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Abstract: Background: Improved conversational fluency is sometimes identified postoperatively in
patients with epilepsy, but improvements can be difficult to assess using tests such as the intelligence
quotient (IQ) test. Evaluation of pre- and postoperative differences might be considered subjective at
present because of the lack of objective criteria. Artificial intelligence (AI) could possibly be used
to make the evaluations more objective. The aim of this case report is thus to analyze the speech of
a young female patient with epilepsy before and after surgery. Method: The speech of a nine-year-
old girl with epilepsy secondary to tuberous sclerosis complex is recorded during interviews one
month before and two months after surgery. The recorded speech is then manually transcribed and
annotated, and subsequently automatically analyzed using AI software. IQ testing is also conducted
on both occasions. The patient remains seizure-free for at least 13 months postoperatively. Results:
There are decreases in total interview time and subjective case markers per second, whereas there are
increases in morphemes and objective case markers per second. Postoperatively, IQ scores improve,
except for the Perceptual Reasoning Index. Conclusions: AI analysis is able to identify differences in
speech before and after epilepsy surgery upon an epilepsy patient with tuberous sclerosis complex.

Keywords: speech analysis; epilepsy; artificial intelligence; intelligence quotient; surgery

1. Introduction

Improvements in cognition [1], mood [2] and social skills [3] have been reported after
epilepsy surgery. Such differences have been explained hypothetically by improvements
in the intelligence quotient (IQ) after epilepsy surgery [4,5]. In the real world, the fact
that not all patients who undergo epilepsy surgery show postoperative improvements in
IQ has also been reported [6,7]. However, caregivers and physicians sometimes notice
unexplained postoperative improvements in daily activities.

Human beings are highly sensitive to detecting subtle differences in characteristics
such as vocal tone, intonation, pause, pitch, speed and accent in conversation [8,9]. Hence,
why differences in conversational ability are often recognized postoperatively, though such
recognition is merely subjective, as opposed to meeting objective criteria.
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In other words, even for individuals with the same IQ, characteristics such as the form
of speech, intonation and vocal tone change due to changes in their underlying condition,
for instance, with regard to concentration, emotional ups and downs and fatigue.

The subtle sensing of change is currently considered subjective evaluation, but the
application of artificial intelligence (AI) methodologies to identify differences in speech
before and after surgery may result in the characterization of objective criteria to explain
previously subjective observations.

A patient with temporal lobe epilepsy secondary to tuberous sclerosis complex (TSC)
undergoing epilepsy surgery is presented. We hypothesize that AI analysis will allow the
identification of differences in speech before and after surgery. With the aim of devising
a method to objectively analyze whether conversation is more fluent postoperatively, a
preliminary analysis of this patient with epilepsy before and after epilepsy surgery is,
therefore, conducted using AI.

2. Method

Written, informed consent for the publication of this case report was obtained from the
patient’s guardian. The ethics committee at Seirei Hamamatsu General Hospital approved
the protocol for this study (approval no. 3287).

The patient was a nine-year-old girl with epilepsy secondary to TSC. She started
experiencing focal-onset impaired awareness seizures from six months of age. The seizure
frequency was weekly. Brain magnetic resonance imaging showed multiple cortical and
subcortical tubers (Figure 1). Electroencephalography (EEG) showed frequent epileptiform
discharges over bilateral hemispheres independently, comprising multiple independent
spike foci. Ictal events captured by long-term video-EEG showed stereotypical seizures
arising from the right frontotemporal area. The patient, therefore, underwent invasive mon-
itoring followed by a right anterior temporal lobectomy with amygdalohippocampectomy.
In addition to epilepsy secondary to TSC, this patient also had juvenile facial angiofibroma,
hypopigmented macules (“ash leaf” patches) on the limbs, shagreen patches on the back
and polycystic kidneys with no angiomyolipomas. No abnormalities were apparent on
cardiological, dental and ophthalmological studies. Genetically, a TSC2 missense mutation
was confirmed.

Both one month before and two months after the surgery, IQ testing and speech
analysis were conducted. For the IQ testing, the fourth edition of the Wechsler Intelligence
Scale for Children (WISC-IV) was used [10,11]. For the speech analysis, the patient was
asked to look at and explain four frames of a cartoon from the Standard Language Test
of Aphasia, developed by the Japanese Society of Higher Brain Dysfunction [12]. The
four frames of the cartoon consisted of the following scenes: (1) a man wearing a hat and
walking with a cane; (2) the man’s hat is suddenly blown off by the wind; (3) the man
chases after his hat, which is blown into a pond; (4) the man uses his cane to retrieve his
hat from the pond.

The patient’s verbal explanations of these scenes were recorded, manually transcribed
and annotated and then automatically analyzed using AI software [13]. This AI software
performs classification tasks by machine learning; it was originally trained to classify
psychiatric diseases such as depression, anxiety and dementia using more than 300 h of
recorded conversations between subjects and doctors. In a previous study, we performed a
feature sensitivity analysis to identify training features that are effective, based on support
vector machine (SVM) classifications. Since we did not have a sufficient number of recorded
samples in the present case to train the machine learning model for this specific task, the AI
software was used without any additional training to extract training features for automatic
analysis, and the features from the previous study were used as they were, even though an
AI model is first calibrated using training data and its generalizability is examined using
test data that play no role in the calibration [14]. The automatic analysis included audio
features such as volume, formant (frequency), speed and linguistic features such as lexical
statistics and parts of speech (e.g., nouns, verbs, adjectives) (Table 1). Our linguistic analysis
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was performed using a linguistic parser that outputs features such as word segments, word
base forms, parts of speech and surface cases. The core part of this parser was implemented
using a conditional random field model, which is a type of machine learning model used
for sequential tagging. The parser was trained by newspaper texts with gold-standard tags
annotated by humans. We used a customized dictionary for this parser to obtain a better
performance for speech.
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Figure 1. Brain magnetic resonance imaging (MRI). Fluid-attenuated inversion-recovery (FLAIR) MRI shows multiple 
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Table 1. Results of speech analysis using artificial intelligence and intelligence quotient testing.

Pre-Surgery Post-Surgery

Linguistic Analysis Morphemes/s 3.3 3.6
Content words/s 1.4 1.6

Vocabulary/s 1.4 2.4
Lexicon of content words/s 0.8 1.1

Nouns/s 0.3 0.5
Adjectives/s 0.05 0.00

Verbs/s 0.30 0.50
Adverbs/s 0.09 0.10

Objective case markers/s 0.05 0.10
Subjective case markers/s 0.14 0.10
Postpositional particles/s 0.36 0.80
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Table 1. Cont.

Pre-Surgery Post-Surgery

Acoustic Analysis Total utterance time (s) 22 10
Mean frequency (Hz) 603.9 863.9

Maximum volume (dB) 0.776 0.824
Mean volume (dB) 0.060 0.200

IQ results Full IQ 66 73
VCI 74 76
PRI 68 66

WMI 73 88
PSI 73 88

IQ, intelligence quotient; VCI, verbal comprehension index; PRI, perceptual reasoning index; WMI, working
memory index; PSI, processing speed index.

The patient remained seizure-free for at least 13 months after radical treatment. Post-
operatively, her WISC-IV scores improved, except for the Perceptual Reasoning Index.

3. Results

Table 1 shows the detailed results of the analyses. It is well known that the word
frequency per lexicon is effective for classifying mental states. Content words, which
exclude functional words such as particles and prepositions from the entire lexicon, are
also an important feature, more important than simply measuring the total number of
uttered words. Particles are the other effective clue in the Japanese language as they
show complex linguistic structures, which are difficult to generate when linguistic ability
decreases. In this case, in terms of speech analysis, the total numbers of morphemes and
objective case markers (“wo” in Japanese) per second increased, whereas the number of
subjective case markers (“ga” in Japanese) per second decreased. In the Japanese language,
there are explicit case markers for each case role, which appear as particles, e.g., “ga” is a
subjective case marker particle, “wo” is an objective case marker particle, etc. For example,
“the man is picking up his hat” was translated into Japanese as “sono (the) otokonohito
(man) ga (subjective case marker) boushi (his hat) wo (objective case marker) hirottsuteiru (is
picking up)”. In the acoustic analysis, total utterance time was longer preoperatively than
postoperatively, even though she performed the same task.

The neuropathology of the resected anterior temporal lobe showed large, cytoplasm-
rich, grotesque cells, mainly in the white matter, accompanied by sporadic gliosis and
balloon cells.

4. Discussion

AI analysis showed differences in speech between before and after surgery in a patient
with temporal lobe epilepsy secondary to TSC. The results from this case indicated that
the patient incorporated large amounts of information into her conversation within a
short time postoperatively. In the present case, both speech and WISC-IV scores increased
postoperatively [4], so the results of speech analysis could be considered to have improved.

One of the differences detected by AI analysis between the preoperative and postoper-
ative speech was vocal pitch (frequency). The human voice is said to be related to emotional
intelligence [15]. Humans can sense the emotional states of others based on characteristics
such as vocal tone, volume and frequency, and communicate with each other depending
on emotional states [16,17]. What the AI analysis detected in this patient might reflect
some degree of change in emotional intelligence. Another difference detected by the AI
analysis was an increased number of morphemes per second. This was probably because
of improved IQ; the patient might have started to manage more language information
than before surgery. AI analysis also detected a decrease in the number of subjective case
markers and an increase in the number of objective case markers per second. Subject and
object verbs are chosen and expressed based on the psychological state, such as fear, fright,
hate and delight [18]. This might be related to the fact that the number of subjective case
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markers per second decreased, whereas the number of objective case markers per second
increased. Such changes in case markers also reflect higher cognitive abilities.

In this study, AI analysis at least identified differences in speech before and after
surgery. However, the size of the training data is always a problem; it is difficult, especially
in the clinical domain, to prepare a large amount of data. Researchers in the computer
science domain are tackling the small data issue by selecting an appropriate machine
learning method and suitable number of parameters to make the training converge. Recent
machine learning methods, like Transformer and its variants (for example, BERT, Lent, etc.),
require huge numbers of training data as these models need to train their huge numbers
(>billion) of training parameters. Few-shot and zero-shot learning, which are recent trends
in the AI area, could be options as they require only tens or a couple of data samples.

SVM, which does not require such large numbers of training samples, was used to
avoid this issue in our previous study [13], and it showed an accuracy of approximately
80% for classifying each mental disease compared to healthy people, even though we built
the world’s largest database of recorded conversations between subjects (more than 300 h).
These accuracy scores were obtained by cross-fold validation to obtain stable evaluations.
This pretrained model was applied in the present study.

For accurate AI analysis, data from a greater number of participants need to be
collected, and both preoperative and postoperative factors need to be compared statistically.
However, since it would be difficult to obtain huge sample numbers of patients with a rare
disease, it would be necessary to study whether AI obtained from related diseases could be
applied when dealing with rare diseases.

5. Conclusions

AI analysis was able to discriminate differences in speech before and after epilepsy
surgery upon an epilepsy patient with TSC.
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