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Abstract: Most electroencephalography (EEG)-based emotion recognition systems rely on a single
stimulus to evoke emotions. These systems make use of videos, sounds, and images as stimuli. Few
studies have been found for self-induced emotions. The question “if different stimulus presentation
paradigms for same emotion, produce any subject and stimulus independent neural correlates”
remains unanswered. Furthermore, we found that there are publicly available datasets that are
used in a large number of studies targeting EEG-based human emotional state recognition. Since
one of the major concerns and contributions of this work is towards classifying emotions while
subjects experience different stimulus-presentation paradigms, we need to perform new experiments.
This paper presents a novel experimental study that recorded EEG data for three different human
emotional states evoked with four different stimuli presentation paradigms. Fear, neutral, and
joy have been considered as three emotional states. In this work, features were extracted with
common spatial pattern (CSP) from recorded EEG data and classified through linear discriminant
analysis (LDA). The considered emotion-evoking paradigms included emotional imagery, pictures,
sounds, and audio–video movie clips. Experiments were conducted with twenty-five participants.
Classification performance in different paradigms was evaluated, considering different spectral bands.
With a few exceptions, all paradigms showed the best emotion recognition for higher frequency
spectral ranges. Interestingly, joy emotions were classified more strongly as compared to fear. The
average neural patterns for fear vs. joy emotional states are presented with topographical maps
based on spatial filters obtained with CSP for averaged band power changes for all four paradigms.
With respect to the spectral bands, beta and alpha oscillation responses produced the highest number
of significant results for the paradigms under consideration. With respect to brain region, the
frontal lobe produced the most significant results irrespective of paradigms and spectral bands. The
temporal site also played an effective role in generating statistically significant findings. To the best
of our knowledge, no study has been conducted for EEG emotion recognition while considering four
different stimuli paradigms. This work provides a good contribution towards designing EEG-based
system for human emotion recognition that could work effectively in different real-time scenarios.

Keywords: classification; common spatial pattern (CSP); electroencephalography (EEG); emotional
imagery; emotions; feature extraction

1. Introduction

Emotional state recognition plays an important role in the research area of human–
computer interaction. The ability to identify a person’s emotional state based on relatively
easily acquired scalp electroencephalographic (EEG) data could be of clinical importance
for anger management, depression, anxiety, or stress reduction, especially for persons
with communication disabilities. Human emotion refers to a complex psychological state
comprising three components, i.e., user experience, physiological response, and behavioral
and expressive reactions [1–3]. Different categories of emotional states are identified as
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fear, disgust, pride, happiness, anger, etc. [4–12]. Various studies have been conducted
to find how the EEG signals correlate to human emotions [13–15].While reviewing the
literature, we found that most of the EEG emotion recognition-based studies have used a
single method to elicit emotions [13–47]. Thus, the question as to “whether different stimuli
of elicitation for same emotion generate any subject and stimuli independent correlates”
remains unanswered. Furthermore, concerning the domain of human emotion recognition,
we found that there are publicly available datasets such as DEAP, SEED, etc., that have
been used in a large number of studies targeting EEG-based human emotional states
recognition [21–24]. However, because one of the major concerns and contributions of
this work is the classification of emotions while subjects are experiencing different stimuli-
presentation paradigms, we needed to perform new experiments. While researching
studies of EEG classification for different mental activities, we found common spatial
patterns (CSP) to be one widely used approach specially for motor imagery classification.
CSP has also been used for the classification of different stress or workload levels while
subjects are performing different activities. Within the domain of emotion recognition, few
researchers have used CSP for this purpose [15].

In the presented work, a multi-modal emotion elicitation paradigm is proposed to
investigate whether the same signatures of emotions exist if induced by different methods
of elicitation. This study is focused on recording and analyzing EEG data of human subjects
for examining differences between joy, fear, and neutral emotions, using different methods
of stimulus for elicitation. Along with neutral brain state, we attempted to explore the
EEG correlates of joy and fear as positive and negative emotions, respectively. This work
is an extension of our previous work [48],in which we have conducted experiments with
dual stimuli emotion-presentation paradigms specifically for fear. In this study, we have
enhanced the experiment and extended the dataset for three emotional states, fear, neutral,
and joy, to achieve the target for emotion recognition. To the best of our knowledge,
no study has been conducted focusing on distinguishing different emotional states with
four different stimulus-presentation paradigms and finding common neural correlates,
independent of subjects and stimuli.

The considered paradigms include emotional imagery, pictures, sounds, and audio–
video movie clips. In cases of memory recall/self-induced/emotional imagery, we are
primarily dealing with inwardly visualized, imagined, or felt emotions evoked by the sub-
ject’s own imagination or the recall of emotionally loaded memories [8]. The participants
are requested to become involved or immerse themselves in the prolonged, self-paced recall
of emotion imagination, usually with closed eyes. Moreover, in this study, audio–video
clips were shown to the subjects to elicit emotions. Furthermore, pictures from the IAPS [49]
database and sounds from IADS [50] have also been used to evoke emotional states in the
participants. For data analysis, each paradigm in each dataset has been analyzed separately.
From the recorded data, bandpass EEG features were extracted, and spatial filters were ob-
tained based on the common spatial pattern (CSP) algorithm. In order to perform spectral
analysis, different setups for frequency bands were chosen and classification performance
was compared in each of the selected bands. The main contributions of this work are
mentioned as follows:

i. We have presented a novel dataset that records EEG data for fear, neutral, and joy
human emotional states evoked with four different stimuli presentation paradigms;

ii. Identification of the most relevant spectral bands and brain regions with respect to
each paradigm;

iii. CSP has been widely used in different scenarios of EEG-based BCI applications
such as motor imagery; therefore, this work attempts to investigate if it is also a
good choice for emotion recognition.

2. Related Work

While studying EEG-based emotion recognition-based studies, the reader may find
two directions: analyzing frequencies to either learn about emotion with respect to cortical
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activations/ERP response, or utilizing frequencies to classify emotion from the field of
computer science [31,33–35,39,40,51]. In next sub-sections, we will cover these two aspects.

2.1. Cortical Activity Perspective

While performing EEG spectral analysis, the signal can be analyzed in different
spectral bands: delta, theta, alpha, beta, and gamma. Each of the spectral bands are studied
by EEG community to analyze and investigate different human emotional states. We will
discuss each one of them in the following sub-sections. Moreover, Table 1 summarizes the
findings observed in emotion recognition studies based on EEG data.

Table 1. List of EEG-based studies for emotion recognition identifying synchronization/de-synchronization in different
spectral bands.

Study Emotional States/Stimulus
Presentation Paradigms

Synchronization/
De-Synchronization Frequency Band

Knyazev et al. [36] angry, happiness and neutral
conditions Synchronization Delta

Alberto Ara and
Marco-Pallares [33] music-evoked pleasantness Synchronization Theta

Balconi and Lucchiari [34] emotional stimuli as compared to
neutral one Synchronization Theta

Zhang et al. [35] frightening facial stimuli in
comparison to neutral ones Synchronization Theta

Lee et al. [26] De- Synchronization Alpha

Otten and Jonas [52]
using emotion-evoking words and

compared pleasant, unpleasant, and
neutral conditions

De- Synchronization Alpha

Meng et al. [27]
displaying pictures from

International Affective Picture System
(IAPS) database

De- Synchronization Alpha

Mennella et al. [28]
displaying pictures from

International Affective Picture System
(IAPS) database

De- Synchronization Alpha

Uusberg, A. et al. [29] - Synchronization Alpha

Güntekin et al. [31] - Synchronization Alpha

Schubring and Schupp [53] erotic and romantic pictures De- Synchronization Alpha and Beta

Schutter, Putman, Hermans,
and van Honk [38] angry faces Synchronization Beta

Güntekin and Başar [37]
negative emotions in comparison to
positive while subjects were viewing

IAPS images
Synchronization Beta

Eijlers et al. [25] happy emotions De- Synchronization Gamma

Sato et al. [54] negative emotions as compared to
neutral and happy states Synchronization Gamma

Jung et al. [55] negative states vs. neutral Synchronization Gamma

2.1.1. Delta Band

In a study conducted by Knyazev et al. [36], EEG delta oscillation responses for
different emotional states that included angry, happiness, and neutral conditions were
investigated. They found stronger delta synchronization for angry and happiness states as
compared to neutral. Similarly, Güntekin and Başar [29] performed a study on emotion
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recognition and conducted gender-wise comparison. They found that female participants
showed higher delta oscillation responses as compared to males.

2.1.2. Theta Band

Various EEG studies have been conducted to examine theta oscillation responses for
different emotional states evoked with different stimulus presentation paradigms [33–35].
Alberto Ara and Marco-Pallares studied frontal theta power synchronization for music-
evoked pleasantness. EEG was recorded with 25 participants. Stronger theta oscillation
synchronizations were reported in temporal and frontal sites with higher degrees of pleas-
antness [33]. In a study conducted by Balconi and Lucchiari [34], stronger frontal theta
synchronization was observed for emotional stimuli as compared to neutral stimuli. Zhang
et al. [35] also found an increase in theta synchronization for frightening facial stimuli in
comparison to a neutral stimulus.

2.1.3. Alpha Band

Performing the literature review, we found various studies which analyzed alpha oscil-
lation responses while the participants were experiencing different emotional states [26–32].
Often, within this domain, asymmetric frontal cortical activity is studied by comparing
alpha oscillation responses across the left and right brain regions. Lee et al. [26] reported a
decrease in alpha power within the right and left frontal brain regions. Otten and Jonas [52]
conducted a study to evoke emotions using emotion-evoking words, and compared pleas-
ant, unpleasant, and neutral conditions. Meng et al. [27] and Mennella et al. [28] also
studied alpha oscillations for emotions evoked by displaying pictures from the Interna-
tional Affective Picture System (IAPS) database. They found a decrease in alpha power
post-stimulus presentation. However, some other studies found contrasting results and
reported increases in alpha oscillation responses for different emotional states [29–31].

2.1.4. Beta Band

The relationship for beta oscillation responses with EEG data recorded for different
emotional states has been reported in different studies [29,32,37,38]. In their study, Holler
et al. [32] recorded EEG data while participants listened to their favorite music. The study
reported beta cortical activity while listening to music in most of the subjects. Schubring and
Schupp [53] conducted a study with sixteen participants to analyze EEG-based emotional
data while the participants were viewing erotic and romantic pictures. The study reported
a decrease in alpha and beta oscillation power responses in posterior and anterior sites
for erotic images in comparison to romantic images. Schutter, Putman, Hermans, and
van Honk [38] observed a strong response in beta oscillations at the parietal region while
showing angry faces to the participants. Güntekin and Başar [29] also reported a stronger
beta response at frontal and central electrodes for angry faces in comparison to happy faces.
Moreover, Güntekin and Başar [37] found a higher beta response for negative emotions in
comparison to positive emotions while subjects were viewing IAPS images.

2.1.5. Gamma Band

Gamma oscillation responses have also been analyzed by researchers in different EEG-
and MEG-based studies [25,54–56]. Eijlers et al. [25] reported lower gamma oscillation
responses at temporal and frontal regions for happy emotions. Sato et al. [54] reported
stronger gamma oscillation responses in the case of negative emotions as compared to
neutral and happy states. Jung et al. [55] recorded EEG data for different emotions that
included happiness, fear, disgust, neutral, and angry. Their study reported higher gamma
oscillation responses for negative states at the lateral orbitofrontal brain region.

2.2. Classification Performance Perspective

With respect to classification performance perspective, here again we observed vari-
ations in findings and results amongst different studies targeting emotion recognition
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for different spectral bands. In their research, Li and Lu [39,40] concluded that gamma
frequency band plays major role in emotion recognition. Zhang et al. [41], Jatupaiboon
et al. [42], and Zheng et al. [43] also found that higher frequency bands provide a more
significant contribution to emotion classification as compared to lower frequency ranges.
In contrast to these studies, Shahabi et al. [44] found better classification accuracies in theta,
alpha, and beta bands. Eijlers et al. [25] reported a strong classification for happy and
disgust emotions in higher frequency ranges. In the case of negative emotions, includ-
ing sadness and fear, strong differences were found for the alpha frequency band at the
centroposterior region.

While reviewing the literature, we found that most of the EEG emotion recognition-
based studies have used a single method to elicit emotions [25–44]. Thus, the question as to
“whether different stimuli of elicitation for same emotion generate any subject and stimuli
independent correlates” remains unanswered. Furthermore, concerning the domain of
human emotion recognition, we found that there are publicly available datasets such as
DEAP, SEED, etc., that have been used in a large number of studies targeting EEG-based
human emotional state recognition. However, because one of the major concerns and con-
tributions of this work is the classification of emotions while subjects experience different
stimuli-presentation paradigms, we needed to perform new experiments. In the presented
work, a multi-modal emotion elicitation paradigm is proposed to investigate whether the
same signatures of emotions exist if induced with different methods of elicitation.

Ethical approval for the study was obtained from the Local Ethics Committee of Bahria
University, Pakistan (approval code: ERC/ES/001).

3. Methodology

The proposed methodology comprises different phases. The first, in Section 3.1,
concerns EEG data acquisition and includes an explanation of the experimental setup
and protocol along with details of the participants and EEG device used for recording
data. The next Section 3.2 explains the data analysis mechanism for EEG data acquired. In
order to perform data analysis, we analyzed recorded EEG data using MATLAB toolboxes
EEGLAB [57], Emotiv Xavier Test bench [58], and RCSP [59].

3.1. EEG Data Acquisition

We conducted experiments with twenty-seven young university students (14 female;
13 male). The mean age of the subjects was 21 years. The students were enrolled in Bach-
elor’s and Master’s of Computer Science programs. Before conducting the experiments,
the purpose of study was explained, and consent forms were signed by all participants.
Overall, thirty-five students filled in the form. Out of them, twenty-seven students gave
their consent to participate in the experiments. The experimental study involving human
participants described in this research work was approved by the local ethics committee of
Bahria University, Pakistan. If any participant felt discomfort or for any other reason, they
had the option to quit the experiment at any point. The data from two subjects (one male
and one female) were excluded because they did not complete the experiments. An Emotiv
EPOC EEG Headset was used for recording brain signals while subjects were performing
the experiments. This is a wireless headset that requires less placement time and effort
and offers improved mobility and flexibility as compared to other medical-grade EEG
headsets [29–33]. The EEG signals were recorded with a sampling frequency of 256 Hz
from the Emotiv EPOC headset with fourteen EEG channels, namely, AF3, AF4, F3, F4,
FC5, FC6, F7, F8, T7, T8, P7, P8, O1 and O2. The data were recorded with the provided
Emotiv software, named ‘Emotiv Xavier Test bench’. Fourteen (14) active electrodes on the
headset are arranged according to the 10–20 international system.

The experiments were conducted in a laboratory environment. In the first stage, a
briefing was presented to the subjects with respect to the purpose of the experiment being
conducted. They were informed that EEG signals would be recorded while experiencing
four different emotion-inducing paradigms. A questionnaire was given to each participant
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in which they wrote about any incident of their real life that was associated with fear or joy
emotions. While performing the experiments, the participant was requested to stay still
and relaxed. For stimuli presentation, an LCD screen was placed at a distance of about 50
cm from the participant. The following four scenarios/paradigms were conducted with
each participant:

• Paradigm1—EI (Emotional Imagery/Self-Induced)
• Paradigm2—VI (Video-Induced)
• Paradigm3—SI (Sound-Induced)
• Paradigm4—PI (Picture-Induced)

For each paradigm, three emotional states of fear, neutral and joy were considered. For
each emotional state in each paradigm, we conducted a different number of trials with each
participant, as mentioned in Table 2. For emotional imagery (EI) and video-induced (VI)
paradigms, a total of thirty trials were conducted. In the case of picture- and sound-induced
scenarios (PI and SI scenarios, respectively), each experiment consisted of 135trials. The
time duration of each trial is also mentioned in the table. For the EI paradigm, a single
trial consisted of 60 s. In the PI paradigm, the image or picture was shown for 7 s. In the
case of video-induced (VI) stimulus, the video clips played were of different durations,
ranging from 60 to 180 s. Sounds were played for 6 to 10 s in the case of the SI paradigm.
An explanation of experiments for each paradigm is given in following sub-sections.

Table 2. Blocks distribution with respect to emotion-inducing paradigm and emotional states.

Paradigms EI PI VI SI

Emotion F J N F J N F J N F J N

No. of Trials 10 10 10 45 45 45 10 10 10 45 45 45

Total no. of Trials for each
paradigm 30 135 30 135

Duration of each trial 60 s 60 s 60 s 7 s 7 s 7 s 60–180
s

60–180
s

60–180
s 6–10 s 6–10 s 6–10 s

Time duration considered for each
trial

last 55
s

last 55
s

last 55
s last 5 s last 5 s last 5 s last 55

s
last 55

s
last 55

s last 5 s last 5 s last 5s

Time window length (s) for each
epoch 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s

No. of epochs 550 550 550 225 225 225 550 550 550 225 225 225

Total no. of epochs for each
paradigm 1650 675 1650 675

3.1.1. Paradigm1—EI (Experiments Performed Based on Emotional Imagery)

The trial in this paradigm started with 5 s of baseline recording. Then, the participant
was asked to recall the relevant memory for the considered emotional state specified in
the questionnaire. The subject was verbally signaled by the researcher to start the activity,
which continueduntil60 s. EEG recording was then stopped. The participant was given
a 30 s break after each trial and asked to rate the arousal level and specify the emotional
state experienced during the experiment. The sequence for a single trial was as follows:

1. Baseline signal collection for 5 s;
2. The activity is initiated after a verbal signal;
3. The incident/memory/imagination mentioned in the questionnaire is recalled by the

participant;
4. The activity is stopped after 60 s;
5. A time of 30 s is provided to rate the arousal level and specify the emotional state.

3.1.2. Paradigm2—VI (Experiments Performed While Viewing Videos)

In this paradigm, different videos were shown to the participants in each trial. The
list of videos shown to the participants is presented in Appendix A, Table A1. A total of
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thirty videos were shown alternatively with respect to fear, neutral, and joy emotions. The
sequence for a single trial was as follows:

1. Baseline signal collection for 5 s;
2. Video clip is displayed after verbal signal. The activity is initiated;
3. Participant views the movie clip being displayed for 120–180 s;
4. The activity is stopped;
5. A time of 30 s is provided to rate the arousal level and specify the emotional state.

3.1.3. Paradigm3—SI (Experiments Performed While Listening Sounds)

During each trial of this paradigm, the participants listened different sounds. Sounds
were selected from the International Affective Digitized Sounds (IADS) database [50]
consisting of 167 sound clips. The length of each clip consisted of 6 s. In total, 100 subjects
provided ratings for valence, dominance, and arousal levels for each sound clip. The IADS
database provides a good range of emotional states. Moreover, the stimuli in the IADS
database have been excerpted from real-life events or scenarios. In order to minimize the
possible variance of response from participants from different socio-cultural backgrounds,
these scenarios were carefully selected while developing the IADS database [60]. For
example, in order to induce positive pleasant emotions, the sounds of bird’s merry chirping,
stream water flowing, or children’s laughter are used. In order to induce negative emotions
for fear, sounds including a woman screaming, a woman crying, or a car crash are used. In
our work, a total 135 sounds were played alternatively with respect to fear, neutral and joy.
The sequence for a single trial is as follows:

1. Baseline signal collection for 5 s;
2. The activity is initiated after a verbal signal and the sound is played;
3. Sound continues for 5–10 s;
4. The activity is stopped;
5. A time of 30 s is provided to rate the arousal level and specify the emotional state.

3.1.4. Paradigm4—PI (Experiments Performed While Viewing Pictures/Images)

During each trial of this paradigm, the participants viewed different images/pictures
on the screen. Pictures were selected from the International Affective Picture System (IAPS)
database [49]. IAPS was developed by the NIMH Center for Emotion and Attention at
the University of Florida. It aims to provide standardized visual stimuli to the research
community working in the domain of human emotional state analysis and recognition.
The database consists of 700 colored images that have been collected over the span of ten
years. The pictures and images in the database were selected, keeping in consideration
broad range of arousal, valence, and dominance of human emotions along with minimizing
the influence from different cultures, societies, and religions [61]. In our work, a total of
forty-five pictures were shown with respect to each emotional state. The sequence for a
single trial is as follows:

1. Baseline signal collection for 5 s;
2. The activity is initiated after a verbal signal;
3. The picture/image is displayed for 5–7 s;
4. Picture disappears;
5. A time of 30 s is provided to rate the arousal level and specify the emotional state.

The general sequence diagram for the experiments in each of the considered paradigms
is elaborated in Figure 1. The figure shows the sequence of trials for each emotional state
in each of the considered paradigm. Figure 1a shows the sequence of trials for EI and VI
scenarios. Figure 1b represents the sequences for PI and SI paradigms. Figure 2 provides
general details of a single trial conducted. The next sub-section elaborates details regarding
data analysis for the acquired signals from 64 EEG electrodes.
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Figure 1. (a) Sequence of trials with respect to the emotional states in EI and VI paradigms. (b)
Sequence of trials with respect to the emotional states in PI and SI paradigms.

Figure 2. Block diagram of the experiment while conducting a single trial for any emotional states
out of fear, joy, and neutral.

3.2. Data Analysis

In this study, we performed data analysis by considering data for each stimulus
paradigm separately. As mentioned earlier, this sub-section explains the data analysis
mechanism for EEG data, as displayed in Figure 3. In order to perform data analysis, we
analyzed the recorded EEG data using MATLAB toolboxes EEGLAB [57], Emotiv Xavier
Test bench [58], and RCSP [59].

Figure 3. Block diagram explaining the data analysis process.
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3.2.1. Segmentation of Recorded EEG Data into Trials and Epochs

As mentioned in Figure 3, the first stage for data analysis is related to the ‘Segmen-
tation of data into training and testing trials and epochs’. For each trial of any specific
paradigm under consideration, features were extracted from the time duration mentioned
in Table 2 For EI and VI paradigms, the last 55 s were considered for data analysis, while in
the case of PI and SI scenarios, the last 5 s of each trial were considered. EEG data in each
trial were divided into non-overlapping time windows of one second (1 s) long, which are
referred to as an epoch. In this study, for emotional state classification, we worked with a
10× 10 cross-validation strategy in which the epochs were distributed into ten partitions.
Out of ten, nine partitions (i.e., 90% of the data) were considered for training purposes,
whereas the remaining one partition (i.e., 10% of the data) was considered for testing. The
process was repeated for ten times with different dataset splits. Let us consider the case
for VI paradigm. We had a total of 30 trials in this paradigm, as mentioned in the table.
Now, for 10 × 10 cross-validation, each subset out of 10 contained3 trials. In each run for
cross-validation, any one subset, i.e., 3 trials, were considered for testing purposes, and the
remaining 9 subsets, i.e., 27 trials, were considered for training.

3.2.2. Pre-Processing (Filtering, Artifact Removal and Epochs Rejection)

As mentioned earlier, each of the segmented trials from fourteen electrodes were
recorded at a sampling rate of 256 Hz. Prior to data analysis, artifacts generated from
ocular and muscle movements were removed using independent component analysis
(ICA) and max–min-based approaches. In cases of a max–min approach, an epoch is
rejected if it has amplitude difference greater than 150 µV between the maximum and
the minimum amplitude values. The ICA algorithm is an advanced technique for artifact
removal while working on EEG data. The algorithm has proven its capability for isolating
neurally generated as well as artifactual sources residing in recorded EEG signals [40,57,61].
The EEGLAB function ‘runica’ [57] has been used in this work. As mentioned earlier, data
analysis for each stimulus paradigm has been performed independently.

Now, the segmented pre-processed epochs are considered for baseline correction. As
elaborated in the previous section, baseline recordings were performed for each paradigm
for each trial. We considered −200 ms prior to the stimulus onset as the baseline inter-
val. For this interval, the average amplitude value was subtracted from each trial after
stimulus presentation. Then, the baseline-corrected EEG signals were bandpass-filtered
in different frequencies bands as follows: delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz),
beta (14–30 Hz), low gamma (31–50 Hz), and high gamma band (51–70 Hz). A Butterworth
filter in the order of 5 was used. This operation produced six bandpass-filtered datasets for
each of the subjects under consideration.

3.2.3. Feature Extraction Based on CSP

Common spatial patterns (CSP) are a widely used algorithm for the classification of
EEG motor imagery data. In this work, we used this algorithm for emotion recognition. The
algorithm optimally differentiates two classes of EEG signals based on the simultaneous
diagonalization of covariance matrices for each class [59]. In this work, three emotional
states were considered. We had three scenarios: fear vs. joy; joy vs. neural; and fear vs.
neutral. The baseline-corrected preprocessed EEG data in a single trial were represented as
the matrix XN × T, where Nis the number of EEG electrodes and T is the number of time
points recorded in each epoch of 1 s from each of the considered electrodes corresponding
to two patterns (fear and joy). Here, the CSP algorithm was employed to obtain a projection
matrix. The first and last m columns of the projection matrix were considered to construct
a new matrix, ω € XN × 2m. In a conventional CSP approach, an input data matrix XN ×
T is generally transformed as:

z = ωT X (1)

The rows ofω and columns of ω-1 are termed as spatial filters and common spatial
patterns, respectively. The spatial filters obtained from CSP are optimized separately for
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each frequency band such that it maximizes the variance of the projected signal for one
class, whereas minimizing the other. The normalized spatial covariance matrix can be
computed as:

C =
XXT

tr(XXT)
(2)

where XT refers to the transpose of EEG data matrix X, and tr represents the sum of diagonal
elements of two emotional states under consideration. The CSP algorithm simultaneously
diagonalizes the data matrices for both classes by designing ω such that it satisfies ωTC1ω
= λ1 and ωTC2ω = λ2. Here, λ1 and λ2arediagonal matrices that satisfy λ1+ λ2 = I.

The CSP projection matrix is computed based on eigenvalue decomposition. A small
number of signals, m, can effectively differentiate between the classes while training the
classifier. The signal Yq(q = 1 to 2m) that maximizes discrimination is associated with the
highest values for λ1 and λ2 [59,62]. Feature vectors fq are computed as follows:

fq = log(
var

(
Yq

)
∑2m

i=1 var (Yi)
) (3)

In this study, log variances based on CSP were generated as features for the emotional
states in consideration. Log-variance of bandpass-filtered signals relates to the signal
power/power spectral density PSD in that corresponding frequency band for a given
emotional state.

3.2.4. Classification with Linear Discriminant Analysis

For classification purpose, this work considered linear discriminant analysis (LDA),
assuming that the features extracted from CSP operation are based on different multivariate
Gaussian distributions, with different known means, and a commonly known covariance
matrix for each of the considered emotional state [63,64]. Based on estimates of the common
covariance C and class-wise means µ1 and µ2, the weight vector ω of the classification
function is determined by

ω = C−1(µ2 − µ1) (4)

The class-wise means are estimated as

µ =
1
n

n

∑
t=1

xi (5)

For multiple-class classification, researchers have worked with pair-wise strategies that
include one-versus-one or one-versus-rest. Although LDA is basically designed for binary
classification, using pair wise strategy the algorithm has performed quite successfully
within the domain of EEG data classification [17–20]. In order to implement three-class
emotional states classification using LDA, we adopted a one-versus-rest strategy, yielding
three binary classifiers. More specifically, each binary classifier was trained considering
the epochs from a given emotional state as positive labels and all other epochs from
the remaining/rest of the emotional states as negative labels. Discrete classification was
performed such that a class was assigned to each epoch. Let us consider the case for VI
paradigm. In this case, features were calculated on a basis of 1 s epochs from the last 55 s
of each trial, resulting in 55 × 10 = 550 epochs from the ten trials, as mentioned in Table 2.
Each extracted epoch was then associated with a label y(t) є[+1, −1], as explained before.
The sampling frequency was 256 Hz; therefore, each epoch was a matrix of 256 rows and
14 columns (due to them any electrodes). To perform classification, the trials were divided
into the training set and testing set. CSP operation was then applied to compute bandpass
features for both training and testing datasets. Each epoch x(t) was associated with the
label y(t) ∈ [+1, −1] such that epochs from fear state were labeled as +1, while epochs
for joy and neutral states were labeled as −1. Similarly, in cases of joy state classification,
samples for joy were assigned a +1 label and the rest of the epochs from joy and neutral
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states as −1. As explained earlier, in order to perform emotional state classifications, we
worked with a 10 × 10 cross-validation strategy in which the epochs were distributed into
ten partitions. Out of ten, nine partitions (i.e., 90% of the data) were considered for training
purpose, whereas the remaining one partition (i.e., 10% of the data) was considered for
testing. The process was repeated ten times with different dataset splits. Let us consider
the case for VI paradigm. We had total 30 trials in this paradigm, as mentioned in Table 2.
For 10-fold cross-validation, each subset out of 10 contained3 trials. Thus, in each run for
cross-validation, any one subset, i.e., 3 trials, were considered for testing data, and the
remaining 9 subsets, i.e., 27 trials, were considered for training purpose.

3.3. Statistical Analysis

As mentioned in the previous section, band power features were calculated for each
emotional state in each of the four considered paradigms. An average absolute power
value for the following five regions: temporal T, frontal F, central C, parietal P, and occipital
O, for each condition (fear and joy), was calculated separately for each frequency band.
An average of the pre-experimental or baseline absolute power was used to determine the
individual power during no emotional activation state. From this reference power value,
individual power changes during stimuli presentation were determined as the relative
stimulus-related change. Changes in band power can be defined as the percentage of
decrease/increase in band power during a test interval during stimulus as compared to a
reference interval before stimulus. For statistical analysis, used data from the percentage
change in band power for each subject for each emotional state in all considered frequency
bands and brain regions. The data were subjected to a repeated measures analysis of
variance (ANOVA) with three repeated factors: emotional states (fear, joy), spectral band
(delta, theta, alpha, beta, gamma), and region (temporal T, frontal F, central C, parietal P,
and occipital O) for each stimulus (EI, PI, SI, and VI).

4. Experimental Results
4.1. Classification with Respect to Specific Stimulus Presentation Paradigm

In the presented work, along with neutral brain state, we attempted to explore the EEG
correlates of joy and fear emotions evoked with four different emotion-evoking paradigms.
As explained in the previous section, we performed data analysis by considering data
for each stimuli presentation paradigm separately. It considers discrete classification of
the samples such that a class is assigned to each sample. For each block of each of the
considered emotion evoking paradigms, features were extracted from the relevant time
segment. Ten-fold cross-validation was performed by splitting the dataset in ten equal parts.
The features extracted from CSP were fed to the LDA classifier for evaluating classification
performance in the different considered spectral bands of delta band (1–3 Hz), theta band
(4–7 Hz), alpha band (8–13 Hz), beta band (14–30 Hz), and gamma band (31–50 Hz).

The results are displayed for all considered frequency bands in Table 3. For better
understanding, the results are separately illustrated for each emotional state in Figure 4a–c.
In the figure, each graph is presented for each of the three considered emotional states of
fear, joy and neutral. Their accuracies with all considered spectral bands are also elaborated
for better comparison. From Figure 4a, it can be observed that the fear emotional state
was the most accurate in beta and gamma bands for three paradigms. However, in the
case of the SI scenario, the best classification performance was achieved in the alpha
spectral band. In contrast to fear, the joy emotional state achieved the best performance
in emotional imagery and video-induced paradigms within the gamma band. Similarly,
the best accuracies were also achieved in higher spectral bands for neutral state in all four
paradigms. Specifically, gamma band results showed very minor variations in classification
performance for all the four considered paradigms, as mentioned in Figure 4c.
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Table 3. Mean classification accuracies for all considered frequency bands in each of the four considered emotion-evoking
paradigms.

Paradigm EI PI VI SI

Emotional
State/

Spectral
Band

Fear vs.
Rest

Happy
vs. Rest

Neutral
vs. Rest

Fear vs.
Rest

Happy
vs. Rest

Neutral
vs. Rest

Fear vs.
Rest

Happy
vs. Rest

Neutral
vs. Rest

Fear vs.
Rest

Happy
vs. Rest

Neutral
vs. Rest

(1–3 Hz) 60 61 59 69 72 70 69 70 70 66 64 66

(4–7 Hz) 59 60 62 70 70 69 68 71 72 64 65 67

(8–13 Hz) 68 69 63 76 71 68 71 76 72 82 71 61

(14–30 Hz) 72 76 68 74 78 75 77 80 71 69 72 69

(31–50 Hz) 68 69 68 76 77 72 78 79 72 70 71 70

Figure 4. Comparison of classification accuracies amongst all emotion-evoking paradigms for all considered spectral bands.

4.2. EEG Dynamics/Cortical Activations

As mentioned in the previous section, band power features in terms of spatial filters
obtained with CSP algorithms were calculated for each emotional state in each of the
four considered paradigms. In order to better understand the EEG cortical activations,
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orientation markers for different locations of human brain are presented in Figure 5. The
figure comprises major brain locations: frontal, temporal, central, parietal and occipital
regions.

Figure 5. Different locations/regions in the human brain.

Figure 6 depicts the average neural patterns changes for fear vs. joy emotional states
in different brain locations (as elaborated in Figure 5). The results demonstrate that neural
signatures existed in different spectral bands, keeping in consideration different emotion-
evoking paradigms. The first column displays paradigms EI, PI, SI and VI. The second
column shows the percentage range of decrease/increase in band power during a test
interval during stimulus as compared to a reference interval before stimulus. In the case
of the EI paradigm, the change ranged from 3% to 35%. For PI, SI and VI scenarios, the
percentage change ranged from 6% to 17%, 4% to 12% and 7% to 31%, respectively. The
results obtained in the figure are elaborated as follows:

Figure 6. Topographical maps for fear vs. joy emotional states in each of the four considered
paradigms for different spectral bands.
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4.2.1. Within Theta Band

The results of PSD changes in the theta band for the EI paradigm show high cortical
activation in the frontal and occipital regions. SI paradigm induced activation in the frontal,
temporal, and occipital sites. In the case of the VI paradigm, frontal, temporal, and parietal
regions were activated, whereas the EI paradigm showed activation in frontal and occipital
areas. While performing statistical analysis, no significant difference was observed among
emotional states in theta band for SI and EI paradigms. For the VI paradigm, theta cortical
activity showed significant differences at temporal and parietal sites. Considering the
picture-induced (PI) paradigm, theta oscillations showed significant differences at frontal
and central sites.

4.2.2. Within Alpha Band

The results of cortical dynamics for fear vs. joy emotional states in the alpha band for
paradigms under consideration show high activation on different regions, as mentioned
in the figures. While performing statistical analysis, alpha oscillations were found to
be significantly different in frontal and parietal regions for the SI paradigm. For the VI
paradigm, alpha activity was significantly different at the frontal and temporal sites. In
the case of the EI paradigm, alpha changes were significant at the frontal region. The PI
paradigm showed significant band power changes in alpha oscillations in the frontal and
temporal regions.

4.2.3. Within Beta Band

Cortical activations within the beta band for the EI paradigm showed higher acti-
vations in the parietal and central regions. For rest of the three paradigms, frontal and
temporal regions displayed higher activations. From the statistical analysis, the SI paradigm
exhibited significantly higher beta power changes at the frontal and temporal regions. For
the VI paradigm, interestingly, beta oscillations showed significant differences at three sites
that included the frontal, temporal, and central regions. In the case of the EI paradigm,
the beta oscillation changes were significant at the central site. The PI paradigm produced
significant differences at the temporal and frontal sites.

4.2.4. Within Gamma Band

In the case of the PI and EI paradigms, frontal and temporal regions produced higher
activation. In the SI scenario, occipital and parietal sites were activated. From the statistical
analysis, the SI paradigm produced a significant difference for fear vs. joy emotional states
at the occipital site. Gamma band power changes were significant in occipital and frontal
sites for the VI paradigm. Gamma band produced significant differences at the temporal
and frontal sites in the case of the PI paradigm. No significant difference was noted for the
EI paradigm.

5. Discussion

To achieve the objectives set for the presented research work, we explored the EEG
correlates of fear, joy, and neutral human emotional states evoked with four different
emotion-inducing paradigms. Classification accuracies were evaluated. Topographical
maps were obtained to gain a better understanding of these emotions in different stimuli
presentation scenarios. We have performed data analysis by considering data for each
stimuli presentation paradigm separately. This considered discrete classification of the
samples such that a class was assigned to each sample. For each block of each of the
considered emotion-evoking paradigms, features were extracted from the relevant time
segment.

5.1. Classification Performance Analysis

The results for all considered frequency bands along with emotion-evoking paradigms
are presented in Table 3. For better understanding, the results are separately illustrated
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for each emotional state in Figure 4a–c. We observed that the high-frequency bands of
beta and gamma mostly produced better results, independent of the paradigm. Previous
neuroscience studies, such as Li and Lu [40], have found that beta and gamma bands of
EEG are more relevant for emotion classification. Zhang et al. [41] and Zheng et al. [43]
also deduced that higher frequency bands of beta and gamma contributed to human
emotional responses rather than lower frequency bands. Our findings are consistent
with existing results, but because we studied multiple stimuli-presentation paradigms,
deviations were observed. Most previous studies have worked on a single stimulus;
therefore, our study may have different contrasting new results. One of the exceptions here
is for sound-inducing scenario in which the fear emotional state achieved higher accuracy
in the alpha band. Actually, when we reviewed EEG-based emotion recognition studies,
variations and deviations in observations and results were found in the neuro-imaging
research community as well. As reported by Güntekin et al. [31], some previous studies
explored spontaneous EEG modulation of the frequency band (and specifically alpha
band) after the application of emotional stimulus. Ljubomir et al. [47], when contrasted
with other emotional states, found that an aversive movie clip yielded significant alpha
desynchronization. Taniguchi et al. [13] worked on multiple paradigms for emotion
elicitation and they found that in the case of auditory stimuli, there is an imbalance between
the right and left hemispheres over the central area in the alpha band. Shahabi et al. [44]
found better classification accuracies in theta, alpha and beta bands. Eijlers et al. [25]
reported a strong classification for happy and disgust emotions in higher frequency ranges.
In the case of negative emotions, including sadness and fear, strong differences were
found for the alpha frequency band in the centroposterior region. As in our case, we
obtained good accuracy for the sound-inducing paradigm within the alpha band for the
fear emotional state.

For better understanding, the results are separately illustrated for each emotional state
in Figures 7 and 8. In Figure 7, each graph is presented for each of the three considered
emotional states of fear, joy and neutral. Their accuracies with all considered spectral
bands are also elaborated for better comparison. From Figure 8, we observe that in three
paradigms, fear emotional state achieved the highest accuracy in beta and gamma spectral
bands. However, in the case of the SI scenario, the highest accuracy was reported within
the alpha band. In contrast to fear, joy showed the best performance in emotional imagery,
in picture-and video-induced paradigms, especially in the gamma band. For neutral state,
the accuracies are quite comparable amongst different paradigms, although the beta band
seemed to provide better performance as compared to gamma in the case of the neutral
state. Figures 7 and 8 specifically present results for the highest mean accuracies. In Figure
7, the best mean classification accuracies are compared with respect to emotion-evoking
paradigms for each of the three emotional states independent of the spectral band. On the
contrary, in Figure 8, the best mean accuracies achieved for each emotion with respect to
spectral bands are compared, independent of the emotion-evoking paradigm.

Figure 7. Comparing classification performance for each of the three emotional states in each of the
four considered emotion-evoking paradigms.
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Figure 8. Comparing classification performance achieved for each of the three emotional states in
each of the five considered spectral bands.

Observing Figures 6 and 7, one can draw a number of observations regarding varia-
tions in classification performance with respect not only to emotions, but within spectral
bands, and even in paradigms. Here, we find that the highest accuracy was achieved
for the joy emotional state in the majority of the paradigms, except sound-induced, in
which fear emotion achieved the best performance. Furthermore, Figure 8 depicts that
emotion recognition can be best performed while considering higher frequency bands of
gamma and beta. In their study, Li et al. [12] classified positive, negative, and neutral
emotional states, and concluded that positive emotions are easy to separate compared to
other emotional states. They presented their findings through PCA feature visualizations,
showing that the dots for positive emotion were more easily separated from the neutral
negative emotion dots. From our results as mentioned in Figure 7, we found agreement in
all the three paradigms of emotional imagery, picture-and video-induced, whereas there
was conflict in the case of the sound-inducing paradigm. Here, instead of joy, fear had a
better classification accuracy.

Considering the reviewed literature, it is difficult to compare classification perfor-
mance because the studies differed in analyzing targeted emotional states, elicitation
paradigms, time period to record the activity, features extracted, etc. Just a handful studies
have covered emotional imagery. Some of these studies are listed in Table 4. While working
on the DEAP dataset, Zhang et al. [41] classified emotional states with support vector
machine (SVM) and reported the highest accuracies in beta and gamma spectral bands.
Li and Lu [39,40], Jatupaiboon et al. [42] and Zheng et al. [43] have also reported better
classification performance in higher spectral bands. In our work, we also obtained the
highest mean classification accuracy in the gamma spectral band. Lacoviello et al. [11]
recorded EEG data while participants experienced emotional imagery for recalling any
unpleasant/disgusting odor. The authors reported accuracy above 90%. Reviewing these
studies, it can be determined that accuracies have been reported in different ranges. Some
studies have achieved accuracy around 80%, whereas a large body of work reported results
between 70 and 75%. In the case of the presented work, because it used different stimuli
paradigms, exact comparisons with other relevant studies are not easy or simple. Never-
theless, having a mean accuracy greater than 70% for most of the paradigms represents
good, comparable results.
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Table 4. List of studies using EEG signals to perform emotion recognition.

Study
Type of Study

(Emotion
Recognition/Others)

Emotion-Inducing
Paradigm Classifier Classification

Performance
Relevant Frequency
Band/Brain Regions

Gao et al. [4] Valence and Arousal Videos SVM 62.01%
Gamma frequency

band from frontal and
temporal regions

Zhuang et al. [8]
Joy, neutrality,

sadness, disgust,
anger and fear

Self-induced SVM 54.52%
Higher frequency

band/temporal, frontal
and occipital sites.

Li et al. [51] Valence and Arousal Music KNN 95.70%
95.69%

Gamma frequency
band

Jatupaiboon et al.
[42]

Positive vs. negative
emotional states Pictures SVM 85.41% Gamma frequency

band at frontal region

Zhang et al. [41]
Four emotional states
(joy, fear, sadness and

relaxation)
Videos SVM 59.13%

Beta and gamma
bands/frontal and

parietal sites

Zheng et al. [43] Positive, neutral and
negative Videos KNN, SVM, DBNs 83.99% Beta and gamma bands

Kothe et al. [10] Positive vs. negative Self-induced Logistic Regression 71.3% -

Lacoviello et al. [11] Disgust vs. relax Self-induced SVM >90% -

Li and Lu [39] Happiness vs.
Sadness Pictures Linear SVM 93.5% Gamma band (30–100

Hz)

Author’s work

Fear vs. Rest

Self-induced LDA

72% Beta

Joy vs. Rest 76% Beta

Neutral vs. Rest 68% Beta/gamma

Fear vs. Rest

Picture-Induced LDA

76% Gamma

Joy vs. Rest 78% Beta

Neutral vs. Rest 75% Beta

Fear vs. Rest

Video-Induced LDA

78% Gamma

Joy vs. Rest 80% Beta

Neutral vs. Rest 72% Gamma/theta/alpha

Fear vs. Rest

Sound-Induced LDA

82% Alpha

Joy vs. Rest 72% Beta

Neutral vs. Rest 70% Gamma

5.2. Cortical Dynamics with Respect to Stimulus Paradigms

In this work, band power features in terms of spatial filters obtained with CSP algo-
rithms were calculated for each emotional state in each of the four considered paradigms.
Figure 6 depicts the average neural pattern changes for fear vs. joy emotional states. In
general, these pictures show that CSP filters appeared as generally smoother and phys-
iologically more relevant, with strong weights in relevant brain regions, as expected
from findings in the literature [26,32,33,45,46,65]. With respect to each of the considered
paradigm, the findings are elaborated subsequently.

5.2.1. SI Paradigm

In the case of the SI paradigm, no significant difference was observed among emotional
states in the theta band. Alpha oscillations were significantly different in the frontal and
parietal regions. Significantly higher beta power changes were found for joy infrontal
and temporal regions. Gamma oscillations were significantly different for fear and joy
emotional states at the occipital site. While reviewing the literature focusing on emotion
elicitation with sounds or auditory stimuli, we observed that various features have been
explored and studied [26,32,33]. In one study, Lee et al. [26] reported a decrease in alpha
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power within the right and left frontal brain regions. Moreover, phase lag index values
for each of the frequency bands of delta, theta, alpha, beta, and gamma were calculated.
The feature showed an increase in negative emotions vs. neutral states. In their study,
Holler et al. [32] recorded EEG data while participants listened to their own favorite music.
The study reported stronger alpha oscillation responses in occipital and parietal regions.
Moreover, beta cortical activity was also reported while listening to music in most of the
subjects. Alberto Ara and Marco-Pallares [33] studied frontal theta power synchronization
for music-evoked pleasantness. EEG was recorded with 25 participants. Stronger theta
oscillation synchronization was reported in temporal and frontal sites with higher degrees
of pleasantness.

5.2.2. VI Paradigm

For the VI paradigm, theta cortical activity showed significant difference at the tempo-
ral and parietal sites within the theta band. Alpha oscillations were significantly different
at the frontal and temporal sites. Interestingly, beta oscillations showed significant dif-
ferences in the frontal, temporal, and central regions. Gamma band power changes were
significant in the occipital and frontal sites. Costa et al. [45] extracted features based on the
synchronization index (SI) while recording EEG data for happiness and sadness emotions
evoked with audio–visual stimuli. The study reported an increase in SI values, especially in
sadness states at the frontal site. Moreover, happiness emotion was strongly synchronized
in frontal and occipital regions [45]. Lee et al. [46] conducted a study with forty partic-
ipants who watched film clips to evoke emotional categories of negative, positive, and
neutral conditions. The study analyzed three EEG features based on correlation, coherence,
and phase synchronization. Different findings were reported based on the feature under
consideration. The statistical analysis for theta oscillation responses produced significantly
lower correlation in the frontal region but higher correlation in the temporal and occipital
regions for negative emotions. Within the alpha band, a stronger correlation was found for
the negative state at occipital and parietal electrode regions. Considering the coherence
scenario, higher values were reported for negative emotions within the theta oscillation
band [46]. Eijlers et al. [25] reported lower gamma oscillation responses in temporal and
frontal regions for happy emotions, whereas a negative state of disgust induced a strong
response at the temporal site only. The study recorded EEG data while subjects viewed
different film clips to evoke emotions of happiness, fear, sadness, and disgust. In the case
of fear, the study found reduced alpha oscillation responses at the central posterior site.
Wang et al. [16] analyzed the DEAP dataset [16] for different emotional states using the
phase locking value (PLV). The results showed stronger PLVs for negative emotions as
compared to positive emotions. Moreover, frontal and temporal sites were found to be
more strongly associated with emotional activity as compared to other regions.

5.2.3. EI Paradigm

The EI paradigm showed no significant difference in the case of theta and gamma
bands for any region. Alpha changes were significant at the frontal region. In the case of
the EI paradigm, beta oscillation changes were significant at the central site within the beta
band.

5.2.4. PI Paradigm

Considering the picture-induced (PI) paradigm, theta oscillations showed significant
differences at frontal and central sites. Interestingly, significant band power changes
were found in alpha, beta and gamma oscillations in the frontal and temporal regions.
Schubring and Schupp [53] conducted a study with sixteen participants to analyze EEG-
based emotion data while the participants viewed erotic and romantic pictures. The study
reported a decrease in alpha and beta oscillation power responses in posterior and anterior
sites for erotic images in comparison to romantic images. Miskovic et al. [65] performed
experiments with young adult subjects who viewed different pictures varying in valence
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for pleasant, unpleasant, and neutral scenarios. Stronger coherence was reported for highly
arousing pictures at prefrontal and posterior sites within the beta band.

6. Highlights and Conclusions

From the conducted study, the results are summarized in Table 5, where ** refers to
significant differences (with p< 0.05). These findings can be elaborated as follows:

1. With respect to the spectral band, beta and alpha oscillation responses have produced
the highest number of significant results considering all the paradigms under con-
sideration. Theta and gamma responses produced significant results, although not
greater than alpha and beta;

2. With respect to brain region, the frontal lobe produced the most significant results,
irrespective of paradigms and spectral bands. After frontal, the temporal site played
an effective role in generating statistically significant findings;

3. With respect to stimulus presentation paradigms, video-based stimuli produced the
highest number of statistically significant features. After VI, pictures produced better
results as compared to the remaining paradigms of EI and SI. This shows that the
visual appearance of a stimulus plays an effective role in emotion recognition;

4. With respect to emotional states, the negative emotion of fear produced stronger
band power changes as compared to the joy state, irrespective of spectral band and
stimulus presentation paradigm.

Table 5. Summary of ANOVA results extracted with respect to stimulus presentation paradigms, spectral bands, and brain
regions. Statistical significance (** p < 0.05).

EI PI SI VI

F O C Te Pa F O C Te Pa F O C Te Pa F O C Te Pa

θ
**

0.004
**

0.003
**

0.03
**

0.01

α
**

0.001
**

0.01
**

0.005
**

0.001
**

0.02
**

0.003
**

0.02

β
**

0.01
**

0.02
**

0.01
**

0.03 ** **
0.004

**
0.001

**
0.04

γ
**

0.003
**

0.02
**

0.004
**

0.01
**

0.005

Considering classification performance:

1. The positive emotional state of joy was better classified as compared to fear and
neutral states in most of the paradigms;

2. Beta and gamma oscillations reported higher accuracies as compared to other spectral
bands in most of the paradigms;

3. No specific stimulus could outperform others with respect to classification accuracy.

From the conducted study and comparison with the related literature, we observe
that it is quite difficult to identify any single location or spectral band or EEG feature that
could produce common findings and observations independent of stimulus presentation
paradigms. Cortical activation may vary with respect to the time window under consid-
eration, spectral band, and brain site. The question being addressed in this study could
be further explored in detail. Additional positive and negative emotional states, such
as anger, disgust, pride, and pleasantness could be explored while considering different
stimuli. CSP-based features were extracted and analyzed here for emotion recognition.
Other features and techniques, such as deep learning, phase synchronization, and func-
tional connectivity could also be studied. This work provides a good contribution towards
designing EEG-based systems for human emotion recognition that could work effectively
in different real-time scenarios.
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Appendix A

Details for stimuli used in the videos-induced paradigm.

Table A1. List of videos shown to the participants [48].

S. No. Videos Emotional State

1. Lights Out movie trailer Fear
2. Best Vacations: Jumping Joy
3. Earth/Moon Orbit 3D Animation Neutral
4. Video clip from Insidious movie Fear
5. Caught red-handed Joy
6. Solar System Video Neutral
7. Conjuring official trailer Fear
8. Stunning China—UNESCO World Heritage Joy
9. Box Plant Basics—Corrugated Box Basics Neutral
10. Die in Disaster Movies Fear
11. Tourism Sites in Pakistan Joy
12. Planet Earth Rotation 3D Neutral
13. Scene from The Eye—Horror movie Fear
14. Berlin City Tour Joy
15. Glow-effect Neon Neutral
16. Snake catcher in Indian forest Fear
17. BBC nature documentary, 2016 Joy
18. Earth/Moon Orbit 3D Animation Neutral
19. Female Restroom—Horror clip Fear
20. Nat Geo Wild HD Ocean of Giants Joy
21. Box Plant Basics–Corrugated Box Basics Neutral
22. Frightening Creepy Clown Fear
23. 10-month-old babies Joy
24. Solar System Video Neutral
25. Scene from The Conjuring 2 Fear
26. Roller Coaster & Candy Coaster Joy
27. Planet Earth Rotation 3D Neutral
28. Fear of Snakes Fear
29. Army Man surprises his 8-year-old daughter Joy
30. Box Plant Basics—Corrugated Box Basics Neutral
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