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Abstract: The benefits of early detection and classification of epileptic seizures in analysis, monitor-

ing and diagnosis for the realization and actualization of computer-aided devices and recent inter-

net of medical things (IoMT) devices can never be overemphasized. The success of these applica-

tions largely depends on the accuracy of the detection and classification techniques employed. Sev-

eral methods have been investigated, proposed and developed over the years. This paper investi-

gates various seizure detection algorithms and classifications in the last decade, including conven-

tional techniques and recent deep learning algorithms. It also discusses epileptiform detection as 

one of the steps towards advanced diagnoses of disorders of consciousness (DOCs) and their un-

derstanding. A performance comparison was carried out on the different algorithms investigated, 

and their advantages and disadvantages were explored. From our survey, much attention has re-

cently been paid to exploring the efficacy of deep learning algorithms in seizure detection and clas-

sification, which are employed in other areas such as image processing and classification. Hybrid 

deep learning has also been explored, with CNN-RNN being the most popular. 

Keywords: epileptic seizure; EEG; wavelet; statistical parameters; SVM; random forest; deep learn-

ing; disorders of consciousness 

 

1. Introduction 

According to the International League Against Epilepsy, epilepsy is a momentary 

event of signs and symptoms due to abnormal synchronization and rapid neuronal activ-

ities in the brain [1,2]. It is one of the brain neurological chronic disorders that affect 

around 50 million people worldwide due to the brain cells’ excessive electrical activities, 

and it is characterized by epileptic seizures [3]. These epileptic seizures can result in neu-

rological, physiological, social and cognitive consequences as a result of loss of conscious-

ness and can even lead to death if proper monitoring and diagnosis have not been in place 

[4,5]. 

The loss of consciousness as a result of epileptic seizures has some common features 

with disorders of consciousness (DOCs), as established in the literature such as the work 

of [6–8]. In this condition, the eyes of the patient may be open, but even with external 

stimuli, their response might be meaningless. Moreover, a simple response/behavior may 

be observed even though the presence of sleep–wake cycles cannot be guaranteed due to 

a lack of sufficient time to determine its presence. Therefore, some of the types of disor-

ders of consciousness exhibited during the occurrence of seizures are acute consciousness 
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disorders (ACDs) that include coma, confusion, drowsiness and stupor, as well as delir-

ium and chronic disorders of consciousness (CDOCs) that consist of minimally conscious 

and vegetative states (VS) [9]. One major difference between impaired consciousness dur-

ing the seizure and these types of DOCs is in their duration, in which seizures only last 

for a short time, with the exception of status epilepticus, while other DOCs last for days, 

months or years [6,10]. The convergence of some types of DOCs and epileptic seizures to 

a common structure such as in cortical and subcortical regions helps researchers to de-

velop models that improve epileptic seizure patients’ lives and treatment methodologies 

by analyzing the behavioral and clinical features of these types of DOCs [11]. The detec-

tion, prediction and classification of epileptic seizures may shed more light on determin-

ing the pathophysiology and physiology of other types of DOCs. Two types of seizures 

have been considered from the monitoring aspect: electrographic and behavioral. An elec-

trographic or electroencephalographic epileptic seizure is an irregular paroxysmal pattern 

of an electroencephalogram (EEG). Simultaneously, a behavioral epileptic seizure is the 

clinical signs of epilepsy that the patient or an observer can observe or that can be recorded 

on video [12]. 

The observation and diagnosis of epileptic seizures manually by a neurologist is te-

dious, time-consuming and easily prone to errors. The development of an automatic com-

puter-aided system is therefore of paramount importance to help neurologists and pa-

tients identify and detect epileptic seizures by minimizing the long-term EEG recording 

to be analyzed by neurologists [13,14]. To develop an automatic CAD system, there are 

several steps for epileptic seizure detection from EEG analysis such as signal acquisition, 

data preprocessing, feature extraction, channel selection, classification and performance 

analysis/decision making. Due to the complex morphology of the EEG signal and visual 

similarity between epileptic and normal signals, suitable and meaningful features need to 

be extracted for classifiers to properly and correctly recognize and characterize different 

epileptic seizures [15–17]. 

The EEG signals can be used to acquire significant information to describe neurolog-

ical conditions and need to be recorded to localize epileptic seizures. One of the most im-

portant scales in clinical EEGs for evaluating defects and cognition is frequency. A rec-

orded EEG has a frequency somewhere within the 0.01 to 100 Hz range. The frequency 

content can be divided into five major bands known as delta, theta, alpha, beta and 

gamma [18–22]. Details on the frequencies associated with these bands are provided in 

Table 1. The abnormal activities exhibited by epileptic patients are in ictal and interictal 

conditions. Ictal refers to the epileptic seizure activity, while interictal is the activity that 

occurs between two epileptic seizures and can be regarded as seizure-free activity. Sharp, 

spikey, complex and uninterrupted or continuous structural wave forms are usually seen 

in the ictal signals, while interictal signals are seen as sharp, spikey and temporary wave-

forms. Research studies [16,22] have shown that some characteristic changes in the EEG 

signals following a seizure can be detected so that the dynamic mechanisms of the seizures 

are characterized, identified and localized. An intracranial recording is also conducted in 

some patients to determine the brain region responsible for initiating the seizure and im-

plantable devices for epilepsy treatment [22–25]. 

Researchers have explored different types of methods and domains for automatic 

seizure detection such as the time domain, frequency domain, time–frequency domain, 

non-linear methods and Empirical mode decomposition (EMD). However, studies have 

shown significant improvements in performance when two or more conventional meth-

ods are combined [12,26], which describe methods for seizure detection and provide 

mathematical descriptions of these methods. The authors of [27] provided a review on the 

applications of entropies with their advantages and disadvantages in epilepsy analysis. A 

brief description of the epileptic seizure detection and analysis process including prepro-

cessing, feature extraction, feature ranking/selection and classification was conducted in 

[28]. Automated epileptic seizure detection techniques based on multi-domain ap-
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proaches were reviewed and highlighted in [29]. In [30], the authors provided a back-

ground of pattern recognition in epileptic seizure detection with a review and analysis of 

some works conducted in epileptic detection, emphasizing analysis of the DWT influence 

in epileptic detection systems. Focal and non-focal characterization and localization in sei-

zure detection systems were reviewed by [31,32]. Various parameters such as fractal di-

mension, entropy and Hjorth parameters were used in focal and non-focal EEG signal 

characterization, and their performances were compared using the Bern-Barcelona EEG 

database. 

Most of the review articles found in the literature on epilepsy detection systems are 

focused on conventional or traditional techniques. However, recently, much attention is 

being paid to machine learning and, now, deep learning networks to explore their poten-

tial in the detection and characterization of epileptic seizures. Therefore, this study high-

lights various techniques for feature extraction and selection commonly used in epileptic 

seizure recognition systems in conventional methods and deep learning from 2010 to 2020. 

It also includes the fundamental components of an EEG seizure detection system and per-

formance metrics. 

This paper reviews the classification techniques commonly used in epileptic seizure 

detection. Our review includes works that used EEG and intracranial EEG (iEEG) or both 

in their seizure detection models. Reliable and significant feature extraction methods were 

investigated. A comparison of the performance of various algorithms for the recognition 

of seizures and classification systems were explored and analyzed. This work will bring 

researchers up to date on the significant feature extraction techniques, statistical and ma-

chine learning classifiers and recent deep learning algorithms. Another contribution of 

this review is to help researchers to identify publicly available databases of recorded epi-

leptic seizure signals. Finally, based on this current review, suggestions on future research 

directions are provided. 

Table 1. EEG frequency bands. 

Frequency Band Name Frequency Bandwidth (Hz) 

Alpha 

Beta 

Gamma 

Delta 

Theta 

<4 

4–8 

8–12 

12–30 

<30 

2. Epileptic Seizure Detection System 

This section provides a general overview of an epileptic seizure detection system. A 

typical system consists of the following stages, as shown in Figure 1: 1. data acquisition, 

2. preprocessing, 3. feature extraction, 4. classification and 5. performance analysis and 

evaluation. 

 

Figure 1. Block diagram of an epileptic seizure detection system. 

2.1. Data Acquisition and EEG Database 

The study of epileptic seizure detection and analysis has been carried out with both 

scalp EEG recordings (EEG) and intracranial EEG recordings (iEEG). Scalp EEG record-

ings use electrodes placed on the surface of the head at equal distance with the 10–20 



Brain Sci. 2021, 11, 668 4 of 27 
 

system as the most commonly used configuration [20,33]. The iEEG signals use intracra-

nial electrodes placed inside the skull when the clinical, structural and functional data are 

obtained before implantation to locate the epileptogenicity region in the brain [22]. 

Local databases that were used in previous studies were developed based on the in-

formation and data obtained and analyzed from epilepsy patients before epileptic surger-

ies. The small sample sizes, short time durations prior to seizures and small seizure actions 

hindered their applicability, limiting the specificity evaluation in the interictal signals. 

Therefore, recording of long-term signals from various seizures to properly and efficiently 

evaluate the sensitivity and specificity of algorithms is necessary [32]. 

Recently, various research works on epilepsy have employed some online databases 

that are publicly available, while some require permission from the owners such as the 

Andrzejak database [34] from the Department of Epileptology, University of Bonn, Ger-

many, the Freiburg database from the Epilepsy Centre of the University Hospital of Frei-

burg, Germany [35], the Boston Children’s Hospital-MIT EEG datasets [36] and the Bern-

Barcelona database from the University of Bern, Barcelona, Spain [37]. The largest epilep-

tic seizure database available is the European Database on Epilepsy, with 2500 recorded 

seizures in 45,000 h of recording duration. Among the more than 250 subjects, 50 under-

went iEEG at a sampling frequency of 250–2500 Hz over 122 channels [38]. Another re-

cently used database is the data obtained from the Neuro Vista ambulatory monitoring 

system, which supplied continuous iEEG signals for many months [39,40]. Figure 2 shows 

University of Bonn data for class S for ictal conditions and class N for interictal conditions. 

 

Figure 2. Example of epileptic seizure signals for ictal and interictal conditions. 

2.2. Preprocessing 

Biomedical signals are usually contaminated with various types of noise and artifacts 

during data acquisition and processing, which greatly influences the quality of feature 

extraction techniques. The artifacts’ sources are generally categorized into technical, phys-

iological and environmental sources [41–43]. Therefore, one of the aims of biomedical sig-

nal processing is to search for how to minimize or eliminate artifacts and still retain the 

most useful and relevant information in the raw EEG signal. 

Artifacts that are caused by technical issues or instruments used during EEG acqui-

sition are related to the equipment’s settings and the EEG type, that is, either an EEG rec-

orded from the scalp or an intracranial EEG recording [17]. Some of these settings are gain, 

high-pass and low-pass filters’ cut-off frequencies, sampling rate and electrode types. Ar-

tifacts due to physiological sources are electromyograms (EMGs), which are muscle activ-

ity, electrooculograms (EOGs) due to eye movement and electrocardiograms (ECG), 

which are due to the heart rate activity. In contrast, environmental interference depends 

on the environmental conditions and setting of EEG acquisition and recording [44–46]. 

Artifacts can be divided into two groups: physiological and nonphysiological artifacts, as 

summarized in Table 2. 
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Table 2. Types of artifacts in EEG signals. 

Interior Artifacts Exterior Artifacts 

Blinking of the eye (EOG) 

Heartbeat (ECG) 

Muscle movements (EMG) 

Skin resistance 

Subject’s movement 

Power line 

Machine fault 

Faulty electrode/poor placement  

ventilation 

Digital artefacts (loose wiring, etc.) 

The presence of these strong unwanted components severely reduces the quality of 

the signal and diminishes the accuracy of further processing such as feature extraction 

and classification. Therefore, the need for denoising and removing these artifacts and 

noises can never be overemphasized. Different techniques and algorithms have been de-

veloped to eliminate artifacts and noise to make the process more reliable for further pro-

cessing and analysis [45]. These methods include early prevention steps taken during the 

EEG recording, which include preventing muscular and ocular artifacts by limiting eye 

blinking, eye movements and movements by other parts of the body. Another method is 

the threshold criterion which excludes corrupted trials of EEG signal recordings [47]. The 

method of location and elimination of contaminated activity is also a feasible approach 

using the electrooculogram (EOG) subtraction technique [48,49]. Independent component 

analysis (ICA) is one of the most popular techniques in EEG artifact rejection and de-

noising with excellent results. Researchers have extensively studied time–frequency tech-

niques as a viable approach that includes wavelet transform denoising techniques. The 

autoregressive method, proposed in [50], can be used to subtract the artifact signal from 

the original EEG signal. Adaptive filtering is also another technique to optimize perfor-

mance by adjusting its transfer function by itself. Other techniques include the support 

vector machine (SVM) approach, which categorizes the EEG epilepsy signal into different 

classes and then eliminates artifacts such as head movement [51]. 

2.2.1. Filtering Technique 

One of the popular techniques for artifact elimination/reduction is the filtering tech-

nique. In the filtering technique, filters are applied to the raw EEG signals to remove or 

reduce artifacts and noise for better EEG interpretation, diagnosis and analysis. The filter-

ing technique has been used in EEG signals for removing power line noise (50 hz or 60 

hz), unwanted high-frequency components such as artifacts generated from muscular ac-

tivities and low-frequency components such as low-frequency drifts. 

Several filtering approaches have been developed by researchers over the years, from 

simple classical approaches [52,53] to adaptive approaches [54,55]. The Kalman filter, 

Weiner filter and Bayes filters are some of the common filtering approaches [29]. How-

ever, adaptive filtering has the best performance. Adaptive filtering, unlike the simple 

filtering technique that uses a fixed frequency range, adaptively adjusts its weights after 

estimating the artifact signals using a reference signal, and a clean EEG signal is obtained 

after subtracting the estimated artifactual components. It is easy to use, has no calibration 

requirements and can be implemented online. These are some of its advantages. However, 

the use of reference signals in this technique requires additional sensors, which increase 

the cost and complexity. 

The structure of adaptive filtering is shown in Figure 3, where �(�) is the desired 

signal, �(�) is the reference signal, y(n) is the adaptive filter estimated output and �(�) 

is the residual error which is given in Equation (1): 

�(�) = �(�) − �(�) (1)

Adaptive filtering uses optimization algorithms to help in adjusting its weights to 

obtain the optimum filter coefficients. Recursive least squares (RLS) is one of the best and 

common optimization algorithms employed in adaptive filtering [56]. The least mean 
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squares (LMS) algorithm is another optimization algorithm used in the adaptive filtering 

technique [57–59]. 

 

Figure 3. Adaptive filtering method. 

2.2.2. Blind Source Separation Techniques 

Blind source separation techniques (BSS) are some of the most commonly used tech-

niques for artifact and noise removal from EEG data by excluding neuronal activity signal 

sources from artifact source signals [60–63]. One of the major merits of BSS is that the 

previous mixing information from different sources is not needed, or in some situations, 

a very small amount of information is needed. Let X be multi-channel EEG signals with 

linear mixing of sources S; then, mathematically, 

� =  �� (2)

where A is the mixing matrix. BSS can be used to generate an un-mixing matrix W to sep-

arate the sources: 

��  =  �� (3)

where �� is the estimation of the sources. 

Once all of the neuronal and artifactual sources are known, the latter can be removed 

to obtain an artifact-free EEG. There are many BSS algorithms developed to remove arti-

facts from EEG signals, including independent component analysis (ICA), principal com-

ponent analysis (PCA), canonical correlation analysis (CCA) and morphological compo-

nent analysis (MCA). 

In the preprocessing stage, a signal is also normalized to compare the signal with that 

of different patients and that recorded by another acquisition system. 

3. Feature Extraction Techniques 

To develop a robust automated scheme for epileptic seizure detection, categorizing 

EEG signals (epileptic seizures) into a pre-seizure, seizure and post-seizure occurrence 

must be identified and evaluated. Many features have been explored in the literature to 

describe seizure behavior properly. These features describe the EEG static behavior in 

time and space as well as dynamic properties. Feature extraction techniques commonly 

found in the literature include time domain, frequency domain and time–frequency anal-

yses, wavelet analysis, energy distribution, entropy analysis and feature tensors [64]. 

However, recently, most CAD systems use two or more methods combined as a hybrid 

technique. 

3.1. Time Domain Analysis 

Epileptic EEG signals in their raw form are a function of time. Therefore, features that 

are calculated and extracted on these signals are called time domain features, although 

time domain features are not mostly used alone in EEG epileptic signal analysis. Some 
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features such as amplitude, synchronization and regularity, which change during epilep-

tic seizure events, characterize the EEG signal. Some of the works that used these features 

include [65–67], in which the relative duration, relative average amplitude and the coeffi-

cient of amplitude were used in epileptic seizure detection techniques. Another method 

is to use empirical mode decomposition (EMD); this method is applied to nonstationary 

signals in nature [68]. Several works have reported accuracies obtained after applying 

higher-order spectra in their approach, as in [69–71]. This paper selected some feature 

extraction techniques in the time domain that are predominantly new in the literature and 

explained as follows. 

Statistical Parameters 

Researchers have used statistical parameters such as skewness, kurtosis and line 

length to characterize between non-seizure and seizure conditions because the statistical 

distribution of EEG signals for various conditions is different. Therefore, these parameters 

are calculated as features to differentiate between normal and a seizure event. 

For example, let X be the sequence used for feature extraction such as an epoch of an 

EEG signal, donated as in Equation (4) [65]: 

      1,......1,0  NxxxX
 (4)

where N is the length of the sequence. 

The most common statistical parameters used in extracting features are as follows: 

���� =
1
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� ��
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The curve length or line length is expressed as 





N

i

xxixxL
1

]1[][)(
 

(12)

Other statistical variants include average power, energy, root mean squared value 

(RMS), cross-correlation, independent component analysis, linear discriminant analysis 

and principal component analysis, among others. 
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3.2. Frequency Domain 

To capture the frequency components of epileptic EEG signals during various signal 

seizure conditions, signal transformation is conducted to describe the details of the fre-

quency representation of the signal to obtain some useful information about the signal. 

The popular Fourier transform calculates all the frequency components in the signal so 

that different brain activities can be isolated and described based on their frequency. To 

extract features based on the signal power division at each frequency, the power spectral 

density (PSD) method is used to calculate and analyze the features. Some of the spectral 

features calculated using the PSD technique include peak frequencies or dominant fre-

quency, average band frequency, spectral edge frequency, intensity weighted bandwidth 

and the bandwidth of the dominant frequency [72]. 

One of the methods for obtaining the PSD values is using a Welch frequency estima-

tion technique. The EEG data are segmented into overlapping segments, and each seg-

ment is windowed, averaged and estimated from its periodogram. 

If x(n), wherein n= 1,2, …, N, is the data sample derived from the available signal 

data, the estimated periodogram is given as [32] 

�����(�) =
1

�
�� �(�)������

�

���
�

�

 (13)

where �����(�) is the periodogram power estimation. If the data segments are expressed as 

xl (n), l = 1,2, …, S, the Welch spectrum is given as 

���(�) =
1

�
� ���(�)

�

���
 (14)

���(�) =
1

�

1

�
�� �(�)��(�)������

�

���
�

�

 (15)

where M is the length of each EEG segment, while ���(�) is the periodogram estimation of 

the first segment, v(n) refers to a data window, ���(�) denotes Welch PSD values, S refers to 

segment number and P is the average of v(n), which is expressed as 

� =
1

�
� |�(�)|�

�

���
 (16)

This approach is known as the non-parametric method, and its limitation is spectral 

leakage due to its windows. The parametric method is proposed to overcome non-paramet-

ric limitations. The signal is taken as a random stationary process, with the noise as input 

when the signal is modeled as filter output. Filter parameters are later determined after that. 

One of the parametric methods is the autoregressive model. This technique uses a linear 

combination of the signal’s earlier activities with uncorrelated noise [26,73,74], given as 

ji

p

j ji xAe  0  
(17)

where Xi is the input signal, Aj is the model coefficient matrix, p is the model order and ei 

refers to a multivariate zero-mean uncorrelated vector. 

mkkRkjRA
p

j j ,...,1),()(
0

   
(18)

To determine the Aj matrix, the linear equation m x p: was solved, where m is the 

number of channels, p is the AR model’s calculated order and R(k) refers to the covariance 

matrix biased values. 

In [75], the authors applied a step-wise least square estimation algorithm (SLSA) on 

seizure and normal EEG signals to estimate the autoregressive model (AR) orders. In con-
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trast, the Burg method was applied for the estimation of PSD values. EEG epileptic sei-

zures were classified with the SVM method based on an optimal AR model order and 

firefly optimization (FA) [76]. 

3.3. Time–Frequency Domain 

The shortcoming of time domain analysis is that, while the exact location of events 

can be located, the events’ frequency components cannot be determined. While the fre-

quency domain provides information on frequencies involved in the signal, it cannot pro-

vide information about when they occur. The time–frequency domain was developed to 

overcome the limitations of the time domain and frequency domain. Several techniques 

for signal transformation and decomposition to provide information in both time and fre-

quency have been developed in the literature [12]. Short-time Fourier transform (STFT), 

Weiner–Ville distribution (WVD), spectrography and wavelet transform analysis are com-

monly used techniques to calculate and extract epileptic EEG features. 

3.4. Wavelet Analysis 

Wavelet transform (WT) is a popular biomedical signal processing approach due to 

its oscillatory nature, finite length and suitability in dealing with nonstationary and tran-

sient biomedical signals [77,78]. In EEG epileptic seizure signal analysis, WT is used to 

decompose the signals into various components by using scaling and shifting functions 

over the whole signals to obtain a signal component in time and frequency domains sim-

ultaneously [79]. Mother wavelet has to be chosen as a function that can be used to inter-

pret the original signal into sub-bands. Generally, wavelet functions can be defined in 

Equation (19) as 

Ψ�,� =
1

√�
Ψ �

� − �

�
� (19)

where � is the scale parameter and � is the shift parameter. 

From Equation (19), wavelet transform is given as 

�(�, �) = � �(�)Ψ�,�
∗ (�)�� (20)

Meanwhile, Equation (21) defines inverse wavelet transform as 

�(�) = � �(�, �) Ψ�,�(�)���� (21)

In discrete wavelet transform (DWT), a low-pass filter g[n] and a high-pass filter h[n], 

which correspond to scaling and shifting functions, respectively, were designed [80] as 

quadrature mirror filters successively. These filters produced approximation coefficients 

and detail coefficients, as shown in Figure 4. The decomposition level should be chosen 

so that the filtering and decimation processes continue up to that level [81,82]. 

Let an EEG signal be x(n), decomposed into multiple frequency bands of different 

scales (j), and assume the length of the signal N satisfies Equation (22): 

� = 2� (22)

The decimation process is performed at each level by downsampling the frequency 

by half to obtain a good frequency resolution. The efficacy of wavelet transforms in EEG 

epilepsy detection analysis has been explored by many research works. Figure 5 shows an 

example of an epileptic seizure signal from the Bonn University dataset decomposed up 

to level 10. The detail coefficients, which contain most of the noisy components, are set to 

zero as most of the signal information lies in approximate coefficients (low frequency). 

This process is also known as thresholding. However, the authors of [72–75] addressed 

the limitation associated with thresholding (i.e., deciding thresholding values for detail 

coefficients to be chosen). 
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Most of the works reported in the literature that used wavelet analysis combined this 

approach with another technique. 

Other techniques employed and used in time domain analysis are statistical param-

eters, curve length or line length, energy, power and RMS. According to Logesparan et al. 

[83], line length is one of the best features for characterizing the epileptic EEG region. 

 

Figure 4. Discrete wavelet decomposition. 

 

 

 

 

 

 

 

 

Figure 5. Example of epileptic seizure signal decomposed into various levels. 

3.5. Non-Linear Analysis 

The non-linearity of EEG epileptic signals can be well detected by the frequency do-

main. The non-linearity and non-stationarity of EEG signals render it to be considered 
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chaotic. Therefore, the changes in EEG signals are difficult to be detected by visual inspec-

tion [84]. Common techniques to detect minute data changes due to EEG signals’ non-

linear and dynamic behavior are entropies and Lyapunov techniques. 

Entropy Analysis 

Entropy may generally be defined as the measure of uncertainty and fluctuation of a 

system. The values of entropy represent the degree of uncertainty and how chaotic a sys-

tem is. Larger values of entropy indicate a more chaotic and uncertain system. Various 

entropy estimators have been applied to detect and analyze EEG epileptic signals to dis-

tinguish and inspect seizure occurrence and normal signals. The most common entropy 

estimators are Shannon entropy, approximate entropy, sample entropy, Renyi’s entropy, 

fuzzy entropy and permutation entropy [85–88]. 

4. Classification Techniques 

The quality of classification algorithms is largely dependent on the feature extracted 

and fed to the classifier. The features are extracted with the assumption that they can be 

characterized between normal and different seizure categories. Classifiers are decision-

making systems in which the class data boundaries are defined and labeled based on their 

features. The classification method can be simple such as thresholding techniques, or com-

plex such as machine learning algorithms. 

In the classification stage. There are generally two steps to be carried out, that is, 

training and testing phases. The extracted features are divided into those phases, and after 

training the classifier with training data, the new data can be classified with the trained 

network. Classifiers in epileptic seizure detection systems can be developed using statis-

tical analysis such as clustering, machine learning or, recently, deep neural networks [89]. 

4.1. Machine Learning Techniques 

Machine learning algorithms are the most widely used classifiers in automated epi-

lepsy detection systems. The conventional handcrafted feature extraction methods are 

used to extract features and statistically analyze, rank and select data that are used as 

input to machine learning algorithm classifiers. Several classification techniques have 

been proposed in the literature, such as k-nearest neighbor (k-NN), logistic regression, 

random forest, artificial neural networks (ANNs), fuzzy logic and SVMs with various ker-

nel functions. A list of studies using machine learning algorithms with different feature 

extraction techniques is shown in Table 3. 

Table 3. Summary of reviewed works that used conventional feature extraction techniques and machine learning classifi-

ers. 

Author Year Features Classifier Performance (%) 

[90] O. Faust et al. 2010 PSD RBF SVM Acc = 98.33 

[91] Subasi et al. 2010 PCA, LDA, LDA SVM Acc = 98.75 

[92] Guo et al. 2010 DWT ANN Acc = 99.60 

[93] Oweis  2011 EMD + MEMD Euclidean Clustering Acc = 94.00 

[94] Orhan et al. 2011 DWT K-Means Clustering Acc = 96.67 

[95] Yuan et al. 2011 Entropy/Hurst exponent ANN/PD Acc = 96.50 

[96] Marcus and Dragan 2012 Bilinear TFD SVM/ Acc = 99.30 

[97] Arslan et al. 2013 SVD SVM Acc = 99.00 

[98] Gajic et al. 2014 Wavelet Quadratic Classifier Acc = 98.50 

[99] Nabeel 2014 Statistical, Non-linear Linear Classifier Acc = 99.85 

[100] Yatindra et al. 2014 Wavelet entropy SVM Acc = 90.00 

[101] Jaiswal et al. 2015 EMD, Wavelet, Morphological filters Fuzzy Clustering 
PI = 98.03, QV = 

23.82 
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[102] Rajaguru et al. 2015 Morphological filters ANN Acc = 98.33 

[103] Bhattacharyya et al. 2015 Focal and non-focal, EWT  SVD, EM, MEM Acc = 90.00 

[104] Li et al. 2016 DD-DWT  LS-SVM Acc = 99.36 

[105] Li et al. 2016 Entropy  GA-SVM AUC = 0.97 

[106] Peker et al.  2016 DTCWT CVNN Acc = 100 

[107] Riaz et al. 2016 EMD SVM Acc = 96.20 

[108] Ghayab et al.  2016 SRS and SFS LS-SVM Acc = 99.90 

[109] Upadhyay et al.  2016 DWT LS-SVM Acc = 100 

[110] Kabir et al. 2016 Optimum allocation technique LMT Acc = 95.33 

[111] Pippa et al.  2016 
Time domain and frequency domain 

features 
Bayesian Net Acc = 95.00 

[112] Jaiswal and Banka 2016 SpPCA and SubXPCA SVM Acc = 94.60 

[113]Sharma and Pachori 2017 TQWT LS-SVM + FD Acc = 100 

[114] Patidar et al. 2017 TQWT and Kraskov entropy LS-SVM Acc = 97.75 

[115] Diykh et al. 2017 
Weighted complex network 

combined with time domain features 
LS-SVM Acc = 98.00 

[116] Li et al. 2017 MODWT and LND RFC Acc = 100 

[117] Tiwari et al. 2017 
Pyramid scheme for keypoint localization 

and LBP 
SVM Acc = 99.89 

[118] Mursalin et al. 2017 ICFS RFC Acc = 100 

[119] Shaikh et al. 2017 EMD ANN Acc = 96.10 

[120] Kocadagli and 

Langari 
2017 DWT and fuzzy relations ANN Acc = 99.90 

[121] Torse et al. 2017 EMD CSM-SVM Acc = 96.40 

[122] Sharma et al. 2018 MMSFL-OWFB-based KE SVM Acc = 100 

[123] Tzimourta et al. 2018 Wavelet transform-based features 
Random Forest 

Classifier 
Acc = 95.00 

[124] Sriraam et al. 2018 Teager energy feature 

Supervised 

Backpropagation Neural 

Network 

Acc = 96.66 

[125] Sudalaimani et al. 2018 Sub-frequency band features GRNN Acc = 91.60 

[126] Raghu and Sriram 2018 NCA SVM Acc = 98.80 

[127] Li et al. 2018 
GMM and GLCM features, 

RFE-SVM 
SVM Acc = 100 

[128] Cooman et al. 2018 HRI features 
SVM + Adaptive 

Heuristic classifier 
EPsen = 83.30 

[129] Li et al. 2018 WPT and KDE LS-SVM Acc = 99.60 

[130] Cruz et al. 2018 ACC and EMG 
SVM on Cloud 

Computing Platform 
Acc = 83.30 

[131] Zhang et al. 2018 WPD, fDistIn KNN Acc = 98.33 

[132] Feng et al. 2018 WPD SVM Acc = 98.67 

[133] Tanveer et al. 2018 FAWT and entropy-based features RELS-TSVM Acc = 100 

[134] Choudhury et al. 2018 XHST KNN Acc = 100 

[135] Wani et al. 2018 DWT ANN Acc = 95.00 

[136] Naser et al. 2019 
DWT and approximation and abe 

entropies 
SVM  Acc = 98.75 

[137] Lamhiri and 

Shmuel 
2019 Hurst exponent k-ANN Acc = 100 

[138] Raghu et al. 2019 Sigmoid entropy SVM Acc = 100 
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[139] Wang et al. 2019 
Symlet wavelet processing, 

and grid search optimizer 

Gradient Boosting 

Machine 
Acc = 96.10 

[140] Bose et al. 2019 Multifractal detrended fluctuation analysis SVM Acc = 100 

[141] Dalal et al. 2019 FAWT and FD RELS-TSVM Acc = 90.20 

[142] Osman and 

Alzahrani 
2019 SOM RBFNN Acc = 97.47 

[143] Fasil O.K.; Rajesh R 2019 Time domain Exponential Energy Acc = 99.50 

[144] Saminu et al. 2019 DWT, Entropies, Energy SVM, FFANN Acc = 99.00 

[145] Mahjoub et al. 2020 TQWT, IMFs, MEMD SVM Acc = 98.78 

[146] Raluca et al. 2020 DWT ANN Acc = 91.10 

[147] Ozlem et al. 2020 Ensemble EMD KNN Acc = 97.00 

[148] Khaled 2020 NA Random Forest Acc = 97.08 

Table 3 compares the performance of various EEG detection algorithms in past works 

in terms of the feature extraction technique, the classifier employed and the accuracy ob-

tained. Faust et al. [90] achieved an accuracy of 98.33% using a single-feature, PSD and 

radial basis function SVM model. An accuracy of 100% was recorded with the DWT fea-

ture by Upadhyay et al. [109] with an LS-SVM model. A new feature, Teager energy, was 

used by Sriraam et al. [124] to achieve 96.66% accuracy with supervised backpropagation. 

Some studies have also employed multiple features with an ML technique such as the 

work of Saminu et al. [144]. This study used a feedforward neural network (FFNN) cou-

pled with an SVM to detect and classify ictal and interictal signals. It was computationally 

less complex with a high accuracy of 99.6%. Mahjoub et al. [145] conducted feature extrac-

tion of epileptic EEGs with tunable-Q wavelet transform (TQWT) and intrinsic mode func-

tions (IMFs) of multivariate empirical mode decomposition (MEMD) and directly from 

the EEG raw data. This approach was a mix of linear and non-linear parameters and mul-

tiple features as its edge; an accuracy of 98.7% was recorded with SVM. From Table 3, it 

can be seen that the genetic algorithm, Bayesian net and fuzzy clustering are not popular 

classifiers in EEG signal processing [101,105,111]. RFC, ANN and KNN are quite promis-

ing classifiers with great accuracy [116,146,147]. However, SVM is the most commonly 

applied classifier [116–130,149–152]. 

Overview of Support Vector Machine 

SVM is a machine learning classifier highly suitable for binary classification with fea-

ture vectors of a high dimension. It is very suitable and popularly used in biomedical 

signal processing and applications due to its capability to deal with many predictors and 

high accuracy. The distance of the optimal hyperplane obtained by SVM from the feature 

space of a high dimension and that of each class closest to the data sample is maximized 

by SVM [153]. It depends on its regularization parameter, which controls the level of over-

lap between the class and kernel functions, which is used to map training data to a feature 

space of a higher dimension from an input space [154]. Figure 6 depicts an example of a 

2D separable classification problem by denoting the maximum margin and optimal hy-

perplane. The support vectors are those data points on the margin line [155]. 
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Figure 6. An example of a separable problem in a 2D space. 

One of the common kernel functions used in SVM is the linear kernel function with 

the following equation: 

Another type of kernel function is a polynomial with a degree � as follows: 

����, ��� = (��, ��)�  (24)

where �(� ≥ 1) is the number of polynomials. 

If the number of polynomials is � = 2 or � = 3, then the function is called a quad-

ratic kernel function. 

4.2. Deep Learning Techniques 

Deep learning algorithms were employed in automated epilepsy detection systems 

to cater for the limitations associated with machine learning techniques. DL does not re-

quire handcrafted features to be extracted manually; due to its multilayer architecture, it 

can deal with large datasets, execute imbalanced datasets and provide a result without 

biasing towards a majority class [156,157]. Some of the DL architectures include long 

short-term memory (LSTM) networks, convolutional neural networks (CNNs) and gated 

recurrent units (GRUs). A variety of convolutional models have been proposed and ap-

plied by different researchers to investigate their capability in automated epilepsy detec-

tion systems [158–160]. 

The most common approach is a convolutional neural network with a variety of ar-

chitectures such as temporal CNNs (TCNNs), temporal graph convolutional networks 

(TGCNs) and CNN-recurrent neural networks (RNNs) [161]. A CNN’s basic structure 

consists of convolutional layers, max pooling layers, fully connected layers and softmax 

layers [162,163]. 

Uniquely, the CNN architecture conducts feature extraction automatically by itself 

in the process of classifying the EEG signal. The convolutional layer conducts the filter-

ing/feature extraction, while the max pooling layer carries forward the significant feature 

decided/chosen by the convolutional layer. The fully connected layer simply compiles the 

extracted data for the softmax layer that conducts the binary classification, i.e., converting 

the data into probabilities between 0 and 1. 

Although deep learning algorithms outperform their conventional counterparts, 

large datasets’ requirements for their operation become their major limitation. A list of 

works in automated epilepsy detection and analysis that used deep learning methods is 

summarized in Table 4. 

  

�(�, �) = ��� (23) 



Brain Sci. 2021, 11, 668 15 of 27 
 

Table 4. Summary of reviewed works that used deep learning techniques. 

Authors Year Features Performance (%) 

[163] Qi et al.  2014 MCC-based R-SAE model EPsen = 100 

[164] Thodoroff et al.  2016 CNN + RNN EPsen = 85.00 

[165] Johansen et al.  2016 CNN AUC= 94.70 

[166] Antoniades et al.  2016 CNN EPacc = 87.51 

[167] Lin et al. 2016 SSAE EPacc = 96.00 

[168] Achilles et al.  2016 CNN AUC = 78.33 

[169] Wei et al.  2016 Multichannel CNN EPacc = 92.40 

[170] Yuan et al.  2017 STFT-Mssda EPacc = 93.82 

[171] Gogna et al.  2017 Semi-supervised stacked autoencoder EPacc = 96.90 

[172] Ullah et al.  2018 P-1D-CNN EPacc = 99.90 

[173] Acharya et al.  2018 CNN EPacc = 88.67 

[174] Tjepkema-Cloostermans et al. 2018 CNN (1D and 2D) and/or LSTMs EPspe = 99.90 

[175] Yuvaraj et al.  2018 CNN EPsen = 86.29 

[176] Maria Hugle et al.  2018 CNN EPsen = 96.00 

[177] Thomas et al.  2018 CNN EPacc = 83.86 

[178] Hussein et al.  2019 LSTM + FC EPspe = 100 

[179] Emami et al.  2019 CNN DR = 100 

[180] Jang and Cho  2019 Dual deep neural network EPsen = 100 

[181] Haotian Liu 2019 CNN, LSTM, GRU Acc = 0.96 

[182] Rohan Akut 2019 WT-CNN Acc = 99.40 

[183] Thara et al. 2019 DNN Acc = 97.21 

[184] Turk et al. 2019 CNN Acc = 93.6 

[185] Akyol 2020 SEA Acc = 97.17 

[186] Rahib et al. 2020 Deep CNN Acc = 98.67 

[187] Zhou and Li 2020 Improved RBF NA 

[188] Ilakiyaselva et al. 2020 CNN Acc = 98.50 

[189] Gao et al. 2020 Deep CNN Acc = 92.60 

[190] Fabio et al. 2020 CNN Acc = 98.82 

[191] Kyung-Ok et al. 2020 CNN, FCNN, RNN AUC = 0.993 

[192] Wei Zhao et al. 2020 1D DNN Acc = 99.52 

Table 4 compares the performance of various EEG detection and classification algo-

rithms previously employed by researchers using deep learning schemes. Gao et al. [189] 

recently implemented a deep convoluted neural network (DCNN) for epileptic EEG signal 

classification called (EESC). They used PSD energy diagrams for feature extraction with 

accuracy of over 90% on the CHB-MIT EEG dataset. Jang and Cho [180] proposed a dual 

deep neural network using spectral analysis features for automatic detection of seizures 

from EEG signals. It has a low computational cost and a sensitivity of 100%. In focal epi-

leptic seizure detection, a CNN (1D and 2D) and/or LSTMs were adopted by Tjepkema-

Cloostermans et al. [174] with an AUC of 0.94 and specificity of 99.9%. A feature learning 

scheme using unsupervised deep convoluted neural networks proposed by Yuvaraj et al. 

[175] achieved a sensitivity of 86.29% and a latency rate of 2.1 s. In another study, Nogay 

et al. [159] implemented a pretrained 2D AlexNet CNN coupled with transfer leaning to 

detect epileptic seizures from EEG data. It also uses spectrogram short-term images and 

achieved 100% accuracy. Other studies that used spectrograms include [153,158] and 

[176]. A 3D kernel of Wei et al. [169] combined 2D images of an individual-channel EEG 

time series to obtain a 3D image. This was used to predict ictal, pre-ictal and interictal 

periods with an accuracy > 90%, and sensitivity of 88.9%. Olokodana et al. [160] proposed 

a DNN with distributed kriging-bootstrapping for seizure classification. This approach 
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achieved relatively high accuracy at 91% in less time than basic DNN. Yuan et al. [170] 

developed stacked sparse denoising autoencoders (SSDA) for feature extraction from an 

EEG spectrogram synthesized from short-time Fourier transform. A study by [184] imple-

mented a 2D scalogram derived from continuous wavelet transform for feature extraction. 

A CNN was used to classify the features over five classes of EEG records, and an accuracy 

of > 90% was obtained across the board. 

5. Discussion 

Selecting the most relevant and significant features is an important step in develop-

ing reliable and precise models. Therefore, understanding signals’ statistical properties is 

crucial as each implanted electrode’s statistical measures and channel are different. Ana-

lyzing these properties, such as skewness, energy and entropy, will help researchers avoid 

using irrelevant features that may increase the dataset and increase the computational 

complexity of the machine learning classifiers. Most of the researchers adopted testing 

different machine learning classifiers and evaluated their performance compared to clas-

sifiers. The best classifier is considered for brain datasets to solve seizure detection prob-

lems. 

Several classifiers have been tested and evaluated for EEG epileptic seizure detection 

to discriminate between seizure and non-seizure states. The heterogeneity of features sup-

plied to classifiers, differences in processing techniques and patient data makes it difficult 

to compare classifiers. ANN and SVM classifiers are the most common techniques, with 

the latter being easier and faster than the former. 

Despite researchers’ contribution and effort to develop and improve seizure predic-

tion and characterization algorithms, the realization of clinical devices by converting these 

existing techniques has been a major bottleneck. Based on the algorithms’ studies, it is 

evident that the specific build-up to a seizure state is responsible for the seizure and not a 

random process. From this review, most researchers employed feature extraction schemes 

such as wavelet transform, statistical methods and chaos techniques such as entropy anal-

ysis. However, in deep learning EEG seizure application, periodograms are the most 

promising feature extraction technique. From this survey, it appears that multi-feature 

extraction schemes did not perform better than single-feature classifiers. Hence, only sig-

nificant features should be included to avoid increasing complexity with little or no im-

provement in performance. Wavelet transform combined with other techniques such as 

entropy and statistical parameters has also been employed [64]. Figure 7 shows the per-

centage of conventional methods used by researchers based on our reviewed articles’ 

analysis, while Figure 8 depicts the comparison of conventional techniques and deep 

learning models in percentages employed by researchers from 2014 to 2020. 

Standardization of epileptic seizure techniques is also an issue of concern because 

homogenous comparison performance measures must be grouped to provide a homoge-

neous and standard comparison. Another issue is related to recording the EEG signals’ 

duration in either scalp EEG or intracranial EEG. 
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Figure 7. The percentage of conventional techniques involved in epilepsy studies. 

Researchers have devoted much attention to investigating and developing hybrid 

models over the years, as indicated in Figure 7. The figure shows the percentage of con-

ventional techniques reviewed in this paper. Hybrid techniques are the most employed 

approach, with 37% of the cases. SVM is the most used technique in the case of stand-

alone techniques, which covered 26% of the reviewed articles. Its simplicity, suitability for 

binary classification, capability to deal with many predictors and high accuracy are some 

of the advantages of SVM. ANN covered 12% of the reviewed articles which used the 

number of neurons and layers instead of kernel functions as in SVM. Other techniques 

investigated are clustering with 5% of the reported articles and the random forest tech-

nique with 3% of the investigated techniques. 

 

Figure 8. Comparison of conventional techniques and deep learning models used by researchers 

from 2014 to 2020. 

Figure 8 shows the number in percentage of published articles from 2014 to 2020 for 

conventional techniques and deep learning approaches. The trends indicate the surge in 

researchers’ attention towards deep learning approaches from 2014 upwards, with 22% of 

reviewed articles in 2014, increasing to 68% in 2019. In comparison with conventional 
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schemes, the chart shows a continuous decrease from 78% of published articles in 2014 to 

24% in 2020. This shows how researchers have focused their attention on exploring the 

efficacy of deep learning approaches. 

5.1. Challenges 

Despite the progress achieved in the detection and classification of epileptic seizures 

recently, there are still some challenges holding researchers back that include, among oth-

ers, the following: (1) Many research studies have used various available datasets; how-

ever, combining these datasets is quite difficult as each has a different sampling frequency, 

a different number of electrodes and different parameters, which hinders researchers in 

combining different datasets to obtain a large dataset for training the model. (2) Real-time 

signals need to be used for detection and classification to realize real-world applications 

in a clinical setup. Still, most of the datasets available contain a chosen segment of EEG 

signals that are not suitable for real-world clinical implementation. (3) The lack of stand-

ardization among the developed algorithms is another challenge that makes a homoge-

nous performance comparison difficult. (4) In recent deep learning models, the require-

ment of higher computational resources that are not available to some researchers hinders 

the realization of reliable, practical and precise non-invasive models that meet the demand 

of mobile health and IoMT. 

5.2. Future Research Direction 

This paper provides a comprehensive investigation of epileptic seizure identification 

and detection techniques. Over the years, tremendous progress has been witnessed, rang-

ing from traditional techniques to the recent deep learning application. However, some 

challenges have been identified and raised that bring some interesting research questions 

that still need to be addressed to implement and improve these developed models suc-

cessfully. The following are some of the suggestions for uplifting future research. 

1. With a large volume and high dimension of epileptic seizure datasets, dimensional 

reduction techniques that reduce the dataset dimension and still retain the significant 

signal information need to be further investigated. 

2. Suitable features that reduce the classifier’s computational complexity and time 

should be considered. 

3. For models that use invasive recordings, the developed methods must identify sei-

zure onset and measure the seizure strength. 

4. Researchers should choose a classifier that will not miss or skip all the relevant EEG 

channels and electrodes. 

5. Deep learning structures must be carefully selected based on the problem’s peculiar-

ities and involve relevant datasets for real-time, online and offline detection. 

6. Hybrid deep learning techniques should be extensively explored. 

7. EEG signal analysis is a neurophysiological approach which holds great potential for 

enhanced diagnosis and classification of acute disorders of consciousness (ADOCs) 

such as a vegetative state (VS) and a minimally conscious state (MCS), among others. 

It can be used to predict the dynamics in the thalamocortical connections as it depicts 

changes in the activities of the reticular system. Detection and classification of epi-

leptic seizures using EEG signals are a significant step towards advanced diagnosis 

of unresponsive wakefulness syndrome (UWS) and MCS by characterizing the level 

of awareness as they share some common features with epileptic seizures. Previous 

work such as that of Naro et al. [193] used γ-band transcranial alternating current 

stimulation (tACS) as a non-invasive neurostimulation protocol on DOC patients to 

differentiate UWS and MCS individuals. Another neuromodulation approach was 

also applied in [194], while electrophysiologically based approaches were discussed 

in [195]. Further research on deep learning techniques could be employed in the clas-

sification of VS, MCS and UWS. 
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6. Conclusions 

This study investigated and reviewed various automated EEG epileptic seizure de-

tection and classification techniques. It also highlighted both traditional feature extraction 

techniques and statistical and machine learning classifiers. Any developed model must be 

subjected to a rigorous performance evaluation to test its efficacy in identifying and de-

tecting epileptic seizure signals. Conventional feature extraction techniques commonly 

employed by researchers are wavelet transform, entropy and non-linear techniques. 

ANN, SVM and random forest are the most commonly used machine learning classifiers, 

while CNN is most commonly used for deep learning. Further investigation must be thor-

oughly conducted on seizure detection techniques to improve the outcome. Recent studies 

have also focused on hybrid deep learning schemes. This recent research direction needs 

to be investigated and compared with conventional techniques. Advanced detection and 

classification using EEG signals must be further investigated to characterize the level of 

awareness in epilepsy and DOC patients to differentiate between VS, MCS and UWS. 

With all these, the future is very promising for early diagnosis and treatment of epileptic 

seizures. 
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Abbreviations 

ACD acute consciousness disorder 

ANN artificial neural network 

ApEn approximate entropy 

AR autoregressive  

CAD computer-aided diagnosis  

CCA canonical correlation analysis 

CD correlation dimension 

CDOC chronic disorder of consciousness 

CNN convolutional neural network 

DBF deep belief network 

DCNN deep convoluted neural network 

DOC disorder of consciousness 

DNN deep neural network 

DWT discrete wavelet transform 

EEG Electroencephalogram 

EESC epileptic EEG signal classification 

EOG Electrooculogram 

FDR Fisher discriminant ratio 

FA firefly optimization 

GMM Gaussian mixer model 

GRU gated recurrent unit 

HOS higher-order spectra 

HRS hierarchical region splitting 

ICA independent component analysis 

ICGA integer coded genetic algorithm 

IMF intrinsic mode function 

IoMT internet of medical things 
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KNN k-nearest neighbor 

LLC locally linear classification 

LMS least mean square 

LMTS long short-term memory 

MCA morphological component analysis 

MCS minimally conscious state  

MRF Markov random field 

MRI magnetic resonance imaging 

NB naive Bayes 

NLMS non-local means 

PCA principal component analysis 

PD Parkinson’s disease 

PSD power spectral density  

PNN probabilistic neural network 

PSO particle swarm optimization 

RMS root mean square 

RLS recursive least square  

STFT short time Fourier transform 

SVM support vector machine 

SLSA step-wise least square estimation algorithm 

SRS simple random Sampling  

SSDA stacked sparce density autoencoders 

TCNN temporal CNN 

TGCN temporal graph convolutional networks 

TQWT tunable Q-wavelet decomposition 

UWS unresponsive wakefulness syndrome 

VS vegetative state  

WPE wavelet packet entropy 

WT wavelet transform 

WVD Weiner–Ville distribution 
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