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Abstract: Machine learning methods are widely used in autism spectrum disorder (ASD) diagnosis.
Due to the lack of labelled ASD data, multisite data are often pooled together to expand the sample
size. However, the heterogeneity that exists among different sites leads to the degeneration of machine
learning models. Herein, the three-way decision theory was introduced into unsupervised domain
adaptation in the first time, and applied to optimize the pseudolabel of the target domain/site from
functional magnetic resonance imaging (fMRI) features related to ASD patients. The experimental
results using multisite fMRI data show that our method not only narrows the gap of the sample
distribution among domains but is also superior to the state-of-the-art domain adaptation methods
in ASD recognition. Specifically, the ASD recognition accuracy of the proposed method is improved
on all the six tasks, by 70.80%, 75.41%, 69.91%, 72.13%, 71.01% and 68.85%, respectively, compared
with the existing methods.

Keywords: autism spectrum disorder; machine learning; three-way decision; domain adaptation

1. Introduction

Autism spectrum disorder (ASD) is a common neurodevelopmental disease originat-
ing in infancy [1–6]. According to a recent study, one in 45 children in the world has autism,
and the number of affected children has increased by 78% in the last decade [7]. Some
symptoms of ASD even appear in young children by the age of two years [8]. Therefore,
the early diagnosis of and intervention in ASD have received great attention in recent
years [9,10]. Researchers have applied machine learning methods to identify biomark-
ers from resting-state functional magnetic resonance imaging (rs-fMRI) data to assist in
diagnosing ASD [11–13].

Machine learning methods have demonstrated their effectiveness with the assumption
that we have sufficient training data and test data drawn from the same distribution [14,15].
However, this assumption calling for enough examples is not always satisfied in practical
applications and is not true in most cases, which will lead to the poor generalization
ability of a model trained on one dataset when applied to another new dataset. First,
clinical neural image datasets often face the problem of small dataset size due to their
expensive acquisition and time-consuming labels. Therefore, multisite rs-fMRI data are
often combined to expand the dataset in some research, such as ASD diagnosis, which
leads to the second problem: samples from different scanners or acquisition protocols do
not follow the same distribution in most cases [16,17].

The fMRI samples from different sites have also been named domains in the machine
learning research community. In addition to the distribution difference of the training set
(source domain) and the test set (target domain), the scarcity of labelled samples is another
challenge to ASD recognition. Previous studies have investigated domain adaptation
approaches to overcome site-to-site transfer [18]. Many studies have successfully applied
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domain adaptation to object recognition [19], activity recognition [20], speech recogni-
tion [21], text classification [22] and autism recognition [7]. The main goal of domain
adaptation is to reduce the difference in the data distribution between the source domain
and the target domain and then train a robust classifier for the target domain by reusing
the labelled data in the source domain.

At present, the research on domain adaptation mainly focuses on three methods,
namely, instance adaptation, feature adaptation and classifier adaptation. Specifically,
the instance-based domain adaptation method reuses samples from the source domain
according to a certain weighting rule. Instance adaptation has achieved good results by
eliminating cross domain differences [23]. However, this method needs to satisfy two strict
assumptions: (1) the source domain and the target domain follow the same conditional
distribution, and (2) some data in the source domain can be reused in the target domain by
reweighting. The classifier-based domain adaptation method transfers knowledge from
the source domain to the target domain by sharing parameters between the source domain
and target domain [24,25]. Classifier transfer has performed well with labelled samples.
However, regarding ASD diagnosis from fMRI, the data distributions of different sites are
different, and reliable labelled data are difficult to obtain.

Therefore, the application of domain adaptations based on instances or classifiers is
relatively difficult. However, the feature-based domain adaptation method can learn the
subspace geometrical structure [26–29] or distribution alignment [30–32]. This method
gears the marginal or conditional distributions of different domains in a principled dimen-
sionality reduction procedure. Our work employed the feature-based domain adaptation
method to eliminate the divergence of the data distribution.

Currently, most feature-based domain adaptation research is devoted to the adaptation
of the marginal distribution, conditional distribution, or both. For example, Long et al. [26]
found that the marginal distribution and conditional distribution between domains are
different in the real world, and better performance can be achieved if the two distributions
are adapted simultaneously. Subsequently, some studies based on joint distribution adap-
tation have been proposed successively [33–35], and these works have greatly contributed
to the development of domain adaptation.

It is worth noting that in order to obtain the pseudolabels of the target domain data,
the traditional methods usually directly apply the classifier trained in the source domain
to the prediction of the target domain data. However, these pseudolabels might lead to
some error due to the possible domain mismatch. Here, we proposed a robust method
using a three-way decision model derived from triangular fuzzy similarity. The proposed
model roughly classified the samples in the target domain into three domains, i.e., the
positive region, the negative region and the boundary region. Then, the label propagation
algorithm was used to optimize the label and make secondary decisions on the boundary
region samples. The experiments demonstrate that our method can effectively improve the
classification performance for automated ASD diagnosis.

The contributions of this paper is as follows:

1. A three-way decision model based on triangular fuzzy similarity is proposed to re-
duce the cost loss of target domain data prediction. To the best of authors’ knowledge,
it is the first time to combine the three-way decision model and the distribution adap-
tation method to reduce the distribution differences between domains. The proposed
method extends the application of machine learning in the field of decision making.

2. Our method utilizes the label information from the source domain and the structural
information from the target domain at the same time, which not only reduces the
distribution differences between domains but also further improves the recognition
ability of the target domain data.

3. Comprehensive experiments on the Autism Brain Imaging Data Exchange (ABIDE)
dataset prove that our method is better than several state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2 reviews the related
work concisely. In Section 3, we elucidate the foundation of the proposed method. Our
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proposed method is illustrated in detail in Section 4. Then, the results and discussion are
presented in Sections 5 and 6, respectively. Finally, the paper is concluded in Section 7.

2. Related Work

It has been a lasting challenge to build maps between different domains in the field of
machine learning. Domain adaptation has become a hot research topic in disease diagnosis
with machine learning. In this paper, we proposed transfer learning based on distribution
adaptation and three-way decisions. To elaborate the proposed method, we will introduce
the related work from the following three aspects in this section.

2.1. Distribution Adaptation

Distribution adaptation is one of the most commonly used methods in domain adap-
tation. It seeks a space translation and eliminated data distribution differences between
source and target domains by explicitly minimizing the predefined distance in this feature
space. According to the nature of the data distribution, distribution adaptation can be
divided into three categories: marginal distribution adaptation, conditional distribution
adaptation and joint distribution adaptation.

Pan et al. [36] first proposed a transfer component analysis (TCA) method based on
marginal distribution adaptation, which used the maximum mean discrepancy (MMD)
to measure the distance between domains and achieve feature dimensionality reduction.
The method assumes that there is a mapping so that the marginal distribution of the
mapped source domain and target domain is similar in the new space. The disadvantage
of TCA is that the algorithm only focuses on reducing the cross-domain marginal distri-
bution difference without considering reducing the conditional distribution difference.
Long et al. [37] proposed a transfer joint matching (TJM) method, which mainly combines
source domain sample selection and distribution adaptation to further eliminate cross
domain distribution differences.

Recently, in the work based on conditional distribution adaptation, Wang et al. [38]
proposed a stratified transfer learning method (STL). Its main idea is to reduce the spatial
dimension in the reproducing kernel Hilbert space (RKHS) by using the intraclass similarity
so as to eliminate the distribution differences. However, in the real world, differences may
exist in both marginal distributions and different conditional distributions. Adjusting only
one of the distributions is insufficient to bridge domain differences. In order to solve this
problem, Long et al. [26] proposed the joint distribution adaptation (JDA) method. The goal
of JDA is to jointly adjust the marginal distribution and the conditional distribution using a
principled dimensionality reduction process, and the representation in this common feature
space reduced the domain differences significantly. Other work extended JDA by adding
structural consistency [29], domain invariant clustering [30] and label propagation [31].

To provide supervised information for the target domain, JDA methods applied source
domain classifiers in the target domain and took the classifier outputs as the pseudolabels
of the target domain data. However, due to the different data distributions of domains,
the direct use of these inaccurate pseudolabels will result in the degradation of the final
model’s performance.

Considering the domain gap both in labels and samples, three-way decisions provided
a novel method to transmit the label information between domains and reuse the intrinsic
structural information of the target domain data to further improve the performance of the
model in the domain adaptation process.

2.2. Three-Way Decisions

As an effective extension of traditional rough sets, three-way decision [39] (3WD)
theory has been widely applied to address uncertain, inaccurate and fuzzy problems, such
as medical diagnosis [40], image processing [41], emotion analysis [42], etc. In simple terms,
3WD divides the universe of discourse into three disjoint parts, i.e., the positive region
(Pos), the negative region (Neg), and the boundary region (Bnd), through a pair of upper
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and lower, approximately. Acceptance and rejection decisions were made for the objects in
Pos and Neg, respectively. Specifically, the objects in Bnd adopt the delay decision.

Strictly speaking, the current 3WD research can be divided according to whether it
is based on decision-theoretic rough sets (DTRSs) [43]. For example, Zhang et al. [44]
proposed a 3WD model for interval-valued DTRSs and gave a new decision cost function.
Liu et al. [45] introduced intuitionistic fuzzy language DTRSs and 3WD models to obtain
fuzzy information in uncertain languages. Agbodah [46] focused on the study of the DTRS loss
function aggregation method in group decision making and utilized it to construct a 3WD model.

In addition, scholars have also conducted in-depth explorations on 3WD outside
the DTRS framework. For example, Liang et al. [47] integrated the risk preference of
decision makers into the decision-making process and proposed a 3WD model based on the
TODIM (an acronym in Portuguese for interactive multicriteria decision making) method.
Qian et al. [48] investigated three-way formal concept lattices of objects (properties) based
on 3WD. Yang et al. [49] presented a 3WD model oriented to multigranularity space to
adapt 3WD to intuitionistic fuzzy decisions.

From a broad perspective, 3WD can be classified as static or dynamic. Static 3WD
includes related research based on the DTRS framework and fusion of other theories.
Dynamic 3WD mainly addresses the problem of constantly changing data in time series
and space, and its typical representative is the sequential 3WD model [50]. For exam-
ple, Yang et al. [51] proposed a three-way calculation method for dynamic mixed data
based on time and space. Zhang et al. [52] systematically investigated a new sequential
3WD model to balance autoencoder classification and reduce its misclassification cost.
Liu et al. [53] combined 3WD and granular computing to construct a dynamic three-way
recommendation model to reduce decision-making costs.

3WD theory has been widely used in many areas, such as emerging three-way formal
concept analysis [54], three-way conflict analysis [55], three-way granular computing [56],
three-way classification [57], three-way recommendation [58], and three-way clustering [59].
This paper will combine the idea of 3WD to improve the performance of heterogeneous
ASD data diagnosis by reducing the difference in the data distributions between the source
domain and target domain.

2.3. Application of Machine Learning in Identification of ASD Patients

In recent years, magnetic resonance imaging (MRI) has been widely used in clinical
practice [60,61]. The commonly used MRI can be divided into structural MRI (sMRI) and
functional MRI (fMRI). As fMRI can measure the hemodynamic changes caused by the
activity of brain neurons, it has been widely used in the research of brain dysfunction
diseases. For example, Li et al. [62] proposed a 4D deep learning model for ASD recognition
that can utilize both temporal and spatial information of fMRI data. In the work of
Riaz et al. [63], they proposed an end-to-end deep learning method called DeepfMRI for
accurately identifying patients with Attention Deficit Hyperactivity Disorder (ADHD) and
achieved an accuracy rate of 73.1% on open datasets. To study the relationship between
mild cognitive impairment (MCI) and Small Vessel Disease (SVD), Diciotti et al. [64] applied
the Stroop test to the rs-fMRI data of 67 MCI subjects and found that regional homogeneity
of rs-fMRI is significantly correlated with measurements of the cognitive deficits.

As a neurodevelopmental disorder, early diagnosis of ASD is very important to
improve the quality of life of patients. In recent years, researchers have attempted to extract
biomarkers representing ASD from fMRI data using machine learning methods, so as to
provide an auxiliary diagnosis for clinicians. For example, Lu et al. [65] proposed a multi-
kernel-based subspace clustering algorithm for identifying ASD patients, which still has a
good clustering effect on high-dimensional network datasets. Leming et al. [66] trained a
convolutional neural network and applied it to ASD recognition, and their experiments
showed that deep learning models that distinguish ASD from NC controls focus broadly
on temporal and cerebellar connections. However, the problem of small size fMRI data
prevented the generalization of the above research works [67].



Brain Sci. 2021, 11, 603 5 of 21

To solve this problem, the Autism Brain Imaging Data Exchange, an international
collaborative project, has collected data from over 1000 subjects and made the whole
database publicly available. Based on the ABIDE database, many advanced machine
learning models have been proposed for the identification of ASD patients. For example,
Eslami et al. [68] used autoencoder and single-layer perceptron to diagnose ASD and
proposed a deep learning framework called ASD-DiagNet, which achieved classification
accuracy of 70.3%. Bi et al. [69] used randomized support vector machine (SVM) clusters
to distinguish ASD patients from normal controls and identified a number of abnormal
brain regions that contribute to ASD. Mladen et al. [70] selected 368 ASD patients and 449
normal controls from ABIDE database, and then used the Fisher score as the feature selection
method to quantitatively analyze 817 subjects and obtained classification accuracy of 85.06%.

3. Preliminaries

We start with the definition of the problem and the terms and introduce the notation
we will use below. The source domain data denoted as Xs ∈ Rd×ns are drawn from
distribution Ps(Xs), and the target domain data denoted as Xt ∈ Rd×nt are drawn from
distribution Pt(Xt), where d is the dimension of the data instance and ns and nt are the
number of samples in the source and target domains, respectively.

Assume a labelled source domain Ds = {(xi, yi)}
ns

i=1
, where xi ∈ Rd×ns , and an unla-

beled target domain Dt =
{
(xj)

}nt

j=1
and xj ∈ Rd×nt . We assume that their feature space

and label space are the same, i.e., Xs = Xt and Ys = Yt, but their marginal distribution and
conditional distribution are different, i.e., Ps(Xs) 6= Pt(Xt) and Ps(Ys|Xs) 6= Pt(Yt|Xt) .

Domain adaptation methods often seek to reduce the distribution differences across
domains by explicitly adapting both the marginal and conditional distributions between
domains. To be specific, domain adaptation seeks to minimize the distance (Equation (1)):

D(Ds,Dt) ≈ D(Ps(Xs), Pt(Xt)) +D(Ps(Ys|Xs), Pt(Yt|Xt)) (1)

whereD(Ps(Xs), Pt(Xt)) andD(Ps(Ys|Xs), Pt(Yt|Xt)) are the marginal distribution distance
and conditional distribution distance between domains, respectively.

There are many metrics that can be used to estimate the distance between distribu-
tions, such as the Kullback–Leibler (KL) divergence. However, most of these distance
metrics are based on parameters, and it is difficult to calculate the distance. Therefore,
Borgwardt et al. [71] proposed a nonparametric distance metric MMD using a kernel learn-
ing method to measure the distance between two distributions in RKHS. The definition of
the MMD is as follows:

Definition 1. Given two random variables Xs and Xt, their MMD squared distance is calculated
as follows (Equation (2)):

Dist(Xs, Xt) = ||
1
ns

ns

∑
i=1

∅(xi)−
1
nt

nt

∑
j=1

∅
(
xj
)
||2H (2)

whereH is a universal RKHS [72], and ∅ : X → H .

Next, we introduce the concepts of triangular fuzzy numbers and three-way decisions.

Definition 2. [73]. Let t̃ = [tL, tM, tT ] be a triangular fuzzy number, where tL and tT denote the
upper bound and lower bound of t̃, respectively, and tM is the median of t̃. If 0 < tL ≤ tM ≤ tT is
satisfied, then t̃ is called a normal triangular fuzzy number. For any two triangular fuzzy numbers
t̃ = [tL, tM, tT ] and k̃ = [kL, kM, kT ], the distance between them is as follows (Equation (3)):

d(t̃, k̃) =

√
(tL − kL)

2
+ (tM − kM)

2
+ (tT − kT)

2

3
(3)
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In addition, the basic operations between t̃ = [tL, tM, tT ] and k̃ = [kL, kM, kT ] are as
follows (Equation (4)):

t̃ + k̃ = [tL, tM, tT ] + [kL, kM, kT ] = [tL + kL, tM + kM, tT + kT ]

t̃− k̃ = [tL, tM, tT ]− [kL, kM, kT ] = [tL − kL, tM − kM, tT − kT ]

t̃× k̃ = [tL, tM, tT ]× [kL, kM, kT ] = [tL × kL, tM × kM, tT × kT ]

(4)

Definition 3. [74]. Let U be the universe of discourse, ∀X ∈ U. If threshold 0 ≤ β < α ≤ 1
exists, then its positive region, negative region and boundary region are defined with
threshold (α, β) (Equation (5)):

Pos(α,β)(X) = {x ∈ U|Pr(X|[x]) ≥ α}
Bnd

(α,β)(X) = {x ∈ U|β < Pr(X|[x]) < α}
Neg

(α,β)(X) = {x ∈ U|Pr(X|[x]) ≤ β}
(5)

where [x] is the equivalence class containing x, and Pr(X|[x]) is the conditional probability.

4. Methods
4.1. Joint Distribution Adaptation

Domain adaptation seeks an invariant feature expression for the source domain and
the target domain in a low-dimensional (K < d) space. Let W ∈ Rd×k be the linear
transformation matrix and Zs = WTXs and Zt = WTXt be the projected variables from
the source and target data, respectively. We use the nonparametric metric MMD, which
computes the distance between the sample means of the source and target data in the
k-dimensional embeddings, to estimate the difference between distributions. Specifically,
according to Equation (2), D(Ps(Xs), Pt(Xt)) can be expressed as (Equation (6)):

D(Ps(Xs), Pt(Xt)) = ||
1
ns

ns

∑
i=1

WTxi −
1
nt

nt

∑
j=1

WTxj||2 (6)

By further using the matrix transformation rule and regularization and then minimizing
the marginal distribution distance, Equation (6) can be formalized as follows (Equation (7)):

D(Ps(Xs), Pt(Xt)) = tr
(

ATXM0XT A
)

(7)

where X represents the input matrix containing Xs and Xt. In addition, following [26], M0
is the MMD matrix and can be constructed as follows (Equation (8)):

(M0)ij =


1

ns2 , xi, xj ∈ Ds
1

nt2 , xi, xj ∈ Dt

− 1
nsnt

, otherwise
(8)

However, the label information of the domain data is not considered, which will
lead to the lack of sufficient discriminability of the adapted features; therefore, so it is
insufficient to adapt to the marginal distribution only. To solve this problem, we will next
adjust the conditional distribution between domains.

Since no label information is available in the target domain, we cannot directly es-
timate the conditional distribution Pt(Yt|Xt) of the target domain. Here, based on the
concept of sufficient statistics, we can replace Pt(Yt|Xt) and Ps(Ys|Xs) with class con-
ditional distributions Pt(Xt|Yt) and Ps(Xs|Ys) , respectively. However, obtaining target
domain label information through source domain data while reducing the distribution dif-
ference between domains is a challenging problem in unsupervised domain adaptation. In
Section 4.2, we introduce how to obtain the label information of the target domain data so as to
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obtain the above class conditional distribution. Thus far, we can match the class condition distri-
bution of the two domains. Similar to the calculation of the marginal distribution, we use the
modified MMD formula to estimate the conditional distribution D(Ps(Ys|Xs), Pt(Yt|Xt))
between domains. D(Ps(Ys|Xs), Pt(Yt|Xt)) can be represented as (Equation (9)):

D(Ps(Ys|Xs), Pt(Yt|Xt)) =
C

∑
c=1
|| 1

nc
s

∑
xi∈D

(c)
s

WTxi −
1
nc

t
∑

xj∈D
(c)
t

WTxj||2 (9)

where c ∈ {1, 2, 3, · · ·, C} is the class label, and D(c)
s and D(c)

t are samples belonging to
class c in the source domain and target domain, respectively. nc

s and nc
t are the number of

samples belonging to class c in the source domain and target domain, respectively.
Similar to the marginal distribution, we formalize Equation (9) as Equation (10) by

using matrix transformation rules and regularization:

D(Ps(Ys|Xs), Pt(Yt|Xt)) = tr
(

WTXMcXTW
)

(10)

where the MMD matrices Mc containing class labels are constructed as follows (Equation (11)):

(Mc)ij =



1
(nc

s)
2 , xi, xj ∈ D

(c)
s

1
(nc

t)
2 , xi, xj ∈ D

(c)
t

− 1
nc

snc
t
,

{
xi ∈ D

(c)
s , xj ∈ D

(c)
t

xi ∈ D
(c)
t , xj ∈ D

(c)
s

0, otherwise

(11)

In order to reduce both the marginal distribution and conditional distribution between
domains, we incorporate Equations (7) and (10) into one object Function (Equation (12)):

min
C
∑

c=0
tr
(
WTXMcXTW

)
+ λ||W||2F

s.t. WTXHXTW = I
(12)

where the first term considers both the adaptive marginal distribution and conditional
distribution, and the second term is the regularization term. ||·||2F is the Frobenius
norm, and λ is the regularization parameter. As noted in [29], adding the constraint in
Function (12) would preserve the inner properties of the original data, which implies and
introduces an additional data discrimination ability into the learned model. In addition,
in function (12), X represents the input matrix containing Xs and Xt; I ∈ R(ns+nt)×(ns+nt)

denotes the identity matrix; and H = I − 1
ns+nt

1 is the centering matrix, where 1 is the
(ns + nt)× (ns + nt) matrix of ones.

To obtain the transformation matrix W, we obtain the Lagrange solution to function
(12), which is rewritten as (Equation (13)):

L =
C

∑
c=0

tr
(

WTXMcXTW
)
+ λ||W||2F + tr

((
I −WTXHXTW

)
Φ
)

(13)

where Φ = (∅1,∅2 . . . · · · ,∅d) is the Lagrange multiplier. Setting ∂L
∂W = 0, the original

optimization problem is transformed into the following eigen-decomposition problem
(Equation (14)): (

C

∑
c=0

XMcXT + λI

)
W = XHXTWΦ (14)
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The transformation matrix W is the solution to Equation (14) and thus builds the
bridge between the source and target domains in the new expression Z = (Zs, Zt).

4.2. Three-Way Decision Model Based on Triangular Fuzzy Similarity

In practice, the conditional distribution cannot be obtained directly because there is
no label information in the target domain. In order to solve this problem, we first give the
concept of the degree of information difference and apply it to the construction of triangular
fuzzy numbers and the calculation of the corresponding triangular fuzzy similarity. Then,
according to the degree of association of the triangular fuzzy similarity between objects in
the target domain, the target domain is divided into positive regions, negative regions and
boundary regions with structural information.

For the convenience of the description, suppose that both the domain of discourse U
and attribute set A are nonempty finite sets and that xi is an object in U, aj is an attribute in
A, where i = 1, 2, · · · , n and j = 1, 2, · · · , m.

4.2.1. Information Difference Degree and Triangular Fuzzy Similarity

Definition 4. Let U = {x1, x2, · · · , xn} be the domain of discourse, A = {a1, a2, · · · , am} be the
set of attributes, and the value of object xi under attribute aj be xij. When ∀aj, ak ∈ A, the degree of
information difference of object xi is as follows (Equation (15)):

IDi(aj, ak) =
1

exp(− log2

|xij−xik |
xij+xik )

(15)

Remark 1.

(1) The greater the value of IDi(aj, ak) is, the greater the degree of information difference of
object xi under aj and ak. When object xi has the same description xij = xik = 0 for aj
and ak, the real part of the log function will have a denominator of 0, i.e., xij + xik = 0. In
this case, since

∣∣xij − xik
∣∣= 0 , we can obtain that the final degree of information deviation

IDi(aj, ak) is independent of the value of xij + xik. For the reasonableness of the calculation,

let |xij−xik|
xij+xik

= 0.

(2) For the convenience of the representation, we obtain the information difference matrix of object
xi, which can be expressed as follows (Equation (16)):

a1 a2 · · · am−1 am

IDi =

a1
a2
...

am−1
am



ID11
i ID21

i · · · ID(m−1)1
i IDm1

i
ID12

i ID22
i · · · ID(m−1)2

i IDm2
i

...
...

. . .
...

...
ID1(m−1)

i ID2(m−1)
i · · · ID(m−1)(m−1)

i IDm(m−1)
i

ID1m
i ID2m

i · · · ID(m−1)m
i IDmm

i


(16)

where IDjk
i = IDi(aj, ak) represents the degree of information difference of object xi under

attributes aj and ak.

Theorem 1. According to definition 4, we have the following conclusions:

(1) Boundedness: 0 ≤ IDi(aj, ak) ≤ 1.
(2) Monotonicity: The degree of information difference of xi about aj and ak increases monotonously

as the difference increases.
(3) Symmetry: IDi(aj, ak) = IDi(ak, aj).

Proof. Properties (2) and (3) are easily proven by Definition 4.
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(1) According to Definition 4, ∀aj, ak ∈ A and xi ∈ U. When the description of xi under aj
and ak appears in two extreme cases, namely, xij = 0 and xik = 1 or xij = 1 and xik = 0,
we can obtain

∣∣xij − xik
∣∣= 1 , and the information difference reaches the maximum at

this time, IDi(aj, ak) = 1. �

Definition 5. Let U be the domain of discourse, and the triangular fuzzy number of xi under
attribute set A is x̃i = [xi

L, xi
M, xi

T ], where xi
L = min

{
∑ IDjk

i

}
, xi

T = max
{

∑ IDjk
i

}
,

xi
M = max

{
∑
∣∣∣IDjk

i

∣∣∣} and
∣∣∣IDjk

i

∣∣∣ denotes the number of information difference values IDjk
i .

Then, the degree of triangular fuzzy similarity between x̃i and x̃k is as follows (Equation (17)):

S̃TF(x̃i, x̃k) = 1− d(x̃i, x̃k) = 1−

√
(x̃i

L − x̃k
L)

2
+ (x̃i

M − x̃k
M)

2
+ (x̃i

T − x̃k
T)

2

3
(17)

Theorem 2. The degree of triangular fuzzy similarity satisfies the following properties:

(1) S̃TF(x̃i, x̃k) = S̃TF(x̃k, x̃i).
(2) S̃TF(x̃i, x̃k) = 1 if x̃i = x̃k, and S̃TF(x̃i, x̃k) = 0 if x̃i = [0, 0, 0] and x̃k = [1, 1, 1] or

x̃i = [1, 1, 1] and x̃k = [0, 0, 0].

Proof. According to Definition 5, (1) obviously holds.

(2) Since 0 ≤ S̃TF(x̃i, x̃k) ≤ 1, when x̃i = x̃k, i.e., x̃i
L = x̃k

L, x̃i
M = x̃k

M,x̃i
T = x̃k

T ,
we have d(x̃i, x̃k) = 0, so S̃TF(x̃i, x̃k) = 1. Similarly, since x̃i

L, x̃i
M, x̃i

T ∈ [0, 1] and
x̃k

L, x̃k
M, x̃k

T ∈ [0, 1], d(x̃i, x̃k) ∈ [0, 1]. When S̃TF(x̃i, x̃k) = 0, d(x̃i, x̃k) = 1. In this
case, we can obtain x̃i = [0, 0, 0] and x̃k = [1, 1, 1] or x̃i = [1, 1, 1] and x̃k = [0, 0, 0]. �

4.2.2. Construction of the 3WD Model

Definition 6. Let U be the universe and A be the set of attributes. The triangular fuzzy similarity
between any object xi and xk in U is S̃SF(x̃i, x̃k). If there is a threshold δ, then the δ-level classes of
x ∈ U with respect to S̃SF(x̃i, x̃k) are defined as follows (Equation (18)):

[S̃δ
SF]s =

{
x ∈ U

∣∣∣S̃SF(x̃i, x̃k) > δ
}

[ S̃δ
SF]g =

{
x ∈ U

∣∣∣S̃SF(x̃i, x̃k) ≤ δ
} (18)

where [ S̃δ
SF]s and [ S̃δ

SF]g are triangular fuzzy similarity classes of positive and negative fields,

respectively. Specifically, the objects in [ S̃δ
SF]s have the smallest degree of information difference

and the largest triangular fuzzy similarity on the δ-level while the objects in [ S̃δ
SF]g are the opposite

to [ S̃δ
SF]s.

Suppose X ⊆ U is a given goal concept and Ω =
{
[ S̃δ

SF]s, [ S̃δ
SF]g

}
is the set of states,

which represents object x in the δ-level similarity domain [ S̃δ
SF]s or x in the δ-level negative

similarity domain [ S̃δ
SF]g. Γ = {aP, aB, aN} is the set of actions, where aP means acceptance,

aB means delay, and aN means rejection. According to reference [75], the losses caused by
actions taken in different states are shown in Table 1.
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Table 1. Cost function matrix.

Action
Cost Function

[
~
S

δ

SF]s [
~
S

δ

SF]g

aP λPP λPN
aB λBP λBN
aN λNP λNN

When the object x ∈ [ S̃δ
SF]s, λPP, λBP and λNP represent the loss of acceptance,

delay and rejection decisions, respectively. Analogously, λPN , λBN and λNN represent
the corresponding decision loss cost when x ∈ [ S̃δ

SF]g. Without any loss of generality,

when x ∈ [ S̃δ
SF]s, we assume that the correct acceptance cost is less than the delay decision

cost and less than the corresponding wrong acceptance cost, namely λPP < λBP < λNP.
Similarly, when misclassified, we have λNN < λBN < λPN . Therefore, the expected losses
R(a•|x)(· ∈ {P, B, N}) of object x under the above three decision actions are as follows
(Equation (19)):

R(aP|x) = λPPPr([ S̃δ
SF]s|x) + λPNPr([ S̃δ

SF]g|x),

R(aB|x) = λBPPr([ S̃δ
SF]s|x) + λBNPr([ S̃δ

SF]g|x),

R(aN |x) = λNPPr([ S̃δ
SF]s|x) + λNNPr([ S̃δ

SF]g|x) . . .

(19)

where Pr([ S̃δ
SF]s|x) = P( S̃δ

SF|x) and Pr([ S̃δ
SF]g|x) = 1− P( S̃δ

SF|x) are the probabilities
that object x belongs to a similar state of the δ-level positive or negative domain. By
introducing Bayesian minimum risk decision theory, we have (Equation (20)):

(P) λPPP(S̃δ
SF|x) + λPN(1− P(S̃δ

SF|x)) ≤ λBPP(S̃δ
SF|x) + λBN(1− P(S̃δ

SF|x)) and

λPPP(S̃δ
SF|x) + λPN(1− P(S̃δ

SF|x)) ≤ λNPP(S̃δ
SF|x) + λNN(1− P(S̃δ

SF|x))
(B) λBPP(S̃δ

SF|x) + λBN(1− P(S̃δ
SF|x)) ≤ λPPP(S̃δ

SF|x) + λPN(1− P(S̃δ
SF|x)) and

λBPP(S̃δ
SF|x) + λBN(1− P(S̃δ

SF|x)) ≤ λNPP(S̃δ
SF|x) + λNN(1− P(S̃δ

SF|x))
(N) λNPP(S̃δ

SF|x) + λNN(1− P(S̃δ
SF|x)) ≤ λPPP(S̃δ

SF|x) + λPN(1− P(S̃δ
SF|x)) and

λNPP(S̃δ
SF|x) + λNN(1− P(S̃δ

SF|x)) ≤ λBPP(S̃δ
SF|x) + λBN(1− P(S̃δ

SF|x))

(20)

Furthermore, form Equations (19) and (20), we can obtain (Equation (21)):

(P′) I f P(S̃δ
SF|x) ≥ α , then x ∈ Pos(X),

(B′) I f β < P(S̃δ
SF|x) < α, then x ∈ Bnd(X),

(N′) I f P(S̃δ
SF|x) ≤ β , then x ∈ Neg(X) . . .

(21)

where (Equation (22))

α =
λPN − λBN

(λPN − λBN) + (λBP − λPP)
, β =

λBN − λNN
(λBN − λNN) + (λNP − λBP)

. (22)

In the Algorithm 1, we first measure the degree of information difference for each
object according to any two attributes in the target domain (line 1 and line 2). On this basis,
the triangular fuzzy similarity of each object can be calculated (line 3). It is worth noting
that we can obtain triangular fuzzy similarity at different levels by adjusting the threshold
parameter δ. Furthermore, the triangular fuzzy similarity is regarded as the cost loss of
different classification decisions, and the final decision is implemented by comparing with
the decision thresholds α and β (line 4).
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In addition, the higher the value of δ is, the greater the triangular fuzzy similarity
between objects is. On the one hand, since [ S̃δ

SF]s =
{

x ∈ U
∣∣∣S̃SF(x̃i, x̃k) > δ

}
,[ S̃δ

SF]g ={
x ∈ U

∣∣∣S̃SF(x̃i, x̃k) ≤ δ
}

, by changing the parameter δ, we can obtain the triangular fuzzy
similarity of objects in the target domain at different levels. One the other hand, the values
of [ S̃δ

SF]s and [ S̃δ
SF]g will directly affect the values of threshold α and β. In order to visualize

the impact of the final result and the threshold, we have shown it in detail in Section 6.1.

Algorithm 1 Three-way decision model based on the triangular fuzzy similarity

Input: target domain data Xt, threshold δ, α and β.
Output: positive region object set Pos(X), negative region object set Neg(X), boundary region
object set Bnd(X).
1: BEGIN
2: Calculate the degree of information difference IDi(aj, ak) of each object in the target domain
under any two attributes according to Equation (15).
3: Calculate the triangular fuzzy similarity S̃TF(x̃i, x̃k) between any two objects in the target
domain using Equation (17).
4: According to Equation (21), divide the target domain Xt into three domains.
5: END BEGIN

4.3. Adaptation Via Iterative Refinement

In this section, we integrate the methods presented in Sections 4.1 and 4.2 and finally
realize unsupervised domain adaptation to the conditional distribution of cross-domain
data by introducing the label propagation algorithm. Specifically, we first obtain the initial
pseudolabel ŷT of the target domain according to joint distribution adaptation, then obtain
the set of boundary objects of the target domain according to the three-way decision model
proposed in Section 4.2 and place these objects into objects to be classified. Once the above
ŷT and Bnd(X) are obtained, we effectively set a semisupervised setting for the target
domain data. Following [29], we use the label propagation algorithm to discriminate
the boundary objects in the target domain and update ŷT . Algorithm 2 summarizes our
proposed method. Algorithm 2—which in addition to the initial stage, we only adapt to the
marginal distribution—and the subsequent steps consider both the marginal distribution
and the conditional distribution. In addition, the accuracy of the labels in the target
domain is gradually improved as the cross domain distribution differences decrease. In
the following experiments, we will show that the proposed method converges to the
optimal solution in a finite number of iterations and further prove the effectiveness of the
proposed method.

Algorithm 2 Our Proposed Model

Input: source domain data Xs, target domain data Xt, labels yS of source domain data, threshold
δ, α and β

Output: yT as labels of target domain data
1: BEGIN
2: Initialize D(c)

t as Null
3: while not converged do
4: (1) W ← Distribution adaptation

(
D(c)

t . . . ŷT

)
in Equation (14) and let Zs = WT Xs and

Zt = WT Xt
5: (2) Assign ŷT using classifiers trained by Zs
6: (3) Obtain Bnd(X) in Algorithm 1

7: (4)
(
D(c)

t . . . ŷT

)
← execute label propagation algorithm

8: End while
9: yT←ŷT
10: END BEGIN
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5. Experiments
5.1. Materials
5.1.1. Data Acquisition

In order to verify the effectiveness of our proposed method and compare this method
with the existing research, our experimental data are obtained from the publicly accessible
ABIDE dataset. ABIDE is a multisite platform that has aggregated functional and struc-
tural brain imaging data collected from 17 different laboratories around the world, which
including 539 ASD patients and 573 neurotypical controls. All subjects had corresponding
resting-state fMRI images and phenotypic information such as age and gender. More
details on the data collection, exclusion criteria, and scan parameters are available on the
ABIDE website, namely, http://fcon_1000.projects.nitrc.org/indi/abide/, (accessed on
8 October 2020). As different sites have different numbers of limited samples, we use the
data from three different sites, including NYU, UM and USM, each with more than 50 sub-
jects and using different fMRI protocols. Specifically, there were 343 subjects, including
159 ASD patients and 184 neurotypical controls. Detailed demographic information of the
subjects is listed in Table 2. In Table 2, m ± std and M/F are short for mean ± standard
deviation and male/female, respectively. In each site, we used the two-sample t-test to
evaluate the differences in age between the two groups and no significant differences was
observed between the control group and the ASD group, i.e., p = 0.42 (NYU), p = 0.31
(USM), p = 0.34 (UM). Since the subjects across different sites follow different distributions,
it is necessary to perform domain adaptation. In the experiments, we use A→B to denote
the knowledge transfer from source domain A to target domain B. We construct a total of six
tasks: NYU→USM, NYU→UM, USM→NYU, USM→UM, UM→NYU, and UM→USM.

Table 2. Demographic information of the studied subjects from three imaging sites in the ABIDE
database. The age values are denoted as the mean ± standard deviation. M/F: male/female.

Site
ASD Normal Control

Age (m ± std) Gender (M/F) Age (m ± std) Gender (M/F)

NYU 14.92 ± 7.04 64/9 15.75 ± 6.23 70/36
USM 24.59 ± 8.46 38/0 22.33 ± 7.69 23/0
UM 13.85 ± 2.29 39/9 15.03 ± 3.64 49/16

5.1.2. Data Pre-Processing

To ensure replicability, each rs-fMRI datapoint used in this research was provided by
the Preprocessed Connectome Project initiative and preprocessed by using the Data Pro-
cessing Assistant for Resting-State fMRI (DPARSF) software [76]. The image preprocessing
steps are listed as follows. (1) Remove the first 10 time points, (2) conduct slice timing
correction, and (3) conduct head motion realignment. (4) Next, image standardization
was performed by normalizing the functional images into the echo planar imaging (EPI)
template, followed by (5) spatial smoothing, (6) removing the linear trend, (7) temporal
filtering, and (8) removing covariates. Subsequently, the brain was divided into 90 regions
of interest (ROIs) based on the Automatic Anatomical Labelling (AAL) [77] atlas, and
the average time series of each ROI was extracted. Then, for each subject, we obtained
a 90 × 90 functional connectivity symmetric matrix, where each element represents the
Pearson correlation coefficient between a pair of ROIs. Finally, we convert the upper
triangle into a 4005 (90 × 89/2)-dimensional feature vector to represent each subject.

5.2. Competing Methods

We compared the performance of our method with the following state-of-the-art machine
learning models, including one baseline method and three representation-based methods.

Baseline: In this study, we use a support vector machine (SVM) as the base classifier,
which is widely used in the field of neuroimaging [11]. Specifically, we specify site data as
the source domain, directly train an SVM model using the original features on it, and then

http://fcon_1000.projects.nitrc.org/indi/abide/
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use the rest of the site data as the target domain to test the classifier we have trained. In
the SVM classifier, we applied a linear kernel and searched the margin penalty using the
grid-search strategy from the range of [2−5, 2−4 . . . , 24, 25] via cross-validation.

Transfer component analysis (TCA) [36]: This is a general feature transformation
method that reduces the difference in the marginal distribution between different domains
by learning the transfer components between domains in RKHS.

Joint distribution adaptation (JDA) [26]: The JDA approach reduces both the marginal
distribution and conditional distribution between different domains.

Domain adaptation with label and structural consistency (DALSC) [29]: DALSC is an
unsupervised domain adaptation method that uses the structural information of the target
domain to improve the performance of the model while adjusting the marginal distribution
and conditional distribution between domains.

5.3. Experimental Setup

In this work, we use 5-fold cross-validation to evaluate the performance of each
method. For our method, we set δ = 0.3, β is searched in {0.5,0.55,· · · ,0.85,0.9}, α is
searched in {0.55,0.6,· · · ,0.9,0.95}, and α > β. In addition, to evaluate the classification
performance, we calculated the true positives (TPs), false positives (FPs), true negatives
(TNs), and false negatives (FNs) for the classification by comparing the classified labels and
gold-standard labels. Then, six evaluation metrics on test data, including the classification
accuracy (ACC), sensitivity (SEN), specificity (SPE), balanced accuracy (BAC), positive
predictive value (PPV) and negative predictive value (NPV), are utilized. These metrics
can be computed as follows (Equation (23)):

ACC = (TP + TN)/(TP + FN + TN + FP), SEN = TP/(TP + FN)
SPE = TN/(TN + FP), BAC = (SEN + SPE)/2
PPV = TP/(TP + FP), NPV = TN/(TN + FN)

(23)

For these metrics, higher values indicate better classification performance.

5.4. Results on ABIDE with Multisite fMRI Data

In this section, we present the experimental results of the proposed method and
several other comparative methods on six tasks. Note that data from each site can be used
as the source domain while the data from other sites can be used as the target domain.
For the three domain adaptation methods (i.e., TCA, JDA, and DALSC) and our proposed
method, an unsupervised adaptive experimental setup is adopted, which has no label
information of the target domain to be utilized in the prediction process. The classification
performance results of various methods are shown in Table 3. From Table 3, we can make
the following three observations.

Table 3. Performance of five different methods in ASD classification on the multisite ABIDE database.
The number in bold indicates the best result achieved under a certain metric.

Task Method ACC (%) SEN (%) SPE (%) BAC (%) PPV (%) NPV (%)

NYU→UM

Baseline 54.87 49.23 62.5 55.87 64 47.62
TCA 62.83 58.46 68.75 63.61 71.69 55.00
JDA 64.50 66.67 61.64 64.16 69.57 58.44

DALSC 64.60 56.92 75.00 65.96 75.51 56.25
Ours 70.80 72.31 68.75 70.53 75.81 64.71

NYU→USM

Baseline 67.21 78.26 60.53 69.39 54.55 82.14
TCA 68.85 82.61 60.53 71.57 55.88 85.19
JDA 70.49 86.96 60.53 73.74 57.14 88.46

DALSC 72.13 73.91 71.05 72.48 60.71 81.81
Ours 75.41 91.30 65.79 78.55 61.76 92.59

USM→UM

Baseline 57.52 35.38 87.50 61.44 79.31 50.00
TCA 58.41 38.46 85.42 61.94 78.13 50.62
JDA 61.06 61.54 60.42 60.98 67.80 53.70

DALSC 64.60 73.85 52.08 62.96 67.61 59.52
Ours 69.91 76.92 60.42 68.67 72.46 65.91
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Table 3. Cont.

Task Method ACC (%) SEN (%) SPE (%) BAC (%) PPV (%) NPV (%)

USM→NYU

Baseline 53.25 35.42 76.71 56.06 66.67 47.46
TCA 57.39 40.63 79.45 60.04 72.22 50.43
JDA 60.36 64.58 54.79 59.69 65.26 54.05

DALSC 63.91 65.63 61.64 63.63 69.23 57.69
Ours 72.13 78.26 68.42 73.34 60.00 83.87

UM→NYU

Baseline 58.58 83.33 26.03 54.68 59.70 54.29
TCA 61.54 82.29 34.25 58.27 62.20 59.50
JDA 63.31 82.29 38.35 60.32 63.71 62.22

DALSC 64.49 92.70 27.39 60.05 62.68 74.07
Ours 71.01 90.63 45.21 67.92 68.50 78.57

UM→USM

Baseline 54.09 78.26 39.47 58.87 43.90 75.00
TCA 60.66 73.91 52.63 63.27 48.57 76.92
JDA 60.66 78.26 50.00 64.13 48.65 79.17

DALSC 57.38 73.91 47.37 60.64 45.95 75.00
Ours 68.85 82.61 60.53 71.57 55.88 85.19

First, in terms of accuracy, the domain adaptive method based on feature representa-
tion is better than the direct use of the SVM classifier to predict the target domain.

Second, the TCA method in the domain adaptation method has the worst classification
result because it only considers the marginal distribution.

Finally, the experimental results show that the classification accuracy of the proposed
method is better than the existing domain adaptive methods (such as TCA, JDA and DALSC)
in six tasks, and it also has good performance in SEN, SPE, BAC and other indicators.

6. Discussion

In this section, we first analyze the influence of the parameters in the proposed
method on the algorithm performance and then compare the proposed method with other
state-of-the-art methods.

6.1. Parameter Analysis

We first analyze the impact of the number of iterations on the performance of the
proposed method. As mentioned in Section 4.3, for domain adaptation, we solve the
proposed model iteratively. In order to evaluate its convergence, Figure 1 shows the change
in algorithm accuracy as the number of iterations increases on the six tasks. It can be seen
from Figure 1 that the classification accuracy of each task is gradually improved with the
increase in the number of iterations. This indicates that our model learned an invariant
data distribution among domains/sites after multiple iterations. The figure shows that the
accuracy rate converges in 10–15 iterations.

In addition, the values of α and β involved in the experiment represent different
decision risk cost levels, and their slight differences may induce different decision results.
Without any loss of generality, in order to obtain more suitable parameters, we analyze the
influence of different threshold parameters on the performance of the proposed method.
Specifically, in order to evaluate the method’s convergence, we conducted comparison
experiments at different levels on the six tasks, and the final results are shown in Figure 2.
The figures show that the accuracy of the algorithm changes as the threshold changes; and
although the degree of fluctuation of the accuracy is different under different (α, β), it will
eventually converge. It can be seen from Figure 2 that the optimal values of (α,β) under six
tasks NYU→UM, NYU→USM, USM→UM, USM→NYU, UM→NYU and UM→USM are
(0.8, 0.7), (0.75, 0.65), (0.7, 0.6), (0.8, 0.7), (0.75, 0.55), (0.9, 0.6), respectively. Furthermore,
it can be observed from Figure 2 that when given smaller β and larger α, the classifica-
tion accuracy of the six tasks is relatively low. This shows that smaller β and larger α
result in more samples from the target domain being divided into the boundary region.
More boundary objects increase the uncertainty information when implementing the label
propagation algorithm, which leads to the decline of classification performance.
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6.2. Comparison with State-of-the-Art Methods

To further verify the effectiveness of our proposed method, we also compare it with
six other advanced methods (including the deep learning method) using the rs-fMRI data
in the ABIDE database. Since only a few research papers have reported their average
classification results among different sites, we only list the classification results on the NYU
site in Table 4. In addition, we list the details of each method in Table 4, including the
classifier and the type of feature. It is worth noting that in the research of [14,17], they
selected a part of the samples from each site in proportion as the training set and then used
the trained deep learning model to predict the NYU site directly.
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Table 4. Comparison with state-of-the-art methods for ASD identification using rs-fMRI ABIDE data on the NYU site.
HOA: Harvard Oxford Atlas. GMR: grey matter ROIs, and AAL: anatomical automatic labelling. CC200: Craddock 200.
sGCN: siamese graph convolutional neural network. FCA: functional connectivity analysis. DAE: denoising autoencoder.
DANN: deep attention neural networks.

Method Feature Type Feature Dimension Classifier ACC (%)

sGCN + Hing Loss [14] HOA 111 × 111 K-Nearest Neighbor (KNN) 60.50
sGCN + Global Loss [14] HOA 111 × 111 KNN 63.50

sGCN + Constrained
Variance Loss [14] HOA 111 × 111 KNN 68.00

FCA [17] GMR 7266 × 7266 t-test 63.00
DAE [16] CC200 Atlas 19,900 Softmax Regression 66.00

DANN [78] AAL 6670 Deep neural network 70.90
Ours AAL 4005 SVM 72.13/71.01

As Table 4 shows, the proposed method achieves 72.13% and 71.01% classification
accuracy, respectively in the two tasks with NYU as the target domain, which is better than
the models proposed in other research papers. In terms of feature type and feature dimen-
sion, this paper uses AAL atlas to divide brain regions, and obtains the original feature
vector with the smallest dimension. In addition, although the sGCN, DAE and DANN are
three deep learning methods, our proposed method still has a better classification effect.
There may be two reasons for this. (1) Training a robust deep learning model usually
requires a large number of samples. However, for multisite ASD recognition, although the
data from each site can be fused together to generate a larger data set, these samples are
still insufficient to train a reliable deep neural network. (2) The overfitting problem usually
occurs when a deep neural network processes data with noise. In fact, fMRI data usually
contain a large amount of noise information, which limits the generalization ability of the
trained neural network.

7. Conclusions

In this paper, we propose a novel domain adaptation method for ASD identification
with rs-fMRI data. Specifically, we introduce a three-way decision model based on trian-
gular fuzzy similarity and divide the objects in the target domain with coarse granularity.
Then, a label propagation algorithm is used to make secondary decisions on boundary
region objects so as to improve the performance of ASD diagnosis based on cross-site
rs-fMRI data. We conduct extensive experiments on the ABIDE dataset based on multisite
data to verify the convergence and robustness of the proposed algorithm. Compared with
several state-of-the-art methods, the experimental results show that the proposed method
has better classification performance.

Although the classification results of our proposed method based on cross-site ASD
diagnosis are significantly improved compared with the existing domain adaptation meth-
ods based on feature distribution, the following technical problems need to be considered
in the future. First, although the proposed method can alleviate data heterogeneity be-
tween source and target domains, the input fMRI features are still unfiltered original
high-dimensional features. However, the original high-dimensional features may have
redundant features, which will reduce the performance of the model. Therefore, in the
future, we will study how to combine feature selection with our methods for ASD diagno-
sis. Second, in this paper, we only take the functional connectivity matrix of rs-fMRI data
as the feature representation of each subject without considering the network topology
information. In future research, we will consider the fusion of functional brain network
topology data to provide more valuable discriminant information for ASD diagnosis. Fi-
nally, in order to obtain more valuable structured information of the target domain, we will
consider combining multigranularity rough sets to further improve the model performance
in the future.
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