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Abstract: Existing methods for learning-style recognition are highly subjective and difficult to imple-
ment. Therefore, the present study aimed to develop a learning-style recognition mechanism based
on EEG features. The process for the mechanism included labeling learners’ actual learning styles,
designing a method to effectively stimulate different learners’ internal state differences regarding
learning styles, designing the data-collection method, designing the preprocessing procedure, and
constructing the recognition model. In this way, we designed and verified an experimental method
that can effectively stimulate learning-style differences in the information-processing dimension.
In addition, we verified the effectiveness of using EEG signals to recognize learning style. The
recognition accuracy of the learning-style processing dimension was 71.2%. This result is highly
significant for the further exploration of using EEG signals for effective learning-style recognition.

Keywords: learning-style recognition; EEG features; brain-computer interface; processing dimension;
Felder–Silverman learning-style

1. Introduction
1.1. Overview of Learning Styles

Learning style is a relatively stable learning preference that learners gradually form
in long-term learning activities [1]. It is an important factor reflecting learners’ individual
differences [2]. Personalized learning strategies, content, and resources can be formulated
by analyzing and studying different learning styles, which can improve learning efficiency
and enthusiasm [3]. Therefore, accurately recognizing learners’ learning styles not only
is necessary for personalized teaching but also has important research significance and
application value for implementing modern education modes [4].

The earliest theory of learning style was proposed by Thelen in 1954 [5]. After that,
researchers put forward various learning-style models [6], including Kolb [7], Felder–
Silverman [8], VARK [9], and Gregorc [10]. Among them, the Felder–Silverman model has
been widely recognized and adopted for well-known adaptive learning systems such as
CS383, MASPLANG, LSAS, and TANGOW. Supported by a large amount of experimental
data, the Felder–Silverman model has been shown to have good applicability and effec-
tiveness [11]. The Felder–Silverman model divides learning style into four dimensions:
information processing, perception, input, and understanding. Each dimension has two
types of learning styles, as shown in Figure 1.
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1.2. Current State of Learning-Style Recognition Methods

At present, there are two main ways to recognize learning style: explicit recognition
and implicit recognition.

(1) Explicit recognition calculates scores from the Index of Learning Styles (ILS) ques-
tionnaire [12] to judge subjects’ learning styles [13]. Researchers such as Surjono [14],
Hwang [15], and Wang [16] have built learning-style models based on ILS. Table 1
summarizes the advantages and disadvantages of explicit recognition.

(2) Implicit recognition mines and analyzes learners’ interactive behavior data using
online learning systems (e.g., learning behavior logs and social behavior data) to
indirectly grasp learning styles. Thus, there is no need for participants to fill out the
ILS. Many researchers have studied the implicit recognition mechanism. Taking the
number of clicks on certain buttons, time spent on activities, quiz results, number of
posts in forums, and other behavior data as inputs, Cha et al. [17] used a decision tree
and hidden Markov model to recognize learning styles. Villaverde et al. [18], mean-
while, used the following as input sources: which types of learning materials learners
prefer, whether learners modified answers before submitting, and whether learners
actively participated in forums; on that basis, artificial neural networks were used for
recognition. Subsequent studies that used online interactive behavior for learning-
style recognition have employed decision trees [19,20], Bayesian networks [21], neural
networks [22,23], genetic algorithms [24], and the J48 algorithm [25]. The abovemen-
tioned studies all used conventional online learning-behavior features as their data
sources; our study, however, used EEG signals for learning-style recognition, the
advantages of which will be discussed below.

Table 1 summarizes the advantages and disadvantages of implicit recognition methods.

Table 1. Advantages and disadvantages of current learning-style recognition methods.

Method Advantages Disadvantages

Explicit recognition

(1) ILS is customized according to the
learning-style model. The reliability
and validity of ILS have theoretical
support, showing high authority
[26].

(1) It is hard for learners to understand the concepts of
learning styles; thus, they might not be able to
accurately fill out the questionnaire [26].

(2) When learners respond to the ILS, they will have a
subjective bias toward the test results, thus affecting
the objectivity of the results [26].

(3) Calculating learning style based on a one-time
questionnaire cannot reflect changes in characteristics
over time [26].
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Table 1. Cont.

Method Advantages Disadvantages

Implicit recognition

(1) Recognition results are
automatically obtained and
classified by the system. Learners
do not need additional time to fill
out the questionnaire [26].

(2) Compared to explicit recognition, it
is less affected by the learner’s
subjective factors, and the data
source is more objective [26].

(1) Given the problem of a “cold start,” it is necessary to
obtain a large amount of learners’ online
learning-behavior data for more accurate recognition
[27].

(2) The credibility of the data source itself will have a
great impact on the recognition results [28].

1.3. Applying EEG Signals to Learning-Style Recognition

Differences in the learning-style dimensions (i.e., information processing, perception,
input, and understanding) reflect differences in the way learners analyze and solve prob-
lems [29]. This process is related to how the brain internalizes and understands information.
It is difficult, therefore, to efficiently analyze subjects’ learning styles using the abovemen-
tioned conventional recognition methods. An electroencephalogram (EEG) is a record
of spontaneous and rhythmic electrophysiological activity in the brain [30]. Its various
bands can reflect the internal activity state of the brain (Table 2). EEGs have been widely
used in emotion recognition [31,32], attention level measurement [33], cognitive workload
measurement [34,35], thinking-state detection [36,37], academic stress detection [38], cog-
nitive psychological disease detection [39,40], fatigue monitoring [41], mind control [42],
and other areas. Since the biological nature of EEG information is difficult to disguise or
mask, EEGs can more objectively reflect internal processes than behaviors, voices, facial
expressions, and so on [43]. Therefore, applying EEGs to learning-style recognition has
considerable potential.

Table 2. Internal activity state of the human brain corresponding to the frequency band of EEG signal.

EEG Signal Band Frequency Meaning

Delta 0.5 Hz to 4 Hz Deep sleep [44]

Theta 4 Hz to 7 Hz Drowsiness or mediation [44], working memory and processing [45]

Alpha 8 Hz to 12 Hz Sensory suppression mechanism during selective attention [46], awakening
[44], inhibition of irrelevant stimuli [45]

Beta 13 Hz to 30 Hz Active thinking and attention, outside world, and problems solving [47]

Gamma Above 30 Hz Consciousness [48], cognitive control during detecting emotional expressions
[49]

Among Felder–Silverman’s four dimensions, the processing dimension concerns how
received information is processed into knowledge according to thinking processes [8].
Reflective learners are better at introspection and pay attention to their internal situation;
active learners tend to practice and put their energy into the external environment [50]. The
processing dimension can reflect differences in learners’ cognitive processing, which can
have guiding significance for personalized teaching as well as lifelong learning. Therefore,
this study used EEG features to analyze the processing dimension of learning style.

1.4. Experimental Questions

(1) How should an experimental method be designed to stimulate internal state differ-
ences in the processing dimension of learning styles?

(2) Can the student’s learning style be recognized based on EEG signals?
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2. Experimental Design

The experimental procedure included five steps (Figure 2):
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2.1. Labeling Subjects’ Real Learning Styles 

Figure 2. Experimental flowchart (red box is the output of each step).

(1) Label the subjects’ actual learning style. We recruited subjects to fill out the ILS
and designed measures to ensure the accuracy of the results. We selected subjects who
were willing to participate and who met the requirements for the follow-up experiment.
(2) Evoke the subjects’ learning style-related internal state differences. The subjects’ dif-
ferent internal states in the processing dimension were stimulated through our designed
stimuli. (3) Collect the EEG data. Methods were designed to collect EEG signals generated
in the previous step to obtain the subjects’ raw EEG data. (4) Preprocess the EEG data. The
raw EEG data were preprocessed and cleaned EEG for training. (5) Train the model to
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recognize learning style. Model training was performed using the data, and an EEG-based
learning-style recognition model was finally constructed.

2.1. Labeling Subjects’ Real Learning Styles

The ILS was used to obtain and label the subjects’ actual learning styles. Then, we
analyzed the distribution of learning styles. Based on the results and on the subjects’
willingness, we selected subjects for the follow-up experiments. The detailed steps are
described below.

2.1.1. Labeling Method

Felder and Soloman designed the ILS in 1997 to measure learning styles in the four
dimensions of the Felder–Silverman model. The ILS has 11 questions for each dimension
for a total of 44 questions. It has been widely used in research on learning-style recognition
and has been shown to have good reliability and validity [11]. Therefore, we used the ILS
to label the subjects’ learning styles. However, there are a couple of problems with using
the ILS for this purpose. First, since people have different learning backgrounds, and the
questions in the ILS are expressed in an abstract way, it might be difficult for subjects to
fully understand the meaning of each question. Second, subjects might be reluctant to fill
out the questionnaire and might answer randomly, which would produce large deviations
in the results.

In light of the above, we performed a straightforward, detailed translation of each ILS
item and explained the meaning of each to the subjects verbally before they filled it out.
Moreover, we asked the subjects about their willingness to fill out the ILS in advance, and
only those who expressed willingness to do so were selected. They were asked to fill out
the ILS based on careful consideration of their own actual situation. On this basis, subjects’
learning styles were obtained, providing a reliable basis for labeling learning styles.

2.1.2. ILS Results

ILS questionnaires were distributed to 100 college students, and 97 were collected.
The results were calculated to analyze the distribution of the subjects’ learning styles and
to further screen the subjects for the experiments. According to the learning style results
of all the 97 participants who completed the ILS in Figure 3, the Chi-square test [51] was
conducted to verify the effect of gender on the processing dimension of learning style;
we put forward the original hypothesis that “gender (male/female) has no significant
effect on the processing dimension of learning style (reflective/active)”. The test result
shows that χ2 statistic = 0. 2753 (degree of freedom=1), p = 0.5998, which cannot reject
the original hypothesis. That is to say, there is not a statistically significant difference
in gender proportions, so the variable of gender will no longer be considered in the
subsequent experiments.
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2.1.3. Screening Subjects

To improve the quality of the experimental data, we needed to select qualified subjects.
First, subjects whose ILS results were neutral—that is, the tendency to be reflective or active
was not obvious—needed to be filtered. Second, to ensure balanced data distribution, the
number of data sets for the two categories needed to be as close as possible. Third, the
subjects needed to be willing to proceed to the next step.

Based on the above, seven active and seven reflective subjects (each showing obvious
active or reflective learning styles) were selected, for a total of 14 undergraduate subjects
aged 18–21 (average: 19.4 years, standard deviation: 0.9 years). All subjects had normal
hearing and vision and were right-handed. None were informed about the experimen-
tal hypotheses. Before the experiment, all subjects provided signed informed consent,
indicating they fully understood the experimental procedure.

2.2. Evoking the State Difference of Learning Style
2.2.1. Principles for Selecting the Stimulus Mode

Designing the stimuli was a key aspect of the experiment. Through the use of external
stimuli, the desired internal state signals of the subjects would be generated, allowing us to
analyze them.

The processing dimension of the Felder–Silverman model concerns how individuals
process information into knowledge. The behavioral differences between reflective and
active learners are as follows: Reflective learners tend to think carefully about problems,
take sufficient time to examine the problems, weigh various problem-solving methods, and
then choose the best solution, thereby making fewer mistakes. Active learners, meanwhile,
tend to test hypotheses quickly and make hasty decisions based on partial information or
without thorough analysis; thus, they respond faster but are more prone to errors.

In light of the above, to choose a stimulus mode that would be accurate and efficient,
the following questions needed to be considered:

(1) How could we effectively stimulate individual differences in the subjects’ learning
styles in the processing dimension?

(2) How could we ensure that the designed stimulus mode would generate as few invalid
signals as possible (e.g., from insufficient time for subjects’ information processing or
bodily movements that would interfere with the quality of the internal signals)?

2.2.2. Confirming the Stimulus Source

Based on the above, we chose Raven’s Advanced Progressive Matrices (RAPM), devel-
oped by British psychologist J.C. Raven in 1992, as the stimulus source for the experiment.

RAPM could effectively stimulate subjects’ learning-style differences in the processing
dimension for the following two reasons.

(1) RAPM asks subjects to think logically based on the rules associated with the symbols
in the matrix diagram. They must fill in vacant positions using the appropriate
options. Figure 4 shows the schematic diagram for RAPM test questions. RAPM
is often used to assess thinking ability, observational ability, and the ability to use
information to solve problems. Using RAPM as a stimulus can prompt subjects to
undertake logical thinking that will stimulate brain processing.

(2) Easy questions will reduce the length of cognitive processing, but too difficult ones
will generate fatigue and cognitive load, which will affect the quality of the signals.
The overall difficulty level of the RAPM is moderate, which can ensure good signal
quality. Besides, for younger subjects, the Raven’s Standard Progressive Matrices
(RSPM) can adaptively be used instead of the RAPM.
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Figure 4. Schematic diagram of an RAPM test question.

Using RAPM as the stimulus source can reduce the generation of invalid signals in
the following two ways.

(1) The RAPM test is largely nontextual. Thus, since subjects do not need to read (test
questions, for example), it will reduce the amount of noncognitive processing, which
will ensure to the greatest extent that the stimulated signals reflect the brain’s thinking
processes.

(2) The RAPM items are presented in the form of multiple-choice questions. Subjects
can click the corresponding option to complete their response, which minimizes
unnecessary body movement. This can reduce the influence of body movement and
other signals on the data.

2.3. Collecting the EEG Data
2.3.1. Data-Collection Apparatus

A wireless EEG instrument with noninvasive electrodes called Emotiv Epoc+ (Emotiv
Systems, San Francisco, USA) was selected for EEG data collection (Figure 5a). It has
14 data-collection channels with a sampling rate of 128 Hz. The electrodes were placed
according to the International 10–20 system, as shown in Figure 5b. Although the sensitivity
of the Emotiv Epoc+ is not as good as that of a medical-level device, it is relatively affordable
and portable, and it has been successfully used in research on cognitive load [52], figure
understanding [53], and silent reading [54], among others.
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Figure 5. (a) Emotiv Epoc+, (b) electrodes of Emotiv Epoc+, and (c) experimental environment.

2.3.2. Data-Collection Environment

Data collection was undertaken in a quiet, comfortable laboratory (Figure 5c). The
subject wore a brain-computer device. One computer presented the stimulus source while
another recorded the raw EEG signals.

To accurately record the subjects’ answering time and results, E-Prime 2.0 was used to
present the stimulus. The timestamp generated by E-Prime 2.0 can be synchronized with
the timing of the EEG signal so that the EEG data can be accurately segmented according
to subjects’ thinking processes.

2.3.3. Data-Collection Process

Before starting the data collection, we introduced the experimental procedure and
basic operational steps to the subjects and asked them to try to avoid head or body move-
ment. Thirty-six test questions from the stimulus source were equally divided into six
sequences; thus, one stimulus sequence consisted of six questions. Figure 6 shows the
sequence diagram of a single stimulus sequence. Each stimulus sequence began at the
preparation interface. To fully stimulate the subjects’ information-processing signals, the
upper limit time of each question was set to 60 seconds; the subjects would then receive
feedback on their answer. To prevent cognitive overload and fatigue, there was a rest
period after each set of six questions. After the subjects had rested, they pressed a key to
resume. The test process ended after all questions were completed.
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2.4. Preprocessing the EEG Data
2.4.1. Extraction of Effective EEG Data Segments

The raw EEG data contained the subjects’ continuous and total EEG data from the
beginning to the end of the experiment. The data included rest time, time taken to answer
questions, and other stretches of time that lacked effective cognitive information processing.
Therefore, it was necessary to extract the data reflecting effective cognitive information
processing. As shown in Figure 7a, the raw continuous signal was sliced according to the
time stamp recorded by E-Prime in the background, and EEG signals corresponding to
effective information processing for each question were obtained.

Brain Sci. 2021, 11, x FOR PEER REVIEW 9 of 18 
 

2.4. Preprocessing the EEG Data  

2.4.1. Extraction of Effective EEG Data Segments 

The raw EEG data contained the subjects’ continuous and total EEG data from the 

beginning to the end of the experiment. The data included rest time, time taken to answer 

questions, and other stretches of time that lacked effective cognitive information 

processing. Therefore, it was necessary to extract the data reflecting effective cognitive 

information processing. As shown in Figure 7a, the raw continuous signal was sliced 

according to the time stamp recorded by E-Prime in the background, and EEG signals 

corresponding to effective information processing for each question were obtained.  

A total of 504 pieces of experimental data were obtained (14 subjects, 36 questions 

each), with durations ranging from 5 to 60 s. 

 

Figure 7. Schematic diagram of data preprocessing. 

2.4.2. EEG Filtering and Artifact Removal 

Figure 7. Schematic diagram of data preprocessing.

A total of 504 pieces of experimental data were obtained (14 subjects, 36 questions
each), with durations ranging from 5 to 60 s.



Brain Sci. 2021, 11, 613 10 of 18

2.4.2. EEG Filtering and Artifact Removal

Since the EEG data contained a large amount of artifact data (e.g., electrooculogram
(EOG), electromyogram (EMG), and power frequency interference), it was necessary to
filter that data out. Figure 7b shows the data-filtering process. In the experiment, the
raw EEG data were preprocessed through the following steps. First, data segments with
obvious interference were removed manually by checking the waveform. Then, since the
effective range of the human brain’s EEG signal is 0–30 Hz, and the delta band (0–4 Hz)
of the EEG signal only appears during deep sleep, effective EEG data in the range of
4 Hz–30 Hz were obtained using EEGLAB to perform band-pass filtering. In addition,
during the experiment, blinking, hand movement, and other actions interfered with the
EEG signal. Thus, independent component analysis (ICA) was used to remove artifacts
such as EOG and EMG. Finally, considering that people’s brainwave benchmarks are not
the same, some brainwave signals were stronger while others were weaker. Thus, we
used the first two seconds of each piece of EEG data as the baseline and used the average
reference method to normalize the EEG data. Finally, clean EEG signals were obtained.

2.4.3. Data Slicing

To solve the problem of variable-length data input and to increase the number of
training samples, a slicing method was used to slice the EEG data. Figure 7c shows the
slicing operation. EEG data corresponding to each question were divided into several data
slices (from Slice_1 to Slice_n) with a duration of 2 s by the time-sliding window. There
was no overlap between the two data slices, and data under 2 s were ignored. After data
slicing, a total of 8358 EEG data slices with a 2 s duration were generated.

2.4.4. Labeling EEG Data to Be Trained

The processed data slices were labeled with the actual learning-style labels obtained
from the ILS (Section 2.1). All slices were randomly ordered and used as training samples
for the recognition model.

2.5. Constructing the Recognition Model

Model construction mainly included two parts: training and recognition. Figure 8
shows the process. Model construction was performed using Python programming under
the Pytorch framework. The system specifications were Intel(R) Core(TM) i5-9300H CPU @
2.40 GHz processor, 32 GB memory, NVIDIA GeForce RTX 2080Ti graphics card, and 64-bit
Windows 10 OS.
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2.5.1. Training Process

Before model training, 80% of the 8358 labeled data was randomly sampled as the
training set and 20% as the testing set with no overlap between the two. Support vector
machines (SVMs) and backpropagation neural networks (BPs) are widely used in classifica-
tion scenarios; thus, we trained using SVM and BP models. In the training process, feature
extraction and parameter updating were performed on the preprocessed experimental data.

In addition, considering that EEG signals contain high-dimensional time, space, and
frequency features, we used a convolutional neural network (CNN) model to construct a
one-dimensional multiscale spatiotemporal convolutional neural network model (1-DCNN)
to optimize the accuracy of existing EEG recognition models. The specific measures were
as follows: first, we used a one-dimensional spatiotemporal convolution kernel instead
of the traditional two-dimensional kernel, which can extract the spatiotemporal features
of EEGs between channels and reduce the model training parameters. Second, we built a
parallel multiscale convolution module, which can effectively obtain more abundant EEG
features. Third, we replaced the fully connected layer with global average pooling, which
can effectively increase training speed and minimize the effect of overfitting.

2.5.2. Recognition Process

In the recognition process, the trained parameters were directly used to construct
a recognition model for learning-style classification. Then, the testing set was used to
evaluate the performance of the model. In recognition, according to the classification
results of the model for the slices, the strategy of “the minority obeys the majority” was
used; that is, the category that appeared the most was used as the final classification label
for the whole thinking process (Figure 9). To ensure there was only one classification result
for a topic and to keep active and reflective styles from occurring simultaneously, it was
necessary to ensure that the number of slices of the question was an odd number. Thus, we
deleted the last slice when the data slices were even.
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3. Experimental Results and Analysis
3.1. Verifying the Experimental Design
3.1.1. Data Visualization Analysis of Subjects’ Experimental Results

We analyzed the subjects’ actual learning-style labels and their behavior differences to
verify the effectiveness of the experimental design. The results obtained by analyzing the
subjects’ answer times and correct rates in the experiment are visualized in Figure 10.
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Figure 10A,B show the answer accuracy of reflective and active learners, respectively.
The abscissa is the subject’s number, and the ordinate is the subject’s answer accuracy.
Figure 10A,B show that the reflective learners’ average accuracy rate was 80.857% (standard
deviation: 8.626%) while that of active learners was 67.286% (standard deviation: 11.498%).
The overall accuracy rate of reflective subjects was higher than that of active subjects, which
is consistent with the differences in the accuracy rates of learners in the Felder–Silverman
processing dimension.

Figure 10C,D show the total answer times of reflective and active learners, respectively.
The abscissa is the subject number, and the ordinate is the answer time of each subject. The
average time taken by reflective learners was 23.571 min (standard deviation: 3.373 min)
while that of active learners was 18.543 min (standard deviation: 1.736 min). Thus, reflective
subjects took more time than active subjects, which aligns with the differences in the answer
times of learners in the Felder–Silverman processing dimension.

The analysis of subjects’ learning behavior during the experiment shows that active
learners spent less time and had lower accuracy in solving problems while reflective learn-
ers spent more time and had higher accuracy. The experimental process was therefore able
to distinguish the behavior differences between the two learning styles in the processing
dimension, demonstrating the rationality of the experimental design.

3.1.2. Statistical Analysis

We used the Chi-square test [51] to assess if there exists an association between
the answer results (correct/wrong) and the processing dimension of the learning style
(reflective/active). On the contrary, we used the Mann–Whitney U test [55] to compare the
answer time lengths (quantitative variable) between the two types of learning styles in the
processing dimension.
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Verify Significant Differences in Answer Results

First, we compared the answer results of the two groups of learners with differ-
ent learning styles in the processing dimension (active/reflective) by Chi-square test.
Regarding the question, “Do the different learning styles in the processing dimension
(active/reflective) affect the answer results (correct/wrong)?” we propose the hypotheses
shown in the Equations (1) and (2), where Pa

c is the proportion of correct answer results in
the active learners’ group, whereas Pr

c is the proportion of correct answer results in the
reflective learners:

H0: Pa
c = Pr

c (1)

H1: Pa
c 6= Pr

c (2)

Table 3 shows the contingency table results for the answer results of the two types
of learning styles. There are 504 single-answer results of the two groups of learners
(reflective/active): 204 of them are answered correctly by reflective learners and 169 of
them are answered correctly by active learners.

Table 3. Contingency table for the answer results and the two types of learning styles in the processing
dimension (reflective/active).

Answer Results\Processing
Dimension Reflective Learners Active Learners

Correct 204 169
Wrong 48 83

The result of the Chi-square test shows that χ2 statistic = 11.9236(degree of free-
dom = 1), p = 0.0006; thus, hypothesis H0 in Formula (1) is rejected, and H1 in For-
mula (2) is accepted. This indicates that the learning styles in the processing dimension
(active/reflective) have a significant impact on the answer results (correct/wrong); that is,
it was verified that there was a significant difference in answer results between the two
groups of subjects with different learning styles.

Verify Significant Differences in Answer Time

Similarly, we compared answer times between the two groups with different learning
styles by Mann–Whitney U test. Regarding the question, “Is the length of answer time of
active learners significantly different from the one of reflective learners?” we propose the
hypotheses shown in Formulas (3) and (4), where Ma

c and Mr
c are the median values of

subjects’ answer times:
H0: Ma

c = Mr
c (3)

H1: Ma
c 6= Mr

c (4)

The result of the Mann–Whitney U test shows that U statistic = 5.0000, p = 0.0127; thus,
hypothesis H0 in Formula (3) is rejected, and H1 in Formula (4) is accepted. This indicates
that there were significant differences in the answer time of the two groups of subjects with
different learning styles.

Analysis of Statistical Conclusion

It has been proven that there were statistically significant differences in the answer
accuracy and answer time of subjects with different learning styles. This further verifies
the rationality of the experimental design in this study—namely, its ability to evoke the
internal-state differences of different learners in the processing dimension.

3.2. Effectiveness of EEG-Based Learning-Style Recognition

We used the processed EEG signals as the data source for the recognition model and
analyzed its accuracy using the test set to verify the effectiveness of EEG-based learning-
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style recognition. In this study, two commonly used recognition models (SVM and BP)
and one optimized recognition model based on CNN (1-DCNN) were used to perform
recognition using the testing set. Figure 11 shows the results of different models on accuracy,
precision, recall, and F1 score. It can be seen that our optimized 1-DCNN model achieved
a recognition accuracy of 71.2%, a precision of 69.2%, a recall of 67.6%, and an F1 score
of 69.2%, demonstrating its ability to recognize learning style. Therefore, it was verified
that learning-style recognition based on EEG signals is reasonable. Figure 11 also shows
that our optimized 1-DCNN recognition model could improve the accuracy of EEG-based
learning-style recognition models.
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Figure 11. Comparison of the recognition accuracy, precision, recall, and F1 score of different models.

To further verify that EEG features can be effectively applied to learning-style recog-
nition, we compared the recognition result of our experiment with the results of other
Felder–Silverman learning-style dimensions with regard to data sources and recogni-
tion precision.

Table 4 shows that, compared to other mature learning-style recognition methods
based on online interactive behavior logs, the precision of our proposed EEG-based recogni-
tion method is promising. The recognition precision of our approach has great potential for
improvement by, for example, using higher-precision data-collection equipment, increasing
the number of subjects, and further optimizing the classifier structure to obtain better
recognition precision. In this way, a new field of EEG-based learning-style recognition can
potentially be developed.

Table 4. Comparison of the proposed mechanism and other recognition mechanisms in terms of data
sources and recognition precision.

Method Data Source Precision

Proposed EEG features 69.2%
Quang and Florea, 2012 [56] Online interactive behavior log 72.7%

Karagiannis and Satratzemi, 2017 [57] Online interactive behavior log 70.0%
Liyanage et al., 2014 [58] Online interactive behavior log 65.0%

Kappel and Graf, 2007 [59] Online interactive behavior log 62.5%
Ömer et al., 2010 [50] Online interactive behavior log 79.6%

Bernard et al., 2017 [60] Online interactive behavior log 81.9%

4. Discussion and Conclusions

Aiming to overcome the problems of existing learning-style recognition mechanisms,
this study developed a novel learning-style recognition mechanism based on EEG. The
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mechanism involved (1) labeling learners’ actual learning styles, (2) designing stimuli to
evoke learners’ internal state signals, (3) designing the data-collection method, (4) designing
the preprocessing procedure, and (5) constructing the recognition model.

This study’s contributions are as follows:

(1) We designed and verified an experimental method that effectively stimulated internal
state differences in the subjects’ different learning styles in the processing dimension.
Based on Felder–Silverman’s processing-dimension theory, we conducted an experi-
ment to stimulate subjects’ state differences in the processing dimension. The validity
of the processing-dimension state differences stimulated by the experiment was then
verified through a statistical analysis of the subjects’ behavioral states.

(2) We confirmed the validity of learning-style recognition based on EEG signals. We
designed an appropriate experimental acquisition environment, collected EEG signals
from the subjects’ processing dimension, processed the collected EEG data, and con-
structed a 1-DCNN model for recognition. The recognition result was 71.2%, showing
that an EEG-based learning-style recognition algorithm has promising classification
ability. This also confirmed that the 1-DCNN recognition algorithm could improve
the accuracy of the EEG-based learning-style recognition model. In addition, we
compared the accuracy of the proposed method with that of other mature recog-
nition methods and further verified the effectiveness and potential of EEG-based
learning-style recognition.

In summary, our proposed EEG-based learning-style recognition mechanism has im-
portant significance for learning-style recognition. In the future, we will further optimize
recognition accuracy in terms of four aspects: the quality and quantity of data sources, the
method for preprocessing EEG data, and the structure of the recognition model. We will also
continue to investigate the use of EEG features to recognize other learning-style dimensions.
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50. Ömer, Ş.; Nilüfer, A.; Mustafa, M.I.; Yüksel, D.A. Diagnosis of learning styles based on active/reflective dimension of felder
and silverman’s learning style model in a learning management system. In Proceedings of the 2010 International Conference on
Computational Science and Its Applications (ICCSA′10) Fukuoka, Japan, 23 March 2010; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 544–555.

51. McHugh, M.L. The Chi-square test of independence. Biochem. Medica 2013, 23, 143–149. [CrossRef]
52. Wang, S.; Gwizdka, J.; Chaovalitwongse, W.A. Using Wireless EEG Signals to Assess Memory Workload in the n -Back Task. IEEE

Trans. Hum. Mach. Syst. 2016, 46, 1–12. [CrossRef]
53. Anderson, E.W.; Potter, K.C.; Matzen, L.E.; Shepherd, J.F.; Preston, G.A.; Silva, C.T. A User Study of Visualization Effectiveness

Using EEG and Cognitive Load. Comput. Graph. Forum 2011, 30, 791–800. [CrossRef]
54. Knoll, A.; Wang, Y.; Chen, F.; Xu, J.; Ruiz, N.; Epps, J.; Zarjam, P. Measuring cognitive workload with low-cost electroencepha-

lograph. In Proceedings of INTERACT; Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M., Eds.; Springer:
Berlin, Germany, 2011; pp. 568–571.

55. Nadim, N. The Mann-Whitney U: A Test for Assessing Whether Two Independent Samples Come from the Same Distribution.
Tutor. Quant. Methods Psychol. 2008, 4, 13–20.

56. Quang, D.P.; Florea, A.M. An approach for detecting learning styles in learning management systems based on learners’
behaviours. Int. Proc. Econ. Dev. Res. 2012. [CrossRef]

57. Karagiannis, I.; Satratzemi, M. An adaptive mechanism for Moodle based on automatic detection of learning styles. Educ. Inf.
Technol. 2018, 23, 1–27. [CrossRef]

http://doi.org/10.1109/TAMD.2015.2441960
http://doi.org/10.1007/978-3-319-67220-5_6
http://doi.org/10.1155/2020/6929546
http://doi.org/10.3389/fnhum.2018.00402
http://www.ncbi.nlm.nih.gov/pubmed/30405374
http://doi.org/10.1016/j.euroneuro.2015.03.007
http://doi.org/10.1016/j.neucom.2017.12.062
http://doi.org/10.1007/s11042-015-2717-z
http://doi.org/10.1016/j.neuroimage.2013.03.018
http://www.ncbi.nlm.nih.gov/pubmed/23523810
http://doi.org/10.1109/ICAMMAET.2017.8186752
http://doi.org/10.1007/978-3-319-91593-7_4
http://doi.org/10.3389/fpsyg.2011.00154
http://doi.org/10.1109/CIDM.2014.7008655
http://doi.org/10.1016/j.ijpsycho.2007.10.002
http://www.ncbi.nlm.nih.gov/pubmed/17997495
http://doi.org/10.3389/fnins.2021.608156
http://doi.org/10.11613/BM.2013.018
http://doi.org/10.1109/THMS.2015.2476818
http://doi.org/10.1111/j.1467-8659.2011.01928.x
http://doi.org/10.1109/ICALT.2006.1652395
http://doi.org/10.1007/s10639-017-9663-5


Brain Sci. 2021, 11, 613 18 of 18

58. Liyanage, M.P.P.; Gunawardena, K.S.L.; Hirakawa, M. Using Learning Styles to Enhance Learning Management Systems. Int. J.
Adv. ICT Emerg. Reg. (ICTer) 2015, 7. [CrossRef]

59. Kappel, P.G.; Graf, S. Adaptivity in Learning Management Systems Focusing on Learning Styles. Ph.D. Thesis, Vienna University
of Technology, Vienna, Austria, 2007.

60. Bernard, J.; Chang, T.-W.; Popescu, E.; Graf, S. Learning style Identifier: Improving the precision of learning style identification
through computational intelligence algorithms. Expert Syst. Appl. 2017, 75. [CrossRef]

http://doi.org/10.4038/icter.v7i2.7153
http://doi.org/10.1016/j.eswa.2017.01.021

	Introduction 
	Overview of Learning Styles 
	Current State of Learning-Style Recognition Methods 
	Applying EEG Signals to Learning-Style Recognition 
	Experimental Questions 

	Experimental Design 
	Labeling Subjects’ Real Learning Styles 
	Labeling Method 
	ILS Results 
	Screening Subjects 

	Evoking the State Difference of Learning Style 
	Principles for Selecting the Stimulus Mode 
	Confirming the Stimulus Source 

	Collecting the EEG Data 
	Data-Collection Apparatus 
	Data-Collection Environment 
	Data-Collection Process 

	Preprocessing the EEG Data 
	Extraction of Effective EEG Data Segments 
	EEG Filtering and Artifact Removal 
	Data Slicing 
	Labeling EEG Data to Be Trained 

	Constructing the Recognition Model 
	Training Process 
	Recognition Process 


	Experimental Results and Analysis 
	Verifying the Experimental Design 
	Data Visualization Analysis of Subjects’ Experimental Results 
	Statistical Analysis 

	Effectiveness of EEG-Based Learning-Style Recognition 

	Discussion and Conclusions 
	References

