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Abstract: In this experiment, we explored how unexpected perturbations in the initial (grip posture)
and the final action goals (target position) influence movement execution and the neural mechanisms
underlying the movement corrections. Participants were instructed to grasp a handle and rotate
it to a target position according to a given visual cue. After participants started their movements,
a secondary cue was triggered, which indicated whether the initial or final goals had changed (or
not) while the electroencephalogram (EEG) was recorded. The results showed that the perturbed
initial goals significantly slowed down the reaching action, compared to the perturbed final goals.
In the event-related potentials (ERPs), a larger anterior P3 and a larger central-distributed late
positivity (600–700 ms) time-locked to the perturbations were found for the initial than for the final
goal perturbations. Source analyses found stronger left middle frontal gyrus (MFG) activations
for the perturbed initial goals than for the perturbed final goals in the P3 time window. These
findings suggest that perturbations in the initial goals have stronger interferences with the execution
of grasp-to-rotate movements than perturbations in the final goals. The interferences seem to be
derived from both inappropriate action inhibitions and new action implementations during the
movement correction.

Keywords: movement execution; online correction; action goal; motor re-planning; grasping; middle
frontal gyrus (MFG)

1. Introduction

In everyday life, manual actions such as grasping can be produced effortlessly even if
the external environment is changed unexpectedly. Whenever an ongoing prehensile action
is no longer suitable for the current situation, individuals constantly correct it to comply
with new task demands. The movement correction reflects a compensatory motor control
mechanism, which comprises a series of efficient cognitive processes, such as a rapid online
comparison between the contextual and motoric information (incompatibility detection), a
suppression of prepared but inappropriate actions (issued action inhibition), and then the
initialization of appropriate actions (novel action implementation) [1–4]. These processes
take place and can be completed in a concise period after the change happens, even if
the movements are relatively complex [5–7]. With the help of these efficient processes,
movement correction facilitates humans to survive potential dangers and also supports
individuals to interact adaptively with the dynamic world.

It has been implicated that the frontoparietal network is recruited in movement
corrections; the network involves the pre-supplementary motor area (pre-SMA), the sup-
plementary motor area (SMA), the anterior cingulate cortex (ACC), the inferior frontal
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gyrus (IFG), the premotor cortex (PMC), the intraparietal sulcus (IPS), the superior parietal
lobule (SPL), and the supramarginal gyrus (SMG) [1,8–17]. Among them, the prefrontal
cortical areas, such as the pre-SMA, ACC, and IFG, have been associated with detecting
the incompatibilities between the contextual and motoric information as well as inhibit-
ing ongoing but inappropriate actions [9,18,19]. Previous event-related potential (ERP)
studies [20,21] reported that mid-frontal N2 and P3 components were elicited when a pre-
planned response was successfully corrected, and the following source analyses found that
these components were mainly derived from the ACC and pre-SMA. Transcranial magnetic
stimulation (TMS) studies [15,22,23] also reported that virtual lesions in the IFG or pre-SMA
impaired the performance of individuals’ movement adjustments. The ventral portion of
the PMC (PMv) was also involved in the inhibition of a pre-planned action during move-
ment corrections [14]. Meanwhile, the dorsal portion of the PMC (PMd) was employed
for updating a pre-planned movement, which is not merely involved in inhibiting the
issued inappropriate actions, but also initiating the appropriate actions [11,16,24]. The
parietal cortical areas, such as the IPS and SPL, were relevant to planning and controlling
goal-directed reaching or grasping movements [13,25]. In the correction of manual actions,
the anterior portion of IPS (aIPS) is responsible for updating goal-related information and
implementing new actions [1,8,26], whereas the SPL is mainly engaged in the real-time
adjustments of the movement [8,27].

In previous studies, researchers have often focused on the movement corrections
compensating for the perturbations in the recruitment of movement effectors (such as
from one finger to another finger) [11,16,20,21,28,29] or the changes in physical properties
(shape, size, orientation) of the target object [1,8,30–34]. For example, in a reach-to-grasp
task [8], participants were instructed to pincer-grasp a wooden cuboid on the narrow side
(1 cm) if it was horizontally oriented, or on the wide side (5 cm) if it was vertically oriented.
The cuboid was always horizontally oriented before the movement onset, but in 25% of
the trials, it went to vertical orientation as soon as participants started to move. Tunik
et al. [8] found that the unexpected perturbations in orientation had considerable effects on
reach-to-grasp kinematics. The final metacarpophalangeal (MCP) joint angle and the peak
MCP angle were significantly larger for the perturbed than the unperturbed trials. The
time to peak MCP was also significantly delayed in the perturbed trials, and the adaptive
responses occurred around 271 ms after the perturbation.

Individuals correct their movements not only in response to the perturbations in
the movement effectors or target objects, but also to compensate for the perturbations in
the anticipated action effects (action goals) [35,36]. In a grasp-to-place task [35], with a
modified “S1–S2” paradigm, participants were asked to grip a horizontal cylinder (either
overhand or underhand, free choice) and placed the left or right end of the cylinder into a
target disk according to the visual stimulus (final action goal, S1). As soon as participants
started their movements, a secondary stimulus (S2) was triggered, which indicated whether
the intended action goal was perturbed (20% of the trials) or not (80% of the trials). Hughes
et al. [35] found that when the intended action goals were perturbed, participants corrected
their initial grasp postures during reaching to ensure a comfortable hand posture at the
end of the object placing (end-state comfort), which resulted in a longer reach time and a
shorter time to peak velocity during reaching. The corrections occurred either early (30%
of the normalized reach time) or late (46% of the normalized reach time) in the reaching
phase. Nevertheless, these studies [35,36] have been limited to the perturbations in the
final action goals. Apart from the final action goal, the initial action goal (grip posture) is
also crucial in planning and controlling manual actions.

Rosenbaum et al. [37] have proposed that manual actions are organized with a hi-
erarchical motor plan in which both the initial goal (anticipated start posture) and the
final goal (anticipated end posture) are located at the top level, and all the transitions
between the initial and the final goals are located at the lower levels. Compared to the
final goal, the initial goal acts as an immediate task demand in the execution of grasping
movements, whereas the final goal acts as a remote (further) task demand. Therefore, if
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the unexpected perturbation in the initial goals occurs during reaching, it would have a
stronger interference with motor execution than a perturbation in the final goals because
the initial goal is the immediate (direct) action effect of reaching. However, it has also been
argued that the final action goals are more important for planning and executing manual
actions than the initial grip goals [38–40], and initial grip postures are selected on the basis
of final task purposes in movement corrections [35,41]. Since there has been little discussion
on the movement corrections with a perturbed initial goal, it is still difficult to conclude
whether the perturbed initial goals have stronger interference with motor execution than
the perturbed final goals or not.

In this study, we sought to investigate how unexpected perturbations in the initial or
the final action goals influence the execution of grasp-to-rotate movements. To address this
issue, we induced an unexpected perturbation in either the initial or the final action goals
with the modified S1–S2 paradigm. Participants were cued by a visual stimulus (S1) with
specified initial and final goals. When participants started their movements, a secondary
stimulus (S2) was triggered, which indicated whether the anticipated initial and final goals
were perturbed or not. When the goals were perturbed, participants were asked to correct
their movements to comply with the corresponding perturbations. Electroencephalography
(EEG) was recorded during the movement execution. The event-related potentials (ERP)
and the subsequent source analyses were employed to distinguish the neural mechanisms
underlying the movement corrections to adapt to the perturbations in the initial or the
final goals.

On the basis of previous studies [8,20,21,35,42], we hypothesized that the perturbations
in the action goals interfere with the motor execution, which can be characterized as
longer reach times, stronger anterior N2s (incompatibility detection), stronger anterior
P3s (issued action inhibition), and larger late slow waves (new action implementation)
in the goal-perturbed conditions versus the non-perturbed condition. Moreover, we also
assumed that the perturbed initial goals have a stronger interference with the motor
execution than the perturbed final goals, due to the fact that the initial goal (how to grip
the handle) is the immediate demand for the grasping action and an unexpected change
in the immediate demand may have a stronger interference than a change in the future
demand (final goal). In this regard, we further hypothesized that reach times might be
longer for the movement correction to adapt to perturbed initial goals than perturbed final
goals. Neurophysiologically, we expected a stronger anterior P3, as well as more positive
late slow waves, for the trials with perturbed initial goals than with perturbed final goals,
which may reflect (prepared) action inhibitions (P3) and (new) action implementation (slow
waves) in movement re-planning.

2. Method
2.1. Participants

Twenty-four volunteers were initially recruited for this experiment. Four of them
were discarded due to the EEG artifact, resulting in a final sample of 20 participants
(mean age = 24.30 years; SD = 2.32; 11 females). All participants were right-handed
(mean score = 90; SD = 14; Edinburgh Handedness Inventory [43]). All participants were
with normal or corrected-to-normal vision and had no history of psychiatric or neurological
impairments. All participants gave their written informed consent under the Declaration
of Helsinki before they participated in the experiment, and the experimental protocol was
approved by the ethics committee at Bielefeld University (EUB, No.2021-085).

2.2. Apparatus and Stimuli

The setup of the grasp-to-rotate task is shown in Figure 1. The graspable part was a
handle (cylinder, 16 cm in length, 3 cm in diameter) that had a yellow stripe at one end
and a blue stripe at the other end. The handle was attached to a disk (28 cm in diameter),
which could be rotated clockwise or counterclockwise. On the disk, a white pointing
marker was placed next to the yellow end of the handle, and it was used to indicate the
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handle direction. Outside of the disk, eight target markers were fixed in the dial-display.
During the experiment, the rotation apparatus was always settled where its center faced
the shoulder of the participant’s grasping arm, and the distance was calibrated to each
participant’s arm size for preventing expansive movements. A start button was placed
in front of the participants, and the distance was also calibrated to each participant. The
distance between the button and the rotation apparatus was constant for each participant
(35 cm between the centers).
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Figure 1. Front view of the experimental setup.

A 19-inch TFT monitor was placed behind the rotation apparatus, and it was about
75 cm away from the participants. Colored arrows were employed as the visual stimuli, and
they were presented by Presentation (Neurobehavioral Systems, Berkeley, CA, USA). The
color (yellow or blue) indicated that participants should grip the handle with their thumbs
toward the corresponding stripe. The direction of the arrow (eight directions are identical
with the eight target markers) indicated that participants should rotate the handle (pointing
marker) to the pointed target marker. The direction was always perpendicular to the
handle’s initial orientation, and participants were instructed to make 90-degree rotations.

2.3. Experimental Paradigm

In this experiment, participants were instructed to grip the handle (initial goal) and
rotate it to a target position (final goal). To introduce the movement correction, we used a
modified S1–S2 paradigm. With the first stimulus (S1), the initial and the final goals were
given by a colored arrow, and participants were instructed to respond to it. As soon as
participants started their movements, another colored arrow was triggered as the secondary
stimulus (S2), and it was either the same as or different from the first one. Participants were
instructed to finish the movement with the new stimulus if it got perturbed. Thus, different
S2s divided the experiment into three conditions (see Figure 2): (1) Final-Perturbed (FP)—
the arrow direction changed to the opposite, but the color stayed; (2) Initial-Perturbed
(IP)—the color changed to the opposite (yellow to blue or blue to yellow), but the direction
stayed; (3) Non-Perturbed (NP)—neither color nor direction changed.
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2.4. Procedure

After the EEG preparations, participants were guided to a shielded room and seated
comfortably at the experimental desk. A written instruction was provided to the par-
ticipants. The stimulus changes were not mentioned in the instruction for reducing the
expectancy effect, and participants were only instructed to react to the stimulus, which was
showing on the screen. All of the questions regarding the task were answered.

The experimental trial (see Figure 2) started with a voluntary button press. Then the
handle automatically moved to the start position by the motor inside of the apparatus. The
start positions were randomly assigned to each marker, and every marker had the same
number of trials. After participants held the start button, a fixation cross was presented at
the center of the screen with a variable duration from 500 to 1500 ms. After the fixation, a
black screen was presented as a buffer for a variable duration from 500 to 1000 ms. Then
the S1 was presented. Participants were asked to respond to it as soon as possible. Once
the participants released the button, an S2 was presented. Participants had to correct
their movements if the stimulus changed. The S2 disappeared when the handle reached
the target position (precisely at the target marker). The next trial came after another
button press. If the start button was released before the first stimulus, error feedback was
presented for 1500 ms, and the next trial came after that. To minimize the ocular artifacts,
participants were instructed to keep their gaze at the center of the screen during motor
planning and execution.

The experiment began with a practice section in which all 24 trials were non-perturbed
trials. After the practice, participants started eight experimental blocks and each block
contained 48 trials. Two-minute breaks were given between the blocks. To avoid the
laterality of the brain activations due to hand use, we asked participants to perform the
tasks with both hands (one hand for the first four blocks, and then change to the other
hand). The starting hand (left/right) was counterbalanced. After the first four blocks, the
rotation apparatus was moved to the other side and recalibrated. Half of the trials were
gripped with the thumb toward the yellow stripe, and the remaining trials were gripped
with the thumb toward the blue stripe. Half of the trials were rotated clockwise, and the
remaining trials were rotated counterclockwise. The grips and rotation directions were
randomly assigned to the trials. Additionally, to minimize the participant’s expectancy, we
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set the ratio of “FP/IP/NP” to 1/1/6, that is, 48 FP trials, 48 IP trials, and 288 NP in total.
After the experiment, subjective difficulty ratings (from 1 to 6, from easy to difficult) for
different perturbed conditions were queried. It took around 2 h to finish the experiment.

2.5. Behavioral and Electrophysiological Recordings

The participants’ performance was recorded by a video camera. The time points
of releasing the start button, gripping the handle, and reaching the target position were
detected by the micro-switches in the apparatus. The reaction time (from the first stimulus
onset to movement onset), reach time (from movement onset to gripping the handle), and
rotation time (from gripping the handle to reaching the target position) were calculated
with these time points.

The electroencephalography (EEG) signals were collected by an ANT amplifier and
the acquisition software ASA (ANT Neuro, Hengelo, The Netherlands) at a sampling rate
of 512 Hz. Recordings were made from 64 Ag/AgCl electrodes, which were positioned
in accordance with the international 10–10 system. Electrooculography (EOG) was also
recorded by two bipolar electrodes placed above and below the right eye and lateral to
both eyes. The impedance of all electrodes was less than five kΩ, and the electrode AFz
was selected as the recording ground. All signals were band-pass filtered (DC-138 Hz) and
average-referenced during the recording.

2.6. Data Analysis
2.6.1. Behavioral Data

Based on the performance videos, trials with wrong grips, wrong rotation directions,
or changing grip during the rotation were excluded from the behavioral and neurophysio-
logical analyses. Trials with extreme (outside of mean ± three standard errors) reaction
time, reach time, or rotation time were also excluded. On average, participants executed
the task correctly in 85% of the FP trials, 84% of the IP trials, and 93% of the NP trials.
Since we did not find any significant main or interaction effects involving “hand used”
in behavioral timings, we pooled the left- and right-hand trials together in the analysis.
The average numbers (and the standard deviations) of the remaining trials in different
conditions are shown in Supplementary Table S1. Repeated-measures ANOVAs were
performed separately on participants’ averaged reaction times, reach times, and rotation
times to determine the within-subject effect for perturbation (FP/IP/NP).

2.6.2. ERPs

EEG signals were offline analyzed with the toolbox EEG lab [44] and ERP lab [45].
All signals were band-pass filtered (0.1–30 Hz) and re-referenced with the linked mastoid
electrodes. Two analysis epochs were extracted from the continuous signals. Epoch time-
locked to S2 (as well as movement onset) included the time interval from −1400 to 1000 ms.
Epoch time-locked to grasping included the time interval from −2900 to 300 ms. Baseline
correction was performed with the first 300 ms of the epochs. Gratton regression [46,47]
was employed to correct the ocular artifacts. Any trials containing peak-to-peak amplitudes
above 100 µV within a moving window (200 ms window; 50 ms step) were automatically
removed. The remaining trials were visually double-checked for artifacts that would not
have been detected by the moving window algorithm. On average, there were 34 FP trials,
35 IP trials, and 232 NP trials left for averaging the ERPs in the epoch time-locked to S2,
and there were 33 FP trials, 34 IP trials, and 227 NP trials left for averaging the ERPs in the
epoch time-locked to grasping (see Supplementary Table S1 for more details).

In the epoch time-locked to S2, an obvious P3 (300–600 ms) and obvious late positive
slow-wave potentials (600–1000 ms) were found for the goal-perturbed conditions (FP, IP),
as compared to the NP condition. For the P3 component, the amplitude was quantified
as the mean amplitude from 390 to 440 ms (the average P3 peak latency was 415 ms). For
the slow-wave potentials, mean amplitudes were measured and compared in 100 ms step
windows. Both the P3 and slow-wave potentials were accessed among nine regions of
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interest (ROI) to assess the scalp distribution. The ROIs were anterior-left (AL): AF7, F7,
F5, F3; anterior-middle (AM): F1, Fz, F2; anterior-right (AR): AF8, F8, F6, F4; central-left
(CL): C3, C5, CP3, CP5; central-middle (CM): FCz, Cz, CPz; central-right (CR): C4, C6, CP4,
CP6; posterior-left (PL): PO7, PO5, PO3, O1; posterior-middle (PM): Pz, POz, Oz; posterior-
right (PR): PO8, PO6, PO4, O2. Repeated-measures ANOVAs with the factor perturbation
(FP/IP/NP), left–right (left/middle/right), and front–back (anterior/central/posterior) were
performed on the mean amplitudes of the electrodes (in corresponding ROIs).

In the epoch time-locked to grasping, we only focused on the slow-wave potentials be-
fore grasping. According to the previous findings [39,48,49], the analysis time window was
set as −500–0 ms. Similar to the previous epoch, the mean amplitudes of the slow-wave
potentials time-locked to grasping were also compared in 100 ms step windows. Mean am-
plitudes of the above-mentioned nine ROIs were compared by repeated-measures ANOVAs
with the factor perturbation (FP/IP/NP), left–right (left/middle/right), and front–back (ante-
rior/central/posterior) to determine the perturbation effect and its scalp distribution.

All the above-mentioned ANOVAs were conducted in R [50]. Greenhouse-Geisser
correction was applied whenever the sphericity assumption was violated. The original
degrees of freedom and the corrected p-values were reported. Generalized eta-squared (η2

G)
was used for evaluating the effect size. Post hoc multiple comparisons among means were
made with Bonferroni t-tests.

2.6.3. Source Analysis

In a subsequent analysis, the three-dimensional cortical distributions of the averaged
ERPs (in different conditions) were analyzed with the standardized low-resolution brain
electromagnetic tomography analysis software (sLORETA) [51]. The sLORETA partitions
the intracerebral volume in 6239 grey matter voxels with a spatial resolution of 5 mm, and
the standardized scalp current density at each voxel is then calculated in a realistic head
model [52] with the probabilistic MNI152 template [53].

In order to identify possible differences in the brain electrical activity between the
goal-perturbed conditions (FP vs. IP), statistical non-parametric mapping (SnPM) [54]
was employed for computing the averaged intracerebral current density distribution at
the time intervals showing significant differences based on a non-parametric log-F-ratio
statistic on the three-dimensional sLORETA images (number of randomizations = 5000).
The SnPM corrected for multiple comparisons [54]. Voxels with significant differences
(p < 0.05) between the perturbed conditions were located in specific brain regions with
Brodmann areas (BA) and the MNI coordinates.

3. Results
3.1. Subjective Difficulty Ratings

Participants rated the subjective difficulty of FP trials as 3.20 (SD = 1.36) on a scale
from 1 (easy) to 6 (difficult). For the IP trials, the average difficulty was rated as 3.35
(SD = 1.18). The paired t-test yielded that the subjective difficulty was not significantly
different between the goal-perturbed conditions, t(19) = 0.65; p > 0.05.

3.2. Timing

The averaged reaction, reach, and rotation times for different conditions were shown
in Figure 3. For the reaction time, we did not find a significant difference among the
different conditions (FP/IP/NP), F(2,38) = 2.69; p > 0.05.
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For the reach time, we found a significant main effect for perturbation, F(2,38) = 132.52;
p < 0.001; η2

G = 0.533. Post hoc analyses revealed that the reach time was longer in the
IP condition (1515 ms, SD = 281) than the FP condition (1359 ms, SD = 285), t(19) = 7.59;
p < 0.001, and a longer reach time was also found for the FP condition than the NP condition
(875 ms, SD = 213), t(19) = 10.58; p < 0.001.

For the rotation time, we also found a significant main effect for perturbation,
F(2,38) = 7.13; p < 0.01; η2

G = 0.021. Post hoc analyses yielded that rotation times were sig-
nificantly longer for the IP condition (641 ms, SD = 145) than for the FP condition (593 ms,
SD = 126), t(19) = −3.73; p < 0.01. However, the difference between the NP condition
(624 ms, SD = 136) and the FP condition was not significant, t(19) = 2.26; p > 0.05, and
neither was the difference between the NP condition and the IP condition, t(19) = −1.37;
p > 0.05.

3.3. ERP Results
3.3.1. Epoch Time-Locked to the Secondary Stimulus

P3 (300–600 ms) With the factor perturbation (FP/IP/NP), left–right (left/middle/right),
and front–back (anterior/central/posterior), the ANOVA of P3 amplitude yielded signif-
icant interaction effects for perturbation*front–back, F(4,76) = 9.83; p < 0.001; η2

G = 0.015,
perturbation*left–right, F(4,76) = 25.24; p < 0.001; η2

G = 0.010, and left–right*front–back,
F(4,76) = 9.98; p < 0.001; η2

G = 0.007. We also found significant main effects for pertur-
bation, F(2,38) = 39.27; p < 0.001; η2

G = 0.268, and left–right, F(2,38) = 20.16; p < 0.001;
η2

G = 0.017. Further analyses revealed that in the anterior ROIs, P3 mean amplitude was
larger in the IP condition (11.53 µV, SD = 8.16) than the FP condition (8.10 µV, SD = 6.29),
t(19) = 3.22; p < 0.01, and the P3 in FP condition was also larger than the NP condition
(0.80 µV, SD = 7.34), t(19) = 6.87; p < 0.001. However, in the central and posterior ROIs, the
amplitude differences between the IP and FP conditions were not significant, all ts < 1.62;
all ps > 0.34, but the P3 amplitudes were larger in the goal-perturbed conditions (FP, IP)
than the non-perturbed condition (NP), ts > 4.72; all ps < 0.001 (see Supplementary Table
S2 for more details). Moreover, the P3 amplitudes were also larger in the goal-perturbed
conditions (FP, IP) than the non-perturbed condition (NP), ts > 5.94; all ps < 0.001, over the
left, middle, and right ROIs. Nevertheless, the amplitude differences between the IP and
FP conditions were not significant, all ts < 1.46; all ps > 0.46. No other significant effects
between the FP and IP conditions were found in the further analyses. The ERP waveforms
can be seen in Figure 4.
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Slow-wave potentials (600–1000 ms) For the ERP slow-wave potentials from 600
to 700 ms, the ANOVA revealed a significant interaction effect for perturbation*left–right,
F(4,76) = 8.71; p < 0.001; η2

G = 0.002, and a significant interaction effect for front–back*left–
right, F(4,76) = 6.16; p < 0.001; η2

G = 0.004. The main effects for perturbation, F(2,38) = 36.12;
p < 0.001; η2

G = 0.110, front–back, F(2,38) = 11.70; p < 0.001; η2
G = 0.018, and left–right,

F(2,38) = 17.87; p < 0.001; η2
G = 0.013, were also significant. To explain the significant inter-

action for perturbation*left–right, we conducted further analyses, and the results revealed
that the amplitudes of the slow-wave potentials were larger for the goal-perturbed con-
ditions (FP and IP) than the NP condition in the left, middle, and right ROIs (all ts > 4.95;
all ps < 0.001) (see Supplementary Table S3 for more details). However, the amplitude
difference between the IP and the FP conditions was only significant in the middle ROIs.
In the middle ROIs, the mean amplitude of the slow-wave potentials was larger in the
IP condition (7.85 µV, SD = 10.20) than the FP condition (5.27 µV, SD = 8.38), t(19) = 2.52;
p < 0.05. The difference waves between FP and IP conditions, as well as the topographic
maps of the difference waves, are shown in Figure 5.

For the slow-wave potentials in the time windows from 700 to 800 ms, from 800 to
900 ms, and from 900 to 1000 ms, all the ANOVAs revealed significant main effects for
perturbation, all Fs > 6.55; all ps < 0.01. Nevertheless, the interaction effects for pertur-
bation*front–back, perturbation*left–right, and perturbation*front–back*left–right were all not
significant in these time windows (see Supplementary Table S4 for more details). Post
hoc analyses revealed that the mean amplitudes of the slow-wave potentials were more
positive for the goal-perturbed conditions (FP, IP) than the non-perturbed condition in
all the time windows, all ts > 2.89; all ps < 0.05, whereas the mean amplitudes were not
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different significantly between the FP and IP conditions, all ts < −1.43; all ps > 0.48 (see
Supplementary Table S5 for more details).
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Figure 5. The ERP difference waves time-locked to S2. ERP difference waves (“Initial-Perturbed”
–“Final-Perturbed”) time-locked to the onset on S2 at the central-middle electrode (Cz). Topographical
maps of the difference waves in the P3 (300–600 ms) and late positivity (600–700 ms) time intervals
are also showed.

3.3.2. Epoch Time-Locked to Grasping

For the epoch time-locked to grasping, we compared the slow-wave potentials from
−500 to 0 ms in 100 ms step windows. For the time window from −500 to −400 ms, the
ANOVA yielded a significant main effect for perturbation, F(2,38) = 3.79; p < 0.05; η2

G = 0.014,
a significant main effect for front–back, F(2,38) = 3.79; p < 0.05; η2

G = 0.014, a significant
main effect for left–right, F(2,38) = 29.89; p < 0.001; η2

G = 0.031, and a significant interaction
effect for front–back* left–right, F(4,76) = 4.23; p < 0.05; η2

G = 0.005. Post hoc analyses found
that the slow-wave potentials were more positive in the FP (4.86 µV) than the NP (2.70 µV)
condition, t(19) = 2.73; p < 0.05. However, the amplitude difference was not significant
neither between the FP and IP conditions, t(19) = 1.05; p > 0.05, nor between the IP and NP
conditions, t(19) = 1.68; p > 0.05.

For the slow-wave potentials in the time windows from −400 to −300 ms, from −300 to
−200 ms, from −200 to −100 ms, and from −100 to 0 ms, the ANOVAs found no significant
main effects for, all Fs < 2.09; all ps > 0.14, no significant interactions for perturbation*front–
back, all Fs < 1.24; all ps > 0.30, no significant interactions for perturbation*left–right, all
Fs < 1.35; all ps > 0.27, and no significant interactions for perturbation*front–back*left–right,
all Fs < 1.00; all ps > 0.37 (see Supplementary Table S6 for more details). The ERPs time-
locked to grasping are shown in Figure 6.
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Figure 6. Grand-averaged ERP waveforms time-locked to grasping at electrode POz. Grand-averaged
ERP waveforms (N = 20) recorded at electrode POz, time-locked to grasping, for the Final-Perturbed
condition (blue), Initial-Perturbed condition (orange), and Non-Perturbed condition (grey). Av-
erage time points (dash lines) for the first stimulus presentation (S1), the secondary stimulus (S2)
presentation/movement onset are marked (shaded areas beside the dash lines indicate the stan-
dard deviations).

3.4. Source Analysis

For the averaged time window between 390 and 440 ms time-locked to S2 (correspond-
ing to the P3 component), a significantly higher cortical activation for the IP in contrast to
the FP conditions was found in the following cortical areas: the left middle frontal gyrus
(MFG; BA9; x = −30, y = 40, z = 35, and x = −30, y = 40, z = 30), and the left superior frontal
gyrus (SFG; BA9; x = −35, y = 45, z = 30). The maximum difference was located at the left
MFG, log-F = 0.663, p < 0.05 (log-F threshold = 0.650; see Figure 7).

Brain Sci. 2021, 11, x FOR PEER REVIEW 11 of 20 
 

 
Figure 6. Grand-averaged ERP waveforms time-locked to grasping at electrode POz. Grand-
averaged ERP waveforms (N = 20) recorded at electrode POz, time-locked to grasping, for the 
Final-Perturbed condition (blue), Initial-Perturbed condition (orange), and Non-Perturbed 
condition (grey). Average time points (dash lines) for the first stimulus presentation (S1), the 
secondary stimulus (S2) presentation/movement onset are marked (shaded areas beside the dash 
lines indicate the standard deviations). 

3.4. Source Analysis  
For the averaged time window between 390 and 440 ms time-locked to S2 

(corresponding to the P3 component), a significantly higher cortical activation for the IP 
in contrast to the FP conditions was found in the following cortical areas: the left middle 
frontal gyrus (MFG; BA9; x = −30, y = 40, z = 35, and x = −30, y = 40, z = 30), and the left 
superior frontal gyrus (SFG; BA9; x = −35, y = 45, z = 30). The maximum difference was 
located at the left MFG, log-F = 0.663, p < 0.05 (log-F threshold = 0.650; see Figure 7). 

 
Figure 7. Results of the sLORETA source analysis (contrast: “Initial-Perturbed” > “Final-Perturbed”) in the time window 
of the P3 component (300–600 ms). The images have been obtained after statistical non-parametric mapping (SnPM), and 
they represent the voxels in which the “Initial-Perturbed” > “Final-Perturbed” contrast was significant (p < 0.05; log-F 
threshold = 0.650) in the time window of the P3 component. The significantly activated voxels are indicated by yellowish 
colors. 

For the averaged time window between 600 and 700 ms time-locked to S2 
(corresponding to the late positivity from 600 to 700 ms), we found the cortical activation 
difference between the goal-perturbed conditions were mainly located at the cingulate 
gyrus (BA24; x = −10, y = 0, z = 45), and the medial frontal gyrus (MFG; BA6; x = −5, y = 
−25, z = 70). However, the activation difference in neither of the areas reached the 
significance level: all log-Fs < 0.470, all ps > 0.05 (log-F threshold = 0.488).  

  

Figure 7. Results of the sLORETA source analysis (contrast: “Initial-Perturbed” > “Final-Perturbed”) in the time window of
the P3 component (300–600 ms). The images have been obtained after statistical non-parametric mapping (SnPM), and they
represent the voxels in which the “Initial-Perturbed” > “Final-Perturbed” contrast was significant (p < 0.05; log-F threshold
= 0.650) in the time window of the P3 component. The significantly activated voxels are indicated by yellowish colors.

For the averaged time window between 600 and 700 ms time-locked to S2 (correspond-
ing to the late positivity from 600 to 700 ms), we found the cortical activation difference
between the goal-perturbed conditions were mainly located at the cingulate gyrus (BA24;
x = −10, y = 0, z = 45), and the medial frontal gyrus (MFG; BA6; x = −5, y = −25, z = 70).
However, the activation difference in neither of the areas reached the significance level: all
log-Fs < 0.470, all ps > 0.05 (log-F threshold = 0.488).
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4. Discussion

In this experiment, we examined how unexpected perturbations in initial or in final
action goals interfere with the execution of grasp-to-rotate movements and the neural
mechanisms underlying the adjustments in response to the goal perturbations. The results
revealed that compared to a perturbed final goal, a perturbed initial goal significantly
slowed down the movement execution. Moreover, a larger frontal P3 and larger central-
distributed late positivity (600–700 ms) time-locked to the perturbations were found for
the initial than for the final goals. Further source analyses suggested increased cortical
activations in the left middle frontal gyrus (MFG, BA9) and left superior frontal gyrus
(SFG, BA9) were found for the perturbed initial goals than the perturbed final goals in
the P3 time window. Taking together, these findings suggest the influence of perturbed
initial and final action goals in the execution of grasp-to-rotate movements differs, and the
unexpected perturbations in initial goals seem to have stronger interference with motor
execution than final action goals.

Participants rated the subjective difficulty in the FP condition with 3.20 and in the IP
condition with 3.35, on a scale from 1 (easy) to 6 (difficult). Even though the participants
rated the IP condition slightly harder than the FP condition, the difference was not signif-
icant. Participants perceived similar subjective difficulties for the goal perturbations. It
seems to be in line with our accuracy results that participants executed the task correctly in
85% of trials in the FP condition and 84% of trials in the IP condition. These indicate that
task difficulty did not differ between the perturbation conditions and, hence, task difficulty
is unlikely to be related to any effects found between the FP and IP conditions.

As expected, reaction times (from fist stimulus onset to movement onset) were not
different among the conditions (FP/IP/NP). Reaction times usually reflect the motor
planning processes before movement onset [55,56]. In our experiment, reaction times
reflect the movement preparations for the first stimuli. Since the first stimuli were not
perturbed, therefore, reaction times should be similar among the conditions.

Consistent with the previous findings [35], as well as our hypothesis, reach times
(from movement onset to holding the handle) in the goal-perturbed conditions (FP and
IP) were significantly slower than the non-perturbed condition (NP). The prolonged reach
time reflected the movement corrections compensating for the perturbations in action goals.
More importantly, we found reach times were significantly slower in the IP than in the FP
condition. It seems to indicate that the perturbations in the initial action goals have stronger
interference with the correction of manual actions as compared to the perturbations in the
final action goals, and the stronger interference slows down the reaching movements.

For the rotation time (from holding the handle to reaching the target marker), the
difference between the FP and the NP conditions was not significant, nor was the differ-
ence between the IP and the NP conditions. These findings are consistent with previous
studies [35,36], which revealed that object manipulation times are not influenced by the
perturbation in the anticipated action goal.

Interestingly, the rotation times were significantly different between the goal-perturbed
conditions. Participants moved the handle much slower in the IP than in the FP condition.
A possible explanation can be that the perturbations in the initial goals may increase the
participant’s awareness of potential grip errors, even if the grip has already been per-
formed. In the IP condition, the initial goals were changed, and the perturbation made
participants drive more attention toward their grip postures. So participants might always
have “double-checked” their movements (grip postures) to avoid a potential error, even
after the handle had been gripped.

With a bar transport task, Westerholz et al. [39] found that the transport times (du-
rations between grasping and bar-on-target) were slower when the initial goals were
emphasized (compared to when the final goals were emphasized), even though the same
movements were performed in both goal-emphasized conditions. The “initial-emphasized”
seems to be similar to the current IP condition in which participants may focus on the
perturbed initial goals, and the “final-emphasized” seems to be similar to the current FP
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condition in which participants may focus on the perturbed final goals. Moreover, in
another study with a similar grasp-to-rotate task (Yu et al., under review), we also found
that the rotation times were slower when the initial goals were perturbed unexpectedly
(during movement preparation), as compared to when the final goals were perturbed
unexpectedly. Therefore, the prolonged rotation times might be attributed to participants’
increased awareness of potential grip errors.

As for the ERPs, we did not find the expected N2 effect between the goal-perturbed
and the non-perturbed conditions. From the grand-averaged ERPs shown in Figure 4, we
can hardly tell an obvious N2 component around 200 ms over the anterior area (except
for a slight negative-going oscillation). The reduction of anterior N2 can be attributed to
the overlapping of N2 and P3 components. Because the probabilities of the different S2s
were unequal, large anterior P3s were evoked in the goal-perturbed trials. The large P3s
may overlap and reduce the observed N2 amplitude. Moreover, Kraemer et al. [57] also
reported that changing a response may not elicit an anterior N2 component as compared to
stopping a prepared response.

Consistent with our hypothesis, we found that the mean amplitude of the P3 com-
ponent (time-locked to S2) was significantly larger for the goal-perturbed conditions (FP
and IP) than the non-perturbed condition (NP). This is consistent with previous findings
that movement corrections elicited stronger P3s than the movement execution without
correction [20,21,58]. The increased P3 activities in the goal-perturbed conditions reflect the
inhibitory processes to stop inappropriate actions compensating for the perturbations in
the action goals. Additionally, the enlarged frontal P3s in the goal-perturbed conditions can
also be attributed to the stimulus novelty. Compared to the NP condition, the perturbed
stimuli in the goal-perturbed conditions are infrequent. The infrequent stimuli may also
elicit larger frontal P3 compared to the frequent stimuli [59,60].

More importantly, the mean amplitude of P3 was larger in the IP than in the FP
condition over the anterior ROIs. From the topographic map shown in Figure 5, it can be
seen that the amplitude difference maximizes over the left and the middle frontal areas. It
is also further confirmed by the source analyses results that activations of the left middle
frontal gyrus (MFG, BA9) and left superior frontal gyrus (SFG, BA9) were significantly
higher in the IP than in the FP condition. It has been reported that in the go/no-go
task [61–67], the stop-signal task [68–74], and the movement re-planning tasks [20,21,58],
larger P3s were evoked over the frontal and central areas when the responses had been
inhibited or corrected in comparison to those that were normally executed. Previous
studies also suggest that MFG seems to be one of the neural generators for the frontal
P3 component evoked by response inhibitions [75,76]. Previous neuroimaging studies
have claimed that the left MFG is involved in inhibitory processing, and stronger MFG
activations were found when a prepared response was stopped [77–82]. Moreover, the left
dorsolateral prefrontal cortex (DLPFC), which lies in the left MFG, has been associated
with inhibiting the stereotyped responses [83] or processing incongruous object–action
combinations [84]. Therefore, the enlarged P3 amplitude and the stronger activations of the
left MFG in the IP condition compared to the FP condition may indicate that perturbations
in initial goals induce a stronger inhibition process during the movement correction in
which participants are trying to stop the inappropriate actions to prevent potential errors.

It is interesting that we only found different cortical activations in the left hemisphere
between the FP and IP conditions, even though both left- and right-hand movements
were performed and averaged in our study. It seems to be consistent with the idea that
the left hemisphere is specialized for motor planning [85–89]. A recent fMRI study [90]
also suggested that the left hemisphere (left-SMA) plays a critical role in interhemispheric
inhibition and motor planning. However, several studies [10,15,17] have reported that
several right-hemisphere regions, such as the right-SMA, are associated with motor inhi-
bitions and movement selections during motor re-programming (re-planning). It is still
hard to conclude whether brain lateralization exists in motor re-planning or not. For future
research, it might be of interest to focus on brain lateralization in motor re-planning.



Brain Sci. 2021, 11, 641 14 of 19

For the late slow-wave potentials (600–1000 ms) time-locked to S2, we found that the
mean amplitudes were significantly larger in the goal-perturbed conditions (FP, IP) than the
non-perturbed condition (NP), which is also consistent with our hypothesis. The enlarged
slow-wave potentials may reflect the increased cognitive efforts involved in the action
implementations or action reorganizations during the movement corrections. Between the
different goal-perturbed conditions, the mean amplitudes were significantly larger for the
IP than for the FP condition only in the time window from 600 to 700 ms (time-locked to
S2), and the difference was only found in the middle ROIs. From the topographic map in
Figure 5, we can see the difference waves maximize over the frontocentral areas. Further
source analyses also yielded higher but not significant activations around the cingulate
gyrus for the IP than for the FP condition. Moreover, from the averaged ERP waveforms in
Figure 4, an obvious positive component can be found in the IP condition, which peaks
around 600 ms after the S2 onset. This late positivity is reminiscent of the P600 effect
obtained in language studies, which reflects the processing of structured representations
at the syntactic level [91–97]. The P600 is elicited when there is a syntactic violation in a
sentence, and it is characterized for the reanalysis or repair of the sentence structure. Some
studies have also reported that the P600 was evoked by the violation of action [98,99] or
music structures [100,101]. Therefore, the enlarged P600-like late positivity (slow-wave
potential) elicited by the perturbed initial goals may reflect the increased demands on action
restructuring or reorganization in the correction of ongoing manual actions. Compared
to perturbed final goals, movement corrections to adapt to perturbed initial goals seem to
require more effort in the implementation of new actions.

For the slow-wave potentials before grasping (from −500 to 0 ms time-locked to
grasping), we only found a significant amplitude difference between the FP and the NP
conditions in the time window from −500 to −400 ms, and the slow-wave potentials
were more positive in the FP than the NP condition. However, the difference between
the FP and the IP was not significant, neither was the difference between the IP and the
NP. Considering the temporal overlapping of the epochs (time-locked to S2 and time-
locked to grasping), the enlarged slow-wave potentials for the FP condition in the time
window (−500–400 ms) might be attributed to the movement correction processes (the late
positivity potentials in the epoch time-locked to S2). It is worth noting that the difference
in slow waves might also be attributed to eye movements. Even though we instructed
participants to fix their gazes during movement and corrected the ocular artifacts by
Gratton regression [46,47], the (potential) residual effects might still remain (especially) in a
large analysis epoch, which could influence (partially) the slow-wave amplitude. Therefore,
the slow-wave effect between FP and NP conditions might also be caused by the residual
effects of eye movement. It is still an open question, which deserves further research.

In the time windows from −400 to 0 ms time-locked to grasping, no significant differ-
ence was found for the slow-wave potentials among the different conditions (FP/IP/NP).
It seems to suggest that participants adjust their movements as soon as they perceive the
perturbations, and the movement corrections may have been finished at least 400 ms before
grasping. It is in line with the movement kinematics data in the previous study [35] that
movement correction to adapt to a perturbed (final) action goal occurred in the first half
of the reach time. More importantly, the similar slow-wave potentials before grasping be-
tween the FP and the IP also indicate that the (neuro-) cognitive processes before grasping
are very similar for both goal-perturbed conditions, which may exclude the possibility
that participants corrected their movements only after they gripped the handle in the
FP condition.

Limitations of the present study should be taken into consideration. Even though
none of the participants reported (in the post questionnaire) a strategy that they planned
all of the four possible grasp-to-rotate movements before they release the start button, it
still could be a limitation for our experimental design (the corrections of the upcoming
movements are predictable) and it may affect our results (such as the reaction times).
For future research, it would be interesting if unpredictable changes can be involved. To
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control the length of the experiment, we did not include a third “perturbed” condition
in which both initial and final action goals are perturbed. Future research may consider
implementing this in order to provide a more comprehensive picture of goal perturbations
in manual actions.

5. Conclusions

Taking the behavioral and neurophysiological results together, we found that the
re-planning times, as well as the cortical activities, differed between the corrections of
manual actions with perturbed initial goals and perturbed final goals. The perturbed initial
goals have a stronger interference with the execution of the grasp-to-rotate movement than
the perturbed final goals, and the interference seems to arise from both motor inhibition
(stopping inappropriate actions) and motor implementation (generating new actions). To
our knowledge, this is one of the first studies to distinguish the online corrections of
manual actions with perturbed initial and final action goals, as well as the first study to
differentiate cerebral activity underlying overt goal-related manual actions executed with
an unexpectedly perturbed initial and final action goal. Our findings emphasized the
importance of the initial action goals (grip postures) in the execution and online correction
of manual actions; the unexpected changes in the required grip postures seem to demand
more efforts in both action inhibitions and implementations (compared to changes in
task purposes).
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