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Abstract: Brain tumors diagnosis in children is a scientific concern due to rapid anatomical, metabolic,
and functional changes arising in the brain and non-specific or conflicting imaging results. Pediatric
brain tumors diagnosis is typically centralized in clinical practice on the basis of diagnostic clues
such as, child age, tumor location and incidence, clinical history, and imaging (Magnetic resonance
imaging MRI / computed tomography CT) findings. The implementation of deep learning has rapidly
propagated in almost every field in recent years, particularly in the medical images’ evaluation. This
review would only address critical deep learning issues specific to pediatric brain tumor imaging
research in view of the vast spectrum of other applications of deep learning. The purpose of this
review paper is to include a detailed summary by first providing a succinct guide to the types
of pediatric brain tumors and pediatric brain tumor imaging techniques. Then, we will present
the research carried out by summarizing the scientific contributions to the field of pediatric brain
tumor imaging processing and analysis. Finally, to establish open research issues and guidance for
potential study in this emerging area, the medical and technical limitations of the deep learning-based
approach were included.

Keywords: deep learning; pediatric brain tumor; children tumor; medical images

1. Introduction

The second most common pediatric tumors in childhood after leukemia are nervous
system tumors. Brain cancer is cancer that usually occurs in children, account for about 15%
of pediatric cancers, sometime between birth and the age of 14 years. Brain tumors may
be classified according to their source or aggression, with primary brain tumors arising
in the brain, while metastatic brain tumors may occur in other parts of the body. The
Health Organization (WHO), which classifies brain tumors with increasing aggressiveness
in Grades I to IV, launched the most widely used grading classification scheme in 1993 [1].

This classification is depending on region, type of tissue, degree of malignancy and
various other factors. After malignancy level determinations of microscopic tested tumor
cells, its grade can be assessed using cell growth rate, cells blood supply, centered dead
tumor cells, and tumor cell resemblance to normal cells. The most common cancers in the
pediatric age group include glioma, ependymoma, medulloblastoma, craniopharyngioma,
and pinealoma. Infratentorial and supratentorial tumors arise at around the same level
in infants; tumors of germ cells, teratomas, gliomas, neuroepithelial tumors (PNETs) and
papillomas of the choroid plexus are recognized. Whereas, posterior fossa neoplasms
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(primitive neuroepithelial tumors, ependymomas, astrocytomas and hemangioblastomas)
are often found in older children.

Since each type of tumor can be given special treatment, radiotherapy, surgery,
chemotherapy, are some of the therapeutic options available [2,3]. However, before any
treatment is given, it is important to consider the nature of the brain tumor, including
its size, rate of growth, and all the contributing factors mentioned earlier. Nowadays,
histological and molecular diagnosis of tumors is certainly the most important thing to
consider in order to understand prognosis, therapy and survival. In pediatric patients,
tumor samples are also regularly subjected to genetic and protein fusion testing in addition
to traditional histologic tests, providing a new degree of diagnostic accuracy. Additionally,
a more precise prognosis could be possible for outcome studies that take into account
molecular subgrouping. This knowledge would certainly aid us in tailoring treatment
regimens for different tumor subgroups [4,5].

Magnetic resonance imaging MRI, is the standard imaging technique for the diagnosis
of brain tumors [6,7]. As a non-invasive technique that is widely available in clinics,
MRI provides excellent contrast between soft tissues [8]. MRI is used to provide the
most accurate tumor pathology and metabolism data in combination with other imaging
methods, such as computed tomography and magnetic resonance spectroscopy.

The aim of this review is to provide a detailed summary of the current state of pediatric
brain tumors studies centered on medical imaging based on deep learning. The remaining
of this review study is arranged as follows: Section 2 introduces briefly pediatric brain
tumor types, defines pediatric brain imaging techniques and explores the different MRI
sequences to provide an inclusive background on the field. This is followed by available
datasets for pediatric brain tumor modalities and data acquisition and analysis methods
for human brain activity. Section 3 presents the research carried out by summarizing the
scientific contributions to the field of pediatric brain tumor imaging processing and analysis.
Medical and technical challenges in pediatric brain tumor can be found in Section 4. The
conclusion and research directions are provided in Section 5.

2. Related Works
2.1. Brain Tumor in Childhood

The brain is primarily divided into three parts: the cerebrum, cerebellum, and brain
stem, which make up the central nervous system along with the spinal cord (CNS). Tumors
may form in almost any type of brain or spinal cord tissue or cell. However certain tumors
can contain a combination of various types of cells. Different forms of tumors appear to
originate in certain areas of the brain and start to grow in certain ways as can be shown
in Figure 1 [9] and the approximate occurrence of common pediatric brain tumors is also
demonstrated in Figure 2 [10]. According to the American Cancer Society [11], the most
prevalent forms of central nervous system (CNS) tumors in children are:
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Figure 1. Types of the CNS Tumors in Children.
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Figure 2. The approximate occurrence of common pediatric brain tumors.

1.

Gliomas: Is a generic name for a number of cancers, including:

e  Astrocytomas (which include glioblastomas): From a specific type of glial cells
called astrocytes, these types of tumors are usually started. They are often
grouped by grade. Low-grade astrocytomas include pilocytic astrocytomas,
subependymal giant cell astrocytomas (SEGAs), diffuse astrocytomas, pleomor-
phic xanthoastrocytomas (PXAs) and optic gliomas. High-grade astrocytomas
include glioblastomas and anaplastic astrocytomas.

e Oligodendrogliomas: From a specific type of cerebral cells called oligoden-
drocytes, these types of tumor are usually started. Oligodendrogliomas have
been categorized as Grade II tumors that account for over 1% of children’s
brain tumors.

e Ependymomas: From the ependymal cells which line the spinal cord, begins this
type of tumors which responsible for around 5% of brain tumors in children. They
can vary from Grade I tumors to Grade III tumors (anaplastic ependymomas).

e Brainstem gliomas: This tumor is a glioma that develops in brain stem and is
responsible for around 10% to 20% of brain tumors in children. They are common
in two types: focal brain stem gliomas or diffuse midline gliomas.

Embryonal tumors: These tumors begin in the central nervous system, in early
forms of nerve cells. In children, they are common among younger children rather
than older children. Embryonic tumors account for around 10-20% of brain tumors,
including the most frequent type: medulloblastomas, and less common types such as
medulloepithelioma, and atypical teratoid (ATRT).

Pineal tumors: Are there any types of tumors that could be found in the pineal gland?
The most popular, fastest growing and difficult to treat type of these forms is called
pineoblastomas.

Craniopharyngiomas: Craniopharyngiomas account for approximately 4% of chil-
dren’s brain tumors. They occur over the pituitary gland, but it is under the brain
itself that these slow-growing tumors begin.

Mixed neuronal and glial tumors: This type of tumor combined between neuronal
and glial tumors. They include dysembryoplastic neuroepithelial tumors (DNETs)
and gangliogliomais.

Choroid plexus tumors: They are a rare tumor, many of which are benign and some
are malignant.

Schwannomas: They begin in cells that surround and separate the cranial nerves and
other nerves. These rare tumors are usually benign.

In or near brain tumors: These include chordomas, tumors of germ cells, neuroblas-
tomas, pituitary tumors, meningiomas (Grade I to Grade III) and lymphomas.
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9.  Metastatic or secondary brain tumors: The tumors that begin in other organs and
then spread to the brain are metastatic or secondary brain tumors. They are often less
frequent than primary brain tumors and often treated differently.

2.2. Pediatric Brain Imaging Technique

The primarily used imaging techniques include MRI (magnetic resonance imaging)
and its various applications, such as MR spectroscopy, MR perfusion and functional
MRI along with CT (computed tomography), and PET (positron emission tomography).
Many of these techniques use agents, such as gadolinium, which improve contrast. In
addition to these techniques, there are also other diagnostic methods that are sufficient
to investigate the biochemical processes are helpful in the classification and treatment of
pediatric brain tumors such as SPECT (single photon emission computed tomography) and
MI (molecular imaging).

PET imaging may provide additional details for the structural lesions, especially non-
enhancing tumors, such as low-grade gliomas [12], which may not be seen by computed
tomography (CT). Gadolinium enhanced MRI is the therapeutic standard method of
diagnosing brain tumors for adults and children. Natural and anomalous brain physiology
can be analyzed in depth due to sensitization to various contrast parameters in MRI
techniques [13]. In addition to offering a high spatial resolution, sagittal, coronal and axial
direct multiplanar visualization along with an excellent soft tissue contrast [14], the major
advantages of MRI include it being a non-invasive and painless operation.

The stored format of the MRI images can usually be categorized into two classes, the
format of the scanner and the format of image processing. The scanner format is defined
as the output of the computer that extracts MR images, and the other kind is defined
as the image processing format created by the translation of the original format of the
MRI scanner [15]. The magnetizing properties of the atomic nuclei are the foundation of
the MRI. The application of additional radio frequency (RF) energy further disturbs this
magnetization. Through various relaxation processes, the nuclei return to their resting
magnetization and absorb radio frequency energy. The signals emitted are measured for a
certain duration after the initial radio frequency. Various kinds of images are generated
by adjusting the sequence of radio frequency pulses used and received. TE (the time to
echo) is the time between the delivery of the RF pulse and the detection of the echo signal.
TR (repetition time) is the amount of time between successive sets of pulses applied to the
same slice [16]. Two separate T1 and T2 relaxation times can differentiate the tissue. T1 is
the time constant that represents the rate at which the excited protons return to balance,
while T2 is the time constant that defines the rate at which excited protons enter or exit the
process in equilibrium with each other [16].

T1-weighted and T2-weighted scans are the most popular MRI sequences. Short TE
and TR periods are used to produce T1-weighted images, while T2-weighted images are
produced using longer TE and TR periods. Generally, by looking at the cerebrospinal
fluid (CSF), the T1 and T2-weighted representations can be readily separated, while, in
the T1-weighted imagery CSF is dark, the CFS in the T2-weighted imagery is bright. The
FLAIR (fluid attenuated inversion recovery) sequence, which is another commonly used
sequence, is comparable to a T2-weighted image, except that the TE and TR cycles are
very long.

Despite the fact that MRI is the most successful choice for brain tumor diagnosis,
detecting the degree and type of a tumor using traditional MRI is difficult [17]. There-
fore, advanced MR techniques over traditional MRI, such as MRS (magnetic resonance
spectroscopy), DWI (diffusion-weighted imaging), SWI (susceptibility-weighted imaging),
PWI (perfusion weighted imaging), and DTI (diffusion tensor imaging) has provided sig-
nificance to the evaluation of neoplastic histology, such as neovascularization, degree of
cellularity, and mitotic index [18].
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2.3. Reading MRI Sequences

Because of the growth and presence of the brain tumor, one MRI sequence is not
enough to properly examine the tumor. Consequently, it is a time-consuming and compli-
cated process for radiologists to analyze image characteristics and interpret MR images.
In current clinical routine, various sequences of MRIs are used to diagnose and delineate
tumor compartments [19]. Tumor orientation, heterogeneous intensity profiles, presence
and overlapping intensity of the tumor tissue vary between these sequences, which can
lead to several different diagnosis. It is a demanding task to distinguish between distinc-
tive tumor types, each of which has the same features [20,21]. Some tumor types, such as
glioblastomas, for instance, have blurry boundaries and are difficult to discern from healthy
tissues. Therefore, T1, T2, Tlc (T1 with contrast), PD (proton-density weighted), dMRI
(diffusion magnetic resonance imaging) and FLAIR (fluid attenuated inversion recovery)
sequences are required to better diagnosis. The comparison between these modalities
literally provides individuality to each type of tissue [22] as shown in Figure 3.

Figure 3. Four Different Image Modalities: (a) Post-Contrast T1lw, (b) T2w, (c) FLAIR and (d)
Post-Contrast FLAIR MRI.

In the contrast enhanced images T1-weighted (gadolinium—DTPA), as the frequently
used sequence for structural analysis, the tumor boundaries look brighter because the
contrast agent collects there due to destruction of the blood-brain barrier in the prolifer-
ative tumor zone. This is s that T1-weighted can easily realize the active tumor region
whereas the region of the edema circling the tumor remains bright in the T2-weighted
view. Another special sequence that tends to distinguish edema from cerebrospinal fluid
(CSF) is T2 FLAIR [23]. Astrocytomas, for instance, are usually T1-w isointense and T2-w
image hyperintense. While MRI rarely classify low-grade astrocytoma, most anaplastic
astrocytoma enhances by contrast agents [13].

MRI, however, may show some non-specific results, such as T2-weighted hyper
intensity and FLAIR, in pediatric brain tumor diagnosis, which may reduce diagnostic
accuracy [24,25]. Nevertheless, an increase in contrast as seen in contrast enhancement
MRI is a weak predictor for tumor size identification [26]. In fact, contrast enhancement
represents the permeability of a weakened blood tumor barrier to both the vascular surface
region and the contrast agent [26]. Additional diagnostic techniques capable of evaluating
multiple metabolic processes, such as SPECT (computed tomography with single-photon
emission), PET/CT (positron emission tomography) and MI (molecular imaging) are
also effective in characterizing childhood tumors during diagnosis and follow-up after
treatment [24,25].

In the clinical context, on the T2 and post-gadolinium and T1 images, the radiologist
also manually defines the radiological concept of tumor boundaries by thresholding the
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borders between T2 and T1 contrast-enhanced lesions and the underlying normal tissues
to measure the tumor’s outer boundaries.

2.4. Available Pediatric Brain Datasets

Successful training of artificial intelligence (Al) applications relies on massive, well
labeled, balanced datasets [27]. A major obstacle to the development of high-quality
image processing Al systems in radiology may be considered to be the development
of these datasets, not just because the expense of generating these datasets is high, but
also because access to current datasets is limited. Privacy issues about the exchange of
patient data and the comparative benefit gained by medical AI companies from their own
proprietary datasets are likely to hinder the sharing of these data. In order to address these
issues, numerous initial releases from large public databases have been made available
to researchers in recent years through several major ongoing projects across the world.
Following are the available pediatric brain MRI datasets, which have been released for
training and evaluation of brain tumor:

1. dHCP: The Developing Human Connectome Project (AHCP) [28] is an ERC-funded
collaboration between King’s College London, Imperial College London and the
University of Oxford. dBCP has two data releases as to date. The first open access data
release consists of images of 40 representative term neonatal subjects. The imaging
data includes structural imaging, structural connectivity data (diffusion MRI) and
functional connectivity data (resting-state fMRI). The second open access data release
consists of images of 558 neonatal subjects. The released dataset includes T1w and
T2w structural data supplied as initial image data and after pipeline preprocessing.
The images included in this release were obtained from infants born and imaged
between 24-45 weeks of age. Using a dedicated neonatal imaging device which
included a neonatal 32 channel phased array head coil, imaging was carried out on
3T Philips Achieva.

2. PBTA: Pediatric Brain Tumor Atlas (PBTA) [29] is a collaborative effort, which is led
by the Children’s Brain Tumor Tissue Consortium (CBTTC), to accelerate discoveries
for therapeutic intervention for children brain tumors diagnosed. The first release of
the Pediatric Brain Tumor Atlas (PBTA) dataset, which comprises over 30 different
types of pediatric brain tumors covering over 1000 subjects, occurred on September,
2018. Data types include match tumor/normal, whole genome data (WGS), RNAseq,
proteomics, longitudinal clinical data, imaging data (including MRIs and radiology
reports), histology slide images and pathology reports.

3. HCP: The Lifespan Human Connectome Project Development [30] lunch Lifespan
HCP Release 1.0 in May 2019 for HCP-Development and HCP-Aging. All HCP-
development (ages 5-21) data is shared in the NIMH Data Archive, NDA Collection.
Lifespan HCP Release 1.0 data includes unprocessed data of all modalities (structural
MR], resting state fMRI, task fMRI, and diffusion MRI) for 655 HCP-D subjects, mini-
mally preprocessed structural MRI data (only) for 84 subjects, and basic demographic
data (age, sex, race/ethnicity, and handedness) for all released HCP-D subjects.

4. PING: Pediatric Imaging, Neurocognition, and Genetics [31] data of 1400 children
aged between 3 and 20 years are included in this genetics data resource. PING data
access is thoroughly handled by the NIMH Data Repository.

5. iSeg-2017 and iSeg-2019: Challenge data six-month infant brain MRI segmentation
(iSeg-2017) [32]. Comparing (semi-)automatic algorithms for the segmentation of
6-month infant brain tissues and the calculation of corresponding structures was its
goal of the iSeg-2017 competition. On a Siemens head-only 3 T scanner with a circular
polarized head coil, all scans for the 10 infant subjects were obtained. The six-month
infant brain MRI segmentation (iSeg-2017) [33] aims to facilitate automated six-month
infant brain MRI segmentation algorithms from multiple sites. They offered iSeg-2017
data for training datasets. For the validation dataset, 13 T1 and T2 subject MR images
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are given. T1- and T2-weighted MR images from three different sites are used in the
test dataset.

6. IBSR: Internet Brain Segmentation Repository [34]. Along with magnetic resonance
brain image data, IBSR provides manually-guided expert segmentation results. Its
aim is to promote the assessment and development of methods of segmentation. This
dataset contains eighteen currently available subjects aged 7-71 years.

7. ABIDE I and ABIDE II: The first ABIDE [35] project launched in August 2012 reflects
Autism Brain Imaging Data Sharing (ABIDE I). Seventeen foreign sites were inter-
ested in ABIDE I, exchanging previously acquired resting state functional magnetic
resonance imaging (R-fMRI) data. ABIDE I is comprised of 1112 datasets, including
539 from ASD individuals and 573 from typical controls. ABIDE II [36]. In order to
further encourage research on the brain connectome in ASD, ABIDE II was released
in 2016. There are 19 sites in ABIDEII, donating a total of 1114 datasets from 521 ASD
individuals and 593 typical controls.

8. CoRR: The Consortium for Reliability and Reproducibility [37]. The goal was to create
an open science database for the imaging community to facilitate the assessment of
the reliability and reproducibility of functional and structural connectomics studies.
CoRR contains 33 datasets, 32 of which are available for download at present. Four
of these datasets contains pediatric brain MIR images. IPCAS 2 includes 35 typically
developing children. Each participant underwent two scanning sessions one month
apart. Three modalities (T1/EPI (echo planar imaging)/DTI (diffusion tensor imag-
ing)) of brain images were acquired for all subjects. IPCAS 7 includes 74 typically
developing children. Each participant was scanned twice within a session. Three
modalities (T1/12/EPI) of brain images were acquired for all subjects.

2.5. Data Acquisition and Analysis Methods for Human Brain Activity

Biology and medicine data are not as direct and meaningful as physical signals. With
the advancement in the technology, data from biological specimens could be captured
directly or indirectly by sensors. The details derived from the data could then be used for
analysis, diagnosis, and treatment. The method of sampling signals to calculate real-world
physical conditions and converting the resulting samples into digital numeric values that
can be manipulated by a computer is known as data acquisition. Whereas, the compilation
and manipulation of data to generate useful results is referred to as data processing [38,39].

Electroencephalography (EEG) is one of the techniques for collecting data from the
human brain. It was developed in the 1930s by Hans Berger, a German psychiatrist [40].
It is a noninvasive approach for detecting and recording brain electrical activity using
electrodes connected to the scalp that track variations in electric potential on the skin
surface caused by the activity of cerebral neurons and then amplify them to form a record
(an encephalogram) [41]. Neurologists now use EEG to distinguish between functional
and organic brain conditions, diagnose sleep disturbances, headaches, and to control brain
activity throughout cardiac operations. The disadvantages of using an electroencephalo-
graph in use include the equipment’s limited resolution and the ability to display and
interpret data on a screen.

The second method is magnetoencelography (MEG). MEG is a technique for measur-
ing the magnetic field generated by the human brain. It allows for a much higher spatial
precision signal and interpretation over a much broader frequency spectrum than EEG.
The behavior of the neuron population parallel to the scalp is much more receptive to the
MEG signal than it is perpendicular. MEG is used in biomedical experiments to assess
the roles of specific brain areas, as well as in clinical diagnostics and as a tool for locating
abnormal regions during neurosurgical procedures [42—44].

The third type of magnetic resonance imaging is functional magnetic resonance imag-
ing (fMRI), which detects an increase in blood supply and oxygenation in the active portion
of the brain [45]. fMRI is focused on the application of magnetic resonance imaging (MRI)
and its extension through observation based on the properties of oxygenated and deoxy-
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genated blood [42]. The use of continuous magnetic field gradients to register these waves
(caused by protons returning to their ground state emit an electromagnetic) allows a device
to reconstruct the representation of the interior of the object under analysis [42].

Fourth, positron emission tomography (PET) is a procedure for imaging that records
the radiation released during positron annihilation. The registered data is saved on a
storage disk in digital form, allowing for the construction of cross-sectional photographs
of the patient’s body, similar to those produced by MRI. Currently, almost all positron
emission tomography scanners on the market are hybrid instruments of the type: PET-CT,
PET/CT—PET with a multi-row computed tomography scanner PET-MRI, also known as
PET/MR], is a hybrid of PET and magnetic resonance imaging [42].

Finally, near infrared spectroscopy (NIRS) is a method for visualizing brain function
that involves sending laser beams across the skull. Blood that has absorbed oxygen receives
light waves at different frequencies than blood that has not absorbed oxygen. Researchers
can monitor blood pressure by measuring the amount of light transmitted from the brain
at different wavelengths. Diffuse optical tomography, or DOT, is the procedure used, if the
purpose was to create the activation map. Whereas for registration purpose, it is an event
based optical signal (EROS) that registers light diffusion due to shifts in cells that arise
during the excitement of neurons. Although techniques like diffuse optical tomography
and NIRS rely on blood flow to measure optical absorption of hemoglobin, EROS uses
the scattering properties of neurons to provide a much more precise measure of cellular
activity [42].

Theses modern data acquisition techniques focusing on brain impulses include EEG,
NIRS, fMRI, and PET have a readout of the messages in the human brain, as well as a
method for archiving and interpreting them as [43]. A multi-channel encephalograph
was used to demonstrate the signal readout. Time-varying EEG signals from individual
electrodes were captured in the. edf format using the Emotiv Xavier TestBench program,
and then subjected to Toolbox EEGLab for Matlab.

The cerebral cortex’s pyramidal cells are thought to be the primary source of the
electroencelographic signal in the human brain because of their unique position within
the cerebral cortex structure [46,47]. It is frequently necessary to identify the signal source
in the human brain and thereby isolate the interferences. There are a variety of methods
for removing such artifacts, including blind signal separation, which separates unknown
signals without knowing how they were mixed together [42]. Therefore, a number of
studies have been carried out in order to pinpoint the location of generation electric activity
in the human brain. Researchers attempting to ascertain the position of generation electric
activity in the human brain as a source signal characteristic for a given neuron fraction
have run into the problem of blind source separation, according to a recent study [48].
The sLORETA algorithm, which was also used to classify sources as part of the inverse
problem, was provided along with a blind signal separation (BSS) technique with Moore-
Penrose pseudo-inversion. Their findings indicate that, after blind source separation,
Moore-Penrose pseudo-inversion works well for matrix generalization in the field of EEG
signal reconstruction. The experiment, which used the SLORETA technique, proved that it
is possible to observe changes in brain activity for specific mental tasks, allowing for the
detection of the cause of a given potential.

3. Pediatric Brain Tumor Deep Learning-Based Studies

From 2015 onward, the topic of deep learning to brain tumor analysis has now become
dominant at different conferences and journals. However, most of these studies have
primarily been focused on data from adults. Whereas, few studies focused on children
brain tumors. The advancement of pediatric brain tumor MRI techniques as well as the
current success of the approaches of deep learning for brain tumor diagnosis inspired us
to present a thorough overview of all pediatric brain tumor regions, including detection,
classification and segmentation. As can be shown in Figure 4, most of the pediatric
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brain tumor studies focused on segmentation process due to the highly success in the
segmentation process in adults MRI imaging.

m Detection and Classification Others

m Segmentation

Figure 4. Pediatric Brain Tumor Deep Learning-Based Studies.

3.1. Pediatric Brain Tumor Detection and Classification

Methods of deep learning have been used to detect and identify different brain
abnormalities in children and fetals. This section presents existing methods for identifying
and classifying pediatric brain tumor research based on deep learning. A thorough analysis
of these studies can be found in the Table 1.

Table 1. Pediatric brain tumor detection and classification studies based on deep learning.

Tumor .
Authors Location/Type Methodology Modality Dataset Results
Posterior fossa Four Self-acquired Classification
Arle, Jeffrey E., (astrocytomas, back-propagation MRS + MR + dataset accuracy rate
etal. (1997) [49] PNETs, and propag Metadata (33 children 6 y
neural networks 58-95%
ependymoma) months—14 years)
Bidiwala, S. and Passéggr thOIS:a CT + MRI Self-acquired Classification
Pittman (2004) epend mzm a,n d Neural networks (TIWI, T2WI) + dataset accuracy rate
[50] penaymon, Metadata (33 Children) 72.7-85.7%
medulloblastoma)
Posterior fossa .
. - 11 Detection accuracy
(diffuse midline i
glioma Modified 2D Multi-institutional was
Quon, J.L., etal. medulloblastoma, ResNeXt-50-3.2x4d T2-weighted MRIs study (617 AURO.C. of O 99
(2020) [51] . . deep learning . Classification
pilocytic . children)
architecture accuracy was
astrocytoma, and 929,
ependymoma) ?
e?ggfgish;?ttﬂ;%fs Diffusion basis 9 pediatric brain Overall
Ye, Zezhong, et al. of pediatric DHI model (DBSI + spectrum imaging tumor classification
(2020) [52] high-grade brain DNN) (DBSI) post—rportem accuracyo
specimens rate—83.3%
tumors
Classification
. . CNN + genetic accuracies
Prince, Eric W., Adamantinomatous algorithm as a CT + MRI + Multi-institutional 85.3%, 83.3%, and
et al. (2020) . . . combined CT and . o
53] craniopharyngioma meta-heuristic MRI study (39 children) 87.8%,

optimizer

in respect to
modality.




Brain Sci. 2021, 11, 716

10 of 22

Two early studies have demonstrated the capacity of neural networks to differentiate
the major tumor types in the posterior fossa in children. In 1997, four neural networks
were developed to incorporate MRS data with 10 tumor tissue characteristics obtained
from magnetic resonance (MR) samples into patient tumor size, age and sex to increase
diagnostic accuracy for 33 children in a dataset suffering from posterior fossa tumors [49].
The collected dataset was analyzed by a neuroradiologist, then the tumor types were
divided into three categories on the basis of data acquired from MR imaging. Predictions
were then compared with those generated by neural networks that evaluated different
variations of data. Using multiple datasets as inputs, the four proposed neural networks
were capable of correctly classifying the tumor type with 58% to 95%. They reported that
the neural network, which was provided with imaging data, spectroscopic data and a
limited amount of clinical information was able to accurately predict the type of pediatric
posterior fossa tumor with exceptional precision. Their results also indicated that the
predictive ability is improved with the increase of the input data size.

In the same context, in 2004, another neural network has been presented to classify
the posterior fossa tumor [50]. Medulloblastoma, cerebellar astrocytoma and ependymoma
tumors, from 33 pediatric patients, were analyzed and used for model training and testing.
The proposed network was able to accurately identify 85.7% of the tumors when all the
required information was available and only 72.7% in cases with incomplete information.
They also stated that the diagnosis created by the network offered precise diagnoses in
both cases that the neuroradiologist conducted.

For the four most popular pediatric posterior fossa tumor pathology identification and
classification, a recent study established a deep learning model based on MRI [51]. Their
dataset consisted of 617 children with four different types of posterior fossa tumors. As
the basis of their multitask classifier model, they suggested a modified ResNeXt-50-32x4d
architecture. With an F1 score of 0.80, the model classification accuracy exceeded 90% and
the model tumor detection surpassed the area under the 0.99 ROC curve.

The authors used the innovative diffusion histology imaging (DHI) technique in
another recent study [52] which incorporates deep neural networks and diffusion base
spectrum imaging (DBSI). DHI is able to classify, differentiate, and measure heterogeneous
regions of pediatric high-grade brain tumors. The proposed DHI (DBSI + DNN) approach
could classify six distinct types of tumor histology components with an average precision
of 83.3%.

A novel genomic algorithm (GA) defines optimum design parameters in order to clas-
sify adamantinomatous craniopharyngioma in children [53]. The efficiency enhancements
for MRI-trained networks and 23% for CT-trained networks were reached by about 38%
using GA as a meta-heuristic optimizer. This resulted in 85.3% test accuracy for computed
tomography (CT), 83.3% for magnetic resonance imaging (MRI) and 87.8% for composite
datasets of CT and MRI.

3.2. Pediatric Brain Tumor Segmentation

For several years, brain MRI segmentation has become a growing field in computer
vision. Segmentation is a fundamental phase in the quantitative study of brain imagery
and the investigation of brain diseases. Most of the research, however, centered either on
segmentation of adult tumors/disorder images or on normal brain segmentation for adults
and/or children. As a result, there were a several studies, which have been conducted
on pediatric brain tumor segmentation as summarized in Table 2. In addition, Figure 5
presents the most popular methodologies proposed in these studies.
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Table 2. Pediatric brain tumor segmentation studies based on deep learning.

Authors Segmented Subject Methodology Modality Dataset Results
Segmenting all three . . Overall dice ratios
Zhang, Wenlu, et al. types of brain Four 2D CNN Elr;izgégadl(%rsl Sﬁg?ﬁ?:rﬁzd CFS 83.55%
(2015) [54] tissues (CSF, MI%Y 6-8 months of age) GM 85.18%
GM, WM) & WM 86.37%
Public dataset
(CANDI
neuroimaging access
Cui, Zhipeng, et al. Patch—basecll Cle\I Three different Manually segmented point £90°
(2016) [55] segmentation o CN N MRIs 103 MRIs) Accuracy rate of 90%
brain structure small sets 4-5 MRI
from each subject (6
to 17 year old age
group)
Average dice ratios
0.87 (coronal T2w 30
Self-acquired weeks), 0.82 (coronal
8 subjects: CB, (10 images at 30 40 week52‘(;v8 4 (axial
Moeskops, Pim, et al. mWM, BGT, vCSF, CNNs T1-weighted and weeks, 12 images Tow 40 w’ee.ks) 0.86
(2016) [56] uWM, BS, cGM, T2-weighted MRI at 40 weeks, 15 (axial T
and eCSF. images at 23 years, 20 Tlw 70
. w 70 years) and
images at 70 years) 091
(sagittal T1w
23 years).
Average dice ratios
FCNs (0.838 for CSF
Nie, Dong, et al Segg]l;zllg;g;lgi’c:ree FCNs + T1, T2, fractional Self-acquired 00 ;8651 ff;rvc\;]m)
4 4 ’ : multi-FCNs anisotropy (FA) 10 healthy infants .
(2016) [57] tissues (CSF, (mFCNs) MRI (6-8 months of age) mFCNs (0.855 for
GM, WM) g CSF
0.873 for GM
0.887 for WM)
DSC (%)
. CNNss + fully . N
Rajchl, Martin, et al. WhOle b?am connected T2-weighted ssFSE Public dataset CNNnaive (74.0),
pixel-wise o (55 fetal MRI DCBB
(2016) [58] . conditional random sequence .
segmentation field (CRF) subject) (86.6), DCPS (90.3),
CNNFS (94.1)
Dice coefficient
Neonatal:
CoGM (0.79-0.87),
BGT
Neonatal (CoGM, (0&299‘10_'339)5[“]%1\4
BGT, UWM, BS, ) - -93),
Xu, Yongchao, et al. CB, Vent, CSF) FCN + TL (VGG 16 T1, T1-IR, FLAIR NeoBrainS12 + (0.76-0.86),
(2017) [59] a dulrts (CS,F WM network) MRI MRBrainS13 CB (0.91-0.94), Vent
GM) ! ! (0.85-0.88), CSF
(0.82-0.89)
Adults
GM (85.40), WM
(88.98),
CSF (84.13)
Dice overlap
Zeng, Guodong, and Segment isointense . Public dataset coefficient
Guoyan Zheng infant brain MRI 3D FCNNs Tland TNZH‘{’; eighted (MICCAI CSF (0.954),
(2018) [60] (CSE, GM, WM) iSEG-2017) GM (0.916),

WM (0.896)
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Authors Segmented Subject Methodology Modality Dataset Results
. . . Dice ratios
. Segment isointense T1, T2, fractional Self-acquired
Nl((eé[?l(;r)l%éf ]t al. infant brain MRI 3D FCNNs anisotropy (FA) (11 healthy infants %9911902 ffc(); VC\;II\I\//II !
(CSF, GM, WM) MRI MRIs) 0.9610 for CSF
Segment of seven
brain tissue classes: Self-acquired
cerebellum, basal 12 fetuses
ganglia and thalami, (22.9-34.6 weeks DC over all tissue
. . ventricular 2D FCN with post menstrual age) +  classes increases to
Khah(l;,olfga)d[lée;, etal cerebrospinal fluid, identical U-net T2-weighted MRI neonatal MRI 0.88
white matter, brain architecture (40 weeks of post and MSD decrease to
stem, cortical gray menstrual age) From 0.37 mm
matter the NeoBrainS12
and extracerebral dataset
cerebrospinal fluid.
Segmenting all three Bas‘e;};?}? %rgéults
Dolz, Jose, et al. types of brain Integrated T1 and iSEG-2017 +
(2019) [63] tissues (CSE, 3D FCNNs T2 MRI MRBrain$-2013 (CSF0.9580, WM
GM, WM) 0.9183
! and GM 0.9035)
Accuracy rate 92-96%
Dolz, Jose, et al Segment isointense T1-weighted and Public dataset RankijciigrSt >
4 ’ ’ infant brain MRI 3D FCNNs 8 (MICCAI . ..
(2020) [64] (CSE, GM, WM) T2-weighted MRI iSEG-2017) in most metrics in the
T MICCAIiSEG-2017
challenge
Public dataset—Open
Access Series
Tlweighted brain 0% (TASTE Sdies DSC
Bermudez, Camilo, Whole brain SLA MRI with and ) Pediatric: 0.89
. NT + TL . . aged 18-96 years old, :
et al. (2020) [65] segmentation without intravenous . . Contrast:
ntrast 30 pediatric subjects 0.80
contras (aged 2.34-4.31 o
years old)
36 subjects paired
Dual-modality
Publicly dataset Hyp :zgir;i(;Net
Ding, Yang, et al. Thrge types of brain LiviaNET and T1-weighted and DHCP (Developing rate: 92-95%
(2020) [66] tissues (CSF, HyperDense-Net T2-weighted MRI Human Connectome Sinele-modalit
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LiviaNET
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Figure 5. Pediatric Brain Tumor Segmentation Methodology.
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All CNNs were proposed in 2015 using multi-modality MR images to segment isoin-
tense level brain tissues [54]. T1, T2, and FA (fractional anisotropy) multimodality images
were used as input feature maps, and then segmentation maps were produced as output
feature maps. The overall dice ratios total value over eight subjects achieved was 85.03%.
Specifically, for the three types of brain tissues, dice ratios were generated by their proposed
CNN on average over the eight subjects with 85.18% for GM, 86.37% for WM and 83.55%
for CSE.

A new patch-based technique using a CNNs for automatic brain MRI segmentation
was suggested by another study in 2016 [55]. Each brain MRI acquired from a public dataset
is first subdivided into patches for this purpose. As a training input for the proposed CNNs,
all of these patches are then utilized. They were able to segment over 90% of the brain MRI
region with their convolutional neural networks. They reported that the 90% accuracy rate
outperformed other traditional approaches and methods of machine learning. With only
100,000 patches that were only extracted in four brain MRIs and trained CNNs, complex
edge pixels can be successfully segmented.

A novel method for the automated segmentation of anatomical MR brain images
into a number of multi-scale CNN-dependent classes was developed in March, 2016 [56].
Their analyses demonstrate accurate segmentation effects in images acquired with varying
acquisition procedures within different ages. Average dice coefficients for each of the five
distinct datasets in all segmented tissue classes are as follows: 0.87 (coronal T2w 30 weeks),
0.82 (coronal T2w 40 weeks), 0.84 (axial T2w 40 weeks), 0.86 (axial T1w 70 years) and 0.91
(sagittal T1w 23 years).

A FCN was developed in 2016 in the form of segmentation of isointense phase brain
MR images [57]. They operate a convolution-pooling stream for multi-modality data from
T1, T2 and FA images. They then merge them into high-layer maps to generate segmenta-
tion maps effectively. For each single modality, they often implement the FCN architecture,
and then present multi-FCNs (mFCNs) for multiple modalities to integrate their comple-
mentary information effectively. In general, mFCNs, especially in the segmentation of GM
and CSF, have exceeded FCNs. The average dice ratios of 0.873 for GM and 0.887 for WM,
0.855 for CSF of eight subjects were obtained by mFCNs. On the other hand, FCNs met
average dice ratios of 0.861 for GM, 0.885 for WM and 0.838 for CSF.

The authors consider integrating a neural network model with an iterative graphic
optimization strategy in another study to restore pixel-wise segmentation of objects from
an image database with sufficient bounding box annotations [58]. The suggested DeepCut
model iteratively updates the set goals of the CNN model and utilizes a fully connected
conditional random field (CRF) to regularize segmentation. The DeepCut model performs
well in terms of accuracy relative to a model trained under complete supervision, and
hence, greatly reduces the annotation effort required for analysis. The authors have
also proposed various DeepCut models and associated them with a simplistic approach
to weak supervision in CNN training. These models had overall mean in DSC (%) as
follows: CNNnaive (74.0), DCBB (86.6), DCPS (90.3), and CNNFS (94.1). An average DSC
improvement of 12.6% for brain segmentation has also been reported.

A further model based on CNN, transfer learning and constructed 3D image formula-
tion from 3D volumes was suggested in 2017 [59]. They simply stack successive 2D slices
of a 3D volume in order to create a set of 2D “color” images; these 2D images reflect the
input of a pre-trained FCN-based VGG network. On two types of brain MR images (MR-
BrainS13 and NeoBrainS12), the proposed model has been evaluated. The suggested model
segment the neonatal brain precisely into various tissues on the NeoBrainS12 dataset. For
all conducted experiments, their results are based on the dice coefficient: CoGM (0.79-0.87),
BGT (0.89-0.93), UWM (0.91-0.95), BS (0.76-0.86), CB (0.91-0.94), Vent (0.85-0.88), and CSF
(0.82-0.89). The suggested model ranked the second best of the 38 methods submitted for
adults on the MRBrainS13 challenges. Their results based on the dice coefficient were GM
(86.03), WM (89.29), and CSF (82.44) on T1 sequences whereas on T1, T1-IR, and FLAIR
sequences they were GM (85.40), WM (88.98), and CSF (84.13).
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A 3D semantic tissue segmentation model, which based on multi-stream FCNN and
context-guided 3D, was developed to map all volumetric data directly to its volume-wise
labels [60]. In conjunction, a multi-scale deep supervision has been developed to mitigating
the possible gradient issue of disappearing during training. The average dice overlap
coefficient (DOC) model validation on the iSeg-2017 dataset achieved: 0.916 for GM, 0.896
for WM and 0.954 for CSE.

In the context of the isointense phase of brain image segmentation, a multi-modality
CC-3-D-FCN model was proposed in 2019 [61]. They integrate coarse layer information
with a dense layer information in order to improve the segmentation efficacy of their model,
and extra convolutions layers are also used to solve the bias of the signal problem. As
reported, in terms of both segmentation accuracy and time cost, their proposed approach
outperforms all comparable models on the same filed. Segmenting efficiency was obtained
by CC-3-D-FCN in (DC) with: 0.9190 for WM, 0.9401 for GM and 0.9610 for CSF.

In 2019, a newly automated approach for segmenting brain tissue in fetal MRI into
seven tissue classes using convolutional neural networks was introduced [41,62]. It was
shown that by supplementing the training data with synthesized intensity inhomogeneity
artifacts, the proposed approach learns to cope with intensity inhomogeneity artifacts.
Their findings show that when the training data was enriched with simulated intensity
inhomogeneity artifacts, the average achieved DC (dice coefficient) improved from 0.77
to 0.88, and MSD (mean surface distance) decreased from 0.78 mm to 0.37 mm across all
tissue classes and images.

A FCNN that applies the dense connectivity principle to multi-modal segmentation
problems (HyperDenseNet,) was developed in 2019 [63]. There are dense connections
between pairs of layers along the same path and between pairs of layers around different
pathways in each imaging modality. HyperDenseNet has been able to investigate diverse
combinations of features of multiple modalities, inside and between all abstraction levels. A
thorough analysis was applied to HyperDenseNet using MRBrainS for adult and iSEG-2017.
HyperDenseNet outperforms baselines with a dice similarity coefficient (DSC) of 0.9580 for
CSF, 0.9183 for WM and 0.9035 for GM. In the iSEG 2017 Challenge, their network ranked
among the top-three models and ranked first in the MRBrainS Challenge, with the highest
DSC and HD for GM and WM.

Authors focusing on an ensemble DCNNSs for multimodality MRI for the isointense
phase of brain image segmentation have introduced three different models [64]. Their
study is the first to use an ensemble of three-dimensional convolutional neural networks
to propose annotations within images. The way to measure the level of agreement of a
group of predictors is a significant advantage. This is particularly useful for assessing the
segmentation’s reliability at the voxel level and recommending local corrections in areas
where the ensemble is uncertain about the prediction. Prediction uncertainty, measured
as the opposite of predictor agreement within the ensemble, is strongly associated with
segmentation errors, according to their findings. For this purpose, three different models
have been implemented. The first method, called EarlyFusion-Single, is a semi dense
network with an early fusion of multi-modal images. The second model, the EarlyFusion
Ensemble, comprises a group of ten EarlyFusion CNNs trained in various subjects. The
third model, the LateFusion Ensemble, is a set of ten semi dense CNNSs, each conducting a
late fusion of modalities in various paths and trained with distinct subjects. In the iSEG-
2017 challenge, the success of the proposed solution was assessed. Their methods ranking
first or second among the 21 participating teams for most of the metrics.

In this study [65], a novel method of enhanced transfer learning (TL) was suggested
in this research to preserve generalization and reliability in the challenge of whole brain
segmentation. With new datasets, they were able to improve the current whole brain
segmentation algorithm SLANT (spatially localized atlas network tiles). They assume,
however, that while the efficiency of the deep neural network can be increased with TL
to accommodate certain dataset features, this will result in a decrease in the output of
the actual training dataset. This assumption is assessed by a cohort of participants in
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pediatric study and a cohort of clinically obtained intravenous contrast data. Their results
indicate that the original SLANT segmentation algorithm decreased pediatric brain output,
presumably due to lower volume and altered proportions of gray/white matter in younger
subjects relative to the initial training data used in SLANT. The T1w MRI with manually
corrected volumetric labels is initially optimized for the age of thirty young children and
the automated segmentation accuracy defined in relation to the manually assigned. The
acquisition of thirty-six matched clinically acquired pre-contrast and post-contrast T1w
MRI datasets and the accuracy of the measured post-contrast segmentation compared to
the automatic pre-contrast evaluation was then optimized. SLANT has been improved
with TL on all experiments. All methods achieved substantially better results over baseline
SLANT (dice similarity coefficient (DSC): pediatric: 0.89; contrast: 0.80).

In [66], the authors evaluated both LiviaNET and HyperDense-Net models for neona-
tal brain imaging to segment neonatal brain tissue types at levels of equal age. The
HyperDense-Net dual-modality achieved the highest mean test DSC values of the studied
segmentation methods, reaching 0.94/0.95/0.92 for the types of tissue, as their results
showed. For all tissue types, in the analysis of T2 weighted images the single modality
LiviaNET, was higher than in the analysis of T1 weighted images with mean DSC values:
0.90 for WM, 0.90 for GM and 0.88 for CSF.

3.3. Related Pediatric Brain Tumor Studies

In addition to the classification and segmentation studies of brain cancer in children,
some studies are specifically linked to these studies. In this section, we will list some of
these studies that help to refine and enhance the study of children’s brain images. Table 3
shows these studies with some details.

Recent analysis has been undertaken in the field of attenuation correction, the initial
purpose of it was to modify the current methodology of the RESOLUTE model [67] to the
pediatric cohort model referred to as DeepUTE [68]. The RESOLUTE model is evaluated
against the performance of a deep learning MR-AC approach. The proposed DeepUTE
was the most equivalent, regardless of age, on the basis of both assessment metrics and
visual inspection to obtain AC maps similar to CT-AC. Generally, DeepUTE outperformed
RESOLUTE: for RESOLUTE/DeepUTE in Jaccard index: soft tissue 0.74/0.79, bone tissue
0.53/0.70 in bone tissue and for air 0.57/0.62.

Table 3. Related pediatric brain tumor deep learning-based studies.

Authors Tumor Subject Methodology Modality Dataset Results
Jaccard index
Ladefoged, Claes Air, soft tissue and PET/MRI. 79 children (aged 0.74/0.79 in soft tissue,
Nohr, et al. . DeepUTE (vendor-provided . .
(2018) [68] bone tissue UTE images) between 2-14 years) 0.53/0.70 in bone tissue,
0.57/0.62 in air
Brain regions analysis:
Brain region volume significant differences in
. 50 brain region with
Wang, Geliang, Small—wgrld . BET, 1B.E AT and 22 neonates (13 boys iBEAT with manual
, properties iBEAT with manual 3D T1IWI . .
et al. (2020) [44] ! . . and 9 girls) correction showed the
Properties of brain correction more
structural network .
accurate brain
segmentation
FID, DFD, false positive
rate:
s?(feccil\llx} (457.30, 23.72, 0%) for
PGSytyleGAN DCGAN,
Chang, Alex, et al. Whole body StyleGAN2 360 whMRI slices 90 healthy patients (481.3, 19.378, 0%) for
(2020) [69] + FID/DFD VAE (ages 4 to 18) StyleGAN,
f (442.61, 18.56, 20%) for
or PGStyleGAN,
evaluation

(497.09, 17.234, 30%) for
StyleGAN2
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The influence of skull stripping on the neonate brain structural network’s size es-
timation has been quantified [44]. Compared to the 3D TIWI brain structural network,
three tools including BET, iBEAT and iBEAT with manual correction were used to test
the effect of skull stripping on the accuracy of segmentation of brain tissue and structural
construction. However, a significant variation in brain volume and structural network
property measures between the three tools, have been reported. The iBEAT with manual
correction showed the more accurate brain segmentation, according to the results.

Using GANSs (generative adversarial networks) [69], authors demonstrated that GANs
are capable of producing pediatrics wbMRIs required to allow automatic anomaly detection.
In this study, samples generated using the StyleGAN2 architecture, in particular, had high
visual quality, which the radiologist considered to be true. In order to identify tumor
lesions, the role of anomaly detection using GAN trained on normal images was shown,
that could minimize the need for limited examples of wbMRI tumors. They also argued
that the FID (Frchet inception distance) metric is inadequate to compare image quality and
that DFD (domain Frchet distance) metric is the suitable substitute. The results for each
one of the GAN architectures are: DCGAN (457.30, 23.72, 0%), StyleGAN (481.3, 19.378,
0%), PGStyleGAN (442.61, 18.56, 20%), StyleGAN2 (497.09, 17.234, 30%) for FID, DFD and
false positive rate for the radiologist blind test, respectively.

4. Medical and Technical Challenges

Medically, assessing brain tumors in children is a diagnostic concern due to various
tumor pathology, non-specific or conflicting imaging results, recent evidence of gadolinium
aggregation in the brain, susceptibility to near-skull tumor locations, and minimal signal-
to-noise ratios. Early diagnosis of pediatric brain tumors relies almost entirely on the age
of the patient, the place of the tumor and the reports of neuroimaging. Possible brain MRI
objectives for pediatric brain tumors, in addition to early diagnosis, often cover separation
between different types of tumor, tumor grading, distinguishing between active tumor
and tissue damage, stereotactic biopsy guidance, and determination of treatment response.
Advanced MRI techniques are commonly used in the MRI protocol, such as DWI, DTI, fMRI,
MRS and SCEST, as traditional MRI is often incapable of achieving all objectives. Different
difficulties have arisen in the implementation of deep learning methods for pediatric brain
tumor image analysis as a consequence of discrepancies in current modalities, as well as
the diagnostic challenges described above.

Treatment paradigms can range from single-modality therapy to variations of surgery,
systemic therapy, targeted agents, and/or radiation therapy, depending on the clinical
context of disease of each patient (e.g., histology, extent of disease, patient age). Significant
advancements in neurosurgery, radiotherapy, and chemotherapy have resulted in increased
recovery and cure rates for children with brain tumors in recent decades.

In the past, surgery was the only available treatment option for pediatric brain tumors,
and although many tumors cannot be removed via surgery by itself, surgery still plays a
crucial role in treatment as it allows for the reduction of the tumor in size, which in turn
may improve the treatment outcome. During the past century, radiotherapy has evolved as
an accompanying treatment option, not only as adjuvant therapy for resected tumors, but
also as a definitive treatment for unresectable tumors, as well as a prophylactic therapy
for occult microscopic tumors. Both surgery and radiotherapy, however, pose an obstacle
when it comes to the survival of pediatric brain tumors, due to their invasiveness and
long-term CNS side effects, respectively [70].

For the wide range of lesions found, a number of surgical techniques are available.
Surgical treatment can require biopsy for histological diagnosis, cytoreduction/debulking,
and full excision for local oncological monitoring as well as treating complications like
hydrocephalus and the installation of ventricular access devices (VADs) to allow intra-
thecal/intraventricular adjuvant chemotherapy. In all of these cancers, the extent of
resection (EOR) has a substantial impact on the oncologic outcome. Neurosurgical advance-
ments, on the other hand, have concentrated on designing minimally invasive treatments
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that are as safe and cost-effective as open surgery, but with less patient pain and morbid-
ity [71].

However, novel surgical strategies have been developed that help overcome the issue
with poor survival when it comes to childhood brain tumors. One of those approaches
is the minimally invasive laser-induced thermal therapy (LITT), which is based on deliv-
ering laser energy to the afflicted tissue directly via percutaneous insertion of an optical
fiber, thereby destroying the afflicted tissue by inducing necrosis. This makes it highly
suitable in cases where tumors arise in locations that are difficult to access with classical
surgery, but also in cases where patients suffer from multiple recurrences as well as repeat
resections [72,73].

Another novel method, stereotactic radiosurgery (SRS), which is also suitable for
surgically inaccessible brain tumors, is based upon the delivery of a high and single
radiation dose to a specific target, whereby it inhibits the growth of the tumor and is
minimally invasive when it comes to the surrounding, unaffected tissue. The appeal of this
method is due to its ability to combine the advantages of radiobiologic fractionation with
radio surgical precision [74].

The shortage of large training datasets is, first and foremost, a significant challenge
for deep learning approaches. Especially in pediatric applications, a high-quality labeled
dataset available are particularly limited, since recruitment in such groups is considerably
more difficult than in adults. The scarcity of such datasets has hindered the capability of
deep learning to reach its maximum potential.

The dilemma of the class imbalance in medical applications is another significant issue.
The problem of class imbalance has been reported to have a significant negative influence
on the training of models of deep learning. Deep learning models that typically rely on
large classes with imbalanced datasets, lead to low accuracy for a limited classis. In fact, an
interpretation of how precise weights or inputs apply to the model’s final result is often
difficult to measure. Such interpretations are incredibly important in order to effectively
implement deep learning applications for early identification of deep learning approaches
in a clinical environment.

Furthermore, in each image processing task, unique difficulties arise in particular. An
example for this, it is the density of the various categories of tissue that is not consistent,
but varies gradually across the space of the image which is cause significant barriers that
prohibit segmentation in the MR images regardless of the applications available. Moreover,
due to the higher frequency of motion artifacts when compared to adults, and lower
contrast-to-noise ratios (CNR) due to the small size of the fetal/neonatal brain and shorter
scanning times, fetal and neonatal brain segmentation is considerably more complex than
adult brain segmentation. While in different tumor datasets, several existing methods
of detection have been seen to achieve strong performance. A medical opinion is often
needed for better diagnosis in all cases, irrespective of the accuracy percentages recorded
by any tumor detection model. Ultimately, a significant hurdle to imaging methods is the
computational difficulty of handling multi-modalities MR images.

The issues that should be addressed in the future include the proper manipulation of
parameters and motion applied to images for accurate diagnosis during the MR image scan.
Still, exclusive problems exist, in particular, in each mode of imaging, datasets, pathological
environments, and testing experts need to be oriented in the near future to make them
more cost-effective.

5. Conclusions and Future Directions

This review is to provide a detailed summary of the current state of pediatric brain
tumors studies centered on medical imaging based on deep learning. Due to many chal-
lenges associated with this domain, there were relative scarcity of publications of deep
learning-based studies of pediatric brain tumor images. Only a recent similar review study
in this field was conducted a year ago [75], however, the emphasis was only on presenting
deep teaching methods in infant MRI systems only in the segmentation of infant brain
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tissue at the isointense phase and pre-symptomatic condition predictive autism spectrum
disorder (ASD).

For pediatric brain tumors, and before any treatment strategies is applied, it is im-
portant to consider the nature of the brain tumor, including its size, rate of growth. There
are two main approaches to obtaining this information: surgery and imaging. Imaging
approaches are favored for the diagnosis of disease, either before or after surgery, in terms
of cost, risk and time considerations [76,77]. It is, however, sensitive to human subjectivity
and, for human observation, a vast volume of data is challenging. The diagnosis of early
brain-tumor mostly relies on the radiologist’s expertise [78]. Despite all the benefits offered
by non-invasive imaging, it should be acknowledged that only after biopsy and histology
will a definitive diagnosis be made. A biopsy is typically done to complete the diagnosis,
in order to examine whether the tissue is benign or malignant. A biopsy of the brain tumor
is typically not obtained until definitive brain surgery [79]. In general, biopsy diagnosis
success rates are highest for tumor cases. The greatest risk, though, is bleeding from the
biopsy needle in the tumor and brain that may cause anything from headache to stroke,
coma, or even death [80].

Advanced MR techniques, such as MRS (magnetic resonance spectroscopy), DWI
(diffusion-weighted imaging) and SWI (susceptibility-weighted imaging), PWI (perfusion
weighted imaging), DTI (diffusion tensor imaging) have provided significance to the
evaluation of neoplastic histology, such as neovascularization, degree of cellularity, and
mitotic index [18]. As mentioned earlier, in Section 2.5, fMRI detects the increase in blood
supply and oxygenation in the active portion of the brain [45]. It focuses on the application
of magnetic resonance imaging (MRI) and its extension through observation based on
the properties of oxygenated and deoxygenated blood [42]. A recent study showed that
presurgical fMRI/ dMRI tractography in children with low-grade brain tumors is feasible
and also plays a significant role in preoperative risk assessment and decision-making,
neurosurgical preparation, and intraoperative tracking [81].

Although deep learning approaches have made considerable advances in medical
imaging applications, certain issues remain unresolved and comparatively few approaches
in the area of pediatric brain tumors have been used. The considerable variability of image
appearance in scanning from newborns to 18-year-olds, as well as the low signal to noise
environment, different image modalities (particularly MRI), display many difficulties in
childhood due to inappropriate tissue appearance around the image. The relative lack of
publications can be explained by these difficulties, on the one hand. On the other hand, for
non-deep learning approaches, these challenges are difficult to solve, and the capability of
deep learning probably enables researchers to address them.

In this study, the recent success of applying deep learning strategies to the pediatric
brain tumor domain has been discussed. Despite the fact that deep learning models are
especially successful, there are still open issues include datasets size limitations, class
imbalance and the absence of interpretability.

In the near future, deep learning will have a tremendous opportunity to advance
the quality and value of pediatric imaging. To reach this potential, pediatric radiologists
need to overcome large hurdles, including the development of very diverse datasets and
detailed labeling, many of which are specific to pediatric imaging indications. Therefore,
by releasing many broad public databases in recent years, the medical imaging community
has already begun to resolve this problem, for example the Lifespan Human Connectome
Project Development (HCP) [33]. Therefore, deep learning will have full potential to both
support and augment pediatric imaging.

Centered on the current literature on pediatric brain tumor strategies discussed in
this manuscript, a variety of debates on improving the efficiency of the developed method
can be inferred. The implementation of neural networks (NN) and its improved models
has helped researchers a great deal. Many CNN architectures actually have several layers,
such as batch normalization, and additional normalization layers. Moreover, using prin-
ciples from optimization and probabilistic models, each architecture has been extremely
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advanced. By taking the computational advantage of handling small patches instead of the
entire slice or volume, researchers in brain MR image analysis may train deep CNNs to
achieve proper segmentation algorithms. The medical imaging community, which mainly
uses shallow architectures, recognized this accomplishment overwhelmingly. Regardless
of their architectures and results, the most proposed works listed in Table 2 used 2D FCNN.
Efficient generalization requires an architecture of optimized layers that considers hyper-
parameters, correct training approaches and balancing classes for improved performance
when operating on any model. In their respective implementations, approaches with a 2D
CNN architecture with adequate depth [46,47], cascade [57], and parallel networks [49]
demonstrated top efficiency from their results listed in Table 2.

Furthermore, with the rise of GANSs (generative adversarial networks), GANs-based
brain tumor experiments have seen promising progress in medical imaging studies, but
few approaches have been used in children with MRI data. The power of GANs, however,
lies in their ability to learn in an unsupervised and/or weakly-supervised manner. In
particular, we see that the image-to-image translation accomplished by cGANs may have
many other valuable uses in the medical imaging domain. For example, restoring the MR
images acquired with certain items, such as motion, particularly in a pediatric environment,
can help to reduce the number of repeated examinations. In this manuscript, we presented
a study demonstrating the challenge of identifying abnormalities using GAN trained in
healthy images to recognize tumor lesions, which may minimize the need for limited
examples of wbMRI tumors [61].

The scene of pediatric brain tumor research programs has been fully updated by the
self-learning potential of new deep learning techniques, for examples: three studies show
significant results exceeded accuracy of 95% on posterior fossa tumor classification [41-43].
Although CNN's success has been acknowledged, their full capacity in brain MRI research
has not yet been fully leveraged. There is a persistent need for further research in this
regard before the reliable CNN applications can be used for in medical clinics.
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