently does not make these adaptive adjustments or is “stuck” within a narrow band.
While higher HRV is generally believed to be beneficial, there are cases in which higher
parasympathetic tone is associated with increased cardiac risk, such as in congenital long
QT syndrome (LQTS) (a cardiac arrhythmia syndrome and a leading cause of sudden death
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in youth). With impaired QT shortening, higher HRV values allowing for sudden changes
in heart rate could result in the initiation of ventricular tachycardia-fibrillation [72,73].
LQTS mutation carriers have been shown to have lower heart rate and lower baroreflex
sensitivity, indicating low parasympathetic tone may potentially be a marker of their
autonomic dysfunction [74–76]. Low HRV itself is not usually a disorder, but it can be
a sign that something is amiss. For example, low HRV is common in major depressive
disorder and can lead to fatal dysrhythmias. With depression, the belief is that sympathetic
hyperactivity reflected in lowering of HRV, also drives the experiences of anxiety, agitation,
and dysphoria [71]. Additionally, anger, aggression, fatigue, and vigor associated with
depressive episodes in otherwise healthy young individuals are all associated with the
dysregulation of the parasympathetic component of HRV [77]. Balance of autonomic ner-
vous system functioning is also correlated with cognitive performance—dysfunctions are
known to precede cognitive impairment [78]. A lowering of HRV observed with decreased
parasympathetic activity is associated with worse performance in all cognitive domains,
and is considered a potential early biomarker of cognitive impairments in populations
without dementia or stroke [78]. Low RSA values are observed in conjunction with aging,
chronic stress, and medical and psychiatric disorders, and have predictive validity for
all-cause mortality [68]. Higher RSA values are associated with a greater dynamic range in
parasympathetic function and have been found to be physiologically advantageous [23,79].
This wide foundation of research demonstrates the relationship between RSA and pathol-
ogy, and a growing body of literature has begun connecting alcohol use with autonomic
nervous system disruptions [13–15,21,68,80]. The current study drew novel connections
between HRV and functional brain networks in everyday alcohol consumers, observing a
significant relationship between shifts in brain network topology and HRV.

This study is not without weaknesses that should be recognized. While the interaction
involving clustering was highly significant, the interaction with global efficiency did not
reach statistical significance. Nevertheless, the global efficiency findings fit conceptually
with the clustering findings, and future work is needed to replicate these findings in order
to determine the implications of the global efficiency finding. The relatively small sample
size in the current study could have contributed to the lack of significance. It should also
be noted that the small sample size may limit the generalizability of the findings. However,
robust significant effects were found despite the small sample size. Another potential
limitation was the timing of MRI scanning: all fMRI data used in this protocol was collected
between 8 am and 12 pm on the fourth day of each normal drinking/abstinence week.
Previous analyses in this population have shown limited craving for alcohol, even during
abstinence, until late afternoon [17,29], meaning scans collected during the morning may
not adequately capture abstinence effects in this population. Studies that have aligned the
time of brain imaging with individual participants’ peak levels of craving are currently
underway. From this study alone, it is unclear where these changes might be manifesting
across the whole brain, as the methods used only allowed for examination of differences at a
macroscopic level. Therefore, future studies should expand on these findings by examining
the locations of these PBRSA dependent network changes. Finally, because this study was
specifically interested in a resting PBRSA phenotype and therefore used a baseline measure
to associate with brain network topology, our study is not able to assess the effects of
abstinence on PBRSA. However, this is an important question that warrants further study
in the future.

5. Conclusions

Regular alcohol consumption is common practice in our world today. The largest
study of alcohol use to-date found that at least 60% of the US population consumes 1–3
alcoholic beverages per day [1]. The goal of the present study was to examine changes in
functional brain network structure driven by autonomic nervous system function observed
during a period of alcohol abstinence, but as knowledge is gained regarding these neu-
robiological underpinnings, there is potential for significant impact on research focused
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on non-AUD drinkers or AUD sufferers. Ultimately, understanding clinical issues related
to alcohol consumption relies on our understanding of the basic mechanisms underlying
brain-behavior relationships. An understanding of the interaction between ANS and cen-
tral neural adaptations surrounding alcohol abstinence is essential to understand more
clinically based concerns and may lead to the discovery of signatures for potential diagnos-
tic, prognostic, and treatment targets in studies with a clinical focus. Overall, this study
documented changes in functional brain network topology across drinking states depen-
dent on ANS function. Results showed that while brain networks do differ across drinking
states in risky drinkers, the change is primarily driven by HRV, measured via PBRSA.
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10.3390/brainsci11060817/s1, Supp. Methods; Supp. Results; Supp. Table S1: Relevant mixed-
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PBRSA-rest × Clustering Coefficient × Connection Strength; Figure S2: Drinking State × PBRSA-
rest × Global Efficiency × Connection Strength; Figure S3: PBRSA-rest × PBRSA-react × Clustering
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