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Abstract: Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental
conditions characterized by impairments in social interaction and communication and restricted
patterns of behavior, interests, and activities. Although the etiopathogenesis of idiopathic ASD has
not been fully elucidated, compelling evidence suggests an interaction between genetic liability and
environmental factors in producing early alterations of structural and functional brain development
that are detectable by magnetic resonance imaging (MRI) at the group level. This work shows
the results of a network-based approach to characterize not only variations in the values of the
extracted features but also in their mutual relationships that might reflect underlying brain structural
differences between autistic subjects and healthy controls. We applied a network-based analysis
on sMRI data from the Autism Brain Imaging Data Exchange I (ABIDE-I) database, containing 419
features extracted with FreeSurfer software. Two networks were generated: one from subjects with
autistic disorder (AUT) (DSM-IV-TR), and one from typically developing controls (TD), adopting a
subsampling strategy to overcome class imbalance (235 AUT, 418 TD). We compared the distribution
of several node centrality measures and observed significant inter-class differences in averaged
centralities. Moreover, a single-node analysis allowed us to identify the most relevant features that
distinguished the groups.

Keywords: autism disorder; network theory; brain features

1. Introduction

According to the fifth edition of the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM-5) [1], autism spectrum disorders (ASDs) encompass a heterogeneous category
of neurodevelopmental conditions characterized by a different level of symptom severity
in two core domains: impairments in social communication and interaction along with
restricted repetitive behaviors. In the previous version of the Diagnostic and Statistical
Manual of Mental Disorders (DSM-IV-TR; [2]), the diagnostic category “Pervasive Develop-
mental Disorders” (PDD) included distinct but phenotypically related categorical disorders:
autistic disorder, Asperger’s Disorder, and pervasive developmental disorder-not other-
wise specified (PDD-NOS), as well as two regressive neurodevelopmental disorders of
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early childhood characterized by autistic features: Rett’s syndrome, and childhood disinte-
grative disorder. Although the current elimination of diagnostic subtypes within autism
spectrum disorder is motivated by the fact that the reliability of the diagnoses of different
subtypes was poor across clinicians and unstable over time [3], debate is ongoing about its
validity [4]. In fact, the ASD category includes subjects that highly differ in their genetic
underpinnings [5] and clinical presentation [6], and this heterogeneity in turn impacts the
ability to detect differences between ASD and control subjects, as suggested by the decrease
in effect size over time [7]. With respect to neurobiological substrates identified using
structural magnetic resonance imaging (sMRI), some studies have detected different and
specific brain alterations among the DSM-IV-TR subtypes of PDD [8,9]), whereas others
identified similar neural underpinnings shared among PDD subgroups [10,11]. Recently,
these different views were reconciled by a large study that analyzed brain imaging data
from the Autism Brain Imaging Data Exchange (ABIDE) cohorts: specifically, both common
and unique cortical brain areas among Asperger’s, PDD-NOS, and autistic subgroups were
found [12].

Given these premises, in our investigation, we focused on subjects with autistic disor-
der; i.e. the subtype with the highest levels of concordance when diagnosed using either
the DSM-IV or DSM-5 diagnostic criteria [13]. To highlight structural brain characteristics
that distinguish subjects with autistic disorder (AUT) from typically-developing controls
(TD), we implemented an analysis based on network reconstruction that takes into account
the relations (i.e. correlation) between all pairs of features used in our analysis (correspond-
ing to nodes in the network). Then, we calculated several node centrality measures and
compared the two subject groups at whole-network and single-node levels to characterize
global differences and the role of specific features in generating such differences.

This paper is structured as follows: first, we describe the data selection criteria and
the preprocessing methods implemented for the sMRI data and for the extracted features;
then, the network-based approach and its implementation are presented; finally, the results
are shown and discussed.

2. Materials and Methods
2.1. ABIDE Dataset and Sample Selection Criteria

We analyzed the structural MRI data of autistic and control subjects collected within
the Autism Brain Imaging Data Exchange (http://fcon_1000.projects.nitrc.org/indi/abide/,
accessed on 1 October 2020) I (ABIDE-I) initiative [14]. The ABIDE-I data collection is
publicly available and consists of structural and functional MRI scans of 1112 individuals
(539 subjects with autism and 573 typical controls), with and age range of 7–64 years,
acquired in 17 different medical centers.

In this study, we focused on a subgroup of the ABIDE-I dataset, consisting of right-
handed males that belong either to the AUT or TD groups (M = 653 subjects): MAUT = 235
AUT and MTD = 418 TD subjects.

This subset was checked for age bias between the groups, given that age is the only
relevant non-anatomical feature reported for all subjects in the dataset. We performed
pairwise comparisons between four groups: (i) all TD subjects, (ii) all AUT subjects, (iii)
right-handed male TD subjects, and (iv) right-handed male AUT subjects. Comparisons
were made using a two-tailed, two-sample Kolmogorov-Smirnov test. The results are
reported and detailed in Section 3.1, Table 1, showing no age bias for any comparison.
In the Supplementary Materials, we show the plots of the dataset labeled for age and
sampling site, which appear to be quite well mixed with respect to these factors.

2.2. Extraction of Descriptive Features

The structural MRI volumes were processed with the Freesurfer (https://surfer.nmr.
mgh.harvard.edu, accessed on 1 October 2020) software (version 6.0) with the recon-all
pipeline, (https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all, accessed on 1 October
2020) which provides an automated segmentation of cortical and subcortical structures and

http://fcon_1000.projects.nitrc.org/indi/abide/
https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
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generates a number of quantitative features for each brain region from the aseg.stats and
h.aparc.stats output files, using asegstats2table and aparcstats2table Freesurfer
scripts [15–18]. We considered 419 brain features (see the detailed list in Figure 1) extracted
from structural MRI data defined according to the Desikan-Killiany-Tourville Atlas [19]:

• Volume, surface area, thickness (mean and standard deviation), mean curvature, and
curvature index of 31 bilateral cortical structures (372 features);

• Volumes of bilateral sub-cortical structures and cerebellum (28 features);
• Volumes of other subcortical structures, including the corpus callosum and brainstem

(12 features);
• Global measures–i.e. bilateral average global cortex volumes and thicknesses, bilateral

white matter average volumes, and total gray matter volume (seven features).

The features were normalized to account for inter-individual variability according to
the following criteria:

• Volumetric features were divided by the global brain volume, considering the
FreeSurfer feature corresponding to brain segmented volume without ventricles
(BrainSegVolNotVent);

• Cortical thicknesses were divided by the mean cortical thickness (computed as the
average between the left and right hemisphere average thickness values);

• Cortical areas were divided by the sum of surface area values of all cortical structures.

We added additional features for each pair of features extracted from left and right
homologous brain regions: the average and asymmetry (i.e., half difference) between left
and right regions were computed and added to the initial set of features, yielding a total of
N = 818 features.

31 regions for left (L) and right (R) cortical feature 

extraction: volume (GrayVol), surface area (SurfArea), 

thickness (mean and standard deviation, ThickAvg and 

ThickStd), mean curvature (MeanCurv) and curvature 

index (CurvInd) values (372 features)

Subcortical and cerebellum

L and R volumes

(28 features)

Subcortical and other volumes

(12 features)

Global measures

(7 features) 

Caudal anterior cingulate Lateral ventricle Third Ventricle volume L Hemisphere (LH) Cortex volume

Caudal middle frontal Inferior lateral ventricle Fourth Ventricle volume R Hemisphere (RH) Cortex volume

Cuneus Cerebellum white matter Fifth Ventricle volume LH Mean thickness

Entorhinal Cerebellum cortex Cerebrospinal fluid volume RH Mean thickness

Fusiform (gyrus) Thalamus  Brain stem volume LH Cerebral White Matter volume

Inferior parietal Caudate Optic chiasm volume RH Cerebral White Matter volume

Inferior temporal Putamen Posterior corpus callosum volume Total Gray Matter volume

Isthmus cingulate  Pallidum Middle posterior corpus callosum volume

Lateral occipital Hippocampal Central corpus callosum volume

Lateral orbitofrontal Amygdala Middle anterior corpus callosum volume

Lingual Nucleus Accumbens Anterior corpus callosum volume

Medial orbital frontal Ventral DC (Diencephalon) Ventricle Choroid volume

Middle temporal Vessel

Parahippocampal Choroid Plexus

Paracentral 

Pars opercularis 

Pars orbitalis 

Pars triangularis 

Pericalcarine 

Postcentral 

Posterior cingulate 

Precentral 

Precuneus 

Rostral anterior cingulate 

Rostral middle frontal 

Superior frontal 

Superior parietal 

Superior temporal 

Supra-marginal 

Transverse temporal pole 

Insula 

Figure 1. Scheme of the brain features extracted from the ABIDE-I sMRI data.

2.3. Weighted Correlation Networks (WCN)

We generated two groups of binarized and weighted correlation networks (WCNs) for
TD (GTD) and AUT groups (GAUT), respectively. The analyses presented in the Section 3
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refer to the comparison between a group of networks obtained from TD undersampling
versus a single instance of the AUT network obtained by considering all AUT samples at
once (see subsections below for details). In the Supplementary Materials (Section S3), we
show the analogous results obtained by generating two sets of subsampled networks for
both TD and AUT groups.

The networks were built as follows:

1. Each feature was identified as a node: Nnode = Nfeat = 419;
2. For each group, the Spearman’s correlation matrix rS was computed;
3. Node pairs with rS exceeding the 0.85-th quantile of the whole Spearman’s coefficients

distribution were considered as linked (self-loops were discarded);
4. After thresholding, we generated both a binarized and a weighted version of each

network, with the weights assigned via the formula wii = e−S2
ij/σ2

, using the chordal
distance Sij = sin( 1

2 arccos rS ij) and setting σ = 1.

In Step 2, the non-parametric Spearman correlation was chosen instead of Pearson
linear correlation for two reasons: (i) it is more robust against high skewness and strong
outliers, and (ii) it is more suitable for discrete-valued variables (as is the case for some
features). In Step 3, we used a nonparametric threshold based on distribution percentiles
to have a fixed link density (i.e., the number of links divided by the total possible links) for
all networks: thresholding based on the 85th percentile means fixing the link density to
ρ = 0.15. This value was chosen empirically to prevent the formation of minor disconnected
components or isolated nodes.

It is also worth remarking that the described pipeline produces results that are indepen-
dent of any monotonic manipulation of the initial data (such as power or log-transformation,
or normalizations), since all analyses are built upon the Spearman’s correlation based
on rank.

2.4. Network Matrices and Node Centrality Measures

For each instance of the Spearman’s correlation matrix (obtained by patient subsam-
pling; see Section 2.5) we generated a topological (i.e. binary) network A and a weighted
network W of the same size, with nodes corresponding to brain features.

We calculated several node centrality measures specific for topological and
weighted networks:

• The node degree Ki and node strength Si, defined as

Ki =
N

∑
j=1

Aij; Si =
N

∑
j=1

Wij; (1)

• The average degree and strength of each node’s nearest neighbors, denoted Knni and
Snni, respectively;

• The closeness centrality CCi and weighted closeness centrality WCCi, defined as

CCi =
N − 1

∑N
j=1 dtopo ij

; WCCi =
N − 1

∑N
j=1 dweighted ij

(2)

where dtopo ij and dweighted ij are the topological and weighted distance between nodes
i and j, respectively;

• The betweenness centrality BCi and weighted betweenness centrality WBCi, de-
fined as

BCi =
1

(N−1
2 )

∑
j1 6=i
j2 6=i

σtopo j1 j2(i)
σtopo j1 j2

; WBCi =
1

(N−1
2 )

∑
j1 6=i
j2 6=i

σweighted j1 j2(i)
σweighted j1 j2

(3)
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where, for both the topological and the weighted network, σj1 j2 is the number of
shortest paths between nodes i and j, and σj1 j2(i) is the number of paths passing
through node i;

• The clustering coefficient Clusti, defined as the fraction of pairs of a node’s adjacent
nodes that are also adjacent to each other (and thus not defined for i s.t. Ki < 2),
computed as

Clusti =
(A3)ii/2

(Ki
2 )

; (4)

• Spectral Centrality SCi and Weighted Spectral Centrality WSCi, defined as:

SC(1)
i =

N

∑
j=1

Aij(ν
topo
i − ν

topo
j )2 (5)

WSC(1)
i =

N

∑
j=1

Wij(ν
weighted
i − ν

weighted
j )2 (6)

where the superscript “(1)” is used to specify that the 1st spectral centrality is con-
sidered, and vtopo

1 = (ν
topo
1 , · · · , ν

topo
N ) and vweights

1 = (ν
weights
1 , · · · , ν

weights
N ) denote

the first nontrivial eigenvector of the Laplacian for the topological and the weighted
networks, respectively [20].

2.5. Network Subsampling

To compare the values of the considered centrality measures between TD and AUT
groups, dataset imbalance is a critical issue, for two reasons:

• The large difference in samples in GTD and GAUT (MTD = 418, MAUT = 235) can
cause a different amount of fluctuations in sample correlation rS;

• By reconstructing a single network instance for each group, only two values would be
produced (one for GTD and one for GAUT), making a statistical comparison impossible
between the two groups.

We chose to overcome these limitations by performing a subsampling with replace-
ments on the GTD subjects, which allowed us both (i) to work with networks built from an
identical sample number Msub < min{MTD, MAUT} = 235 and thus with an equal number
of fluctuations and (ii) to obtain a distribution of network measures for the control group
instead of a single set of values. The subsampling procedure was performed as follows:
from the control group with MTD = 418 subjects, we randomly extracted Msub = 235
samples (corresponding to the size of GAUT) and for each extraction, we generated an
instance of the control network. The extraction step was repeated K = 5 · 104 times, and
each time all centrality measures were calculated.

Two different analyses were performed:

• Whole-network statistics: For each network, a single centrality value was calculated
as the average over all node centrality measures (obtaining a distribution of 5× 104

values for each centrality measure in the TD group to be compared with a single value
for the AUT group);

• Single-node statistics: We compared the centrality values separately for each node
(thus obtaining a 818× 5× 104 table of centrality values for the TD subsampled group,
to be compared with the 818 values for the single instance of the AUT group).

All the analyses were performed with MATLAB R2019b on a 2.10 GHz Intel Xeon CPU
E5-2620 v4 (K = 5× 104 repetitions took about 8 h of computation).

2.6. Group Comparison

We compared the values of the GAUT network with the distribution of corresponding
values for GTD networks (processed with Box-Cox transforms), using the z-score distance
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zn = (cAUT
n − 〈cn〉TD)/σn, where the n index ranges through all centrality measures, cAUT

is the value of the single AUT instance, 〈cn〉TD) is the average over all TD subsampled
network measures, and σn is the standard deviation of GTD values. The score was calculated
for the whole network or singularly for each node, depending on the type of analysis
described in the previous subsection. In the Supplementary Materials (Section S3), we
also show the results of the comparison between a distribution of TD networks and a
distribution of AUT networks obtained by a similar subsampling procedure, which are in
complete agreement with the analysis shown in the paper.

3. Results
3.1. Age Bias in TD and AUT Groups

Four sample groups were pairwise compared (with a latin square design) with respect
to age: all TD subjects, all AUT subjects, right-handed male TD subjects, and right-handed
male AUT subjects. Statistical comparisons were conducted via two-tailed, two-sample
Kolmogorov-Smirnov tests. The outcomes in terms of p-values are reported in Table 1.
No comparison showed a statistically significant difference; thus, the choice to restrict our
analysis to right-handed males did not introduce any age-related bias as compared to the
full ABIDE dataset.

Table 1. p-values from the Kolmogorov-Smirnov tests (pKS) used to compare group age. TD: typically
developing; AUT: autistic disorder.

pKS all TD all AUT Right-Handed
Male TD

Right-Handed
Male AUT

all TD 1 0.699 0.698 0.553
all AUT 1 0.408 0.993

right-handed male TD 1 0.784
right-handed male AUT 1

3.2. Distribution of the Feature Correlation Coefficients

The distributions of the Spearman’s correlation coefficients rS for the TD and AUT
groups are shown in Figure 2. For the AUT group, the distribution of the single network
realization GAUT is reported; for the control group, we instead report the average distribu-
tion of the rS coefficients over the K = 5× 104 subsampled networks. The two distributions
are different, with the AUT values being more concentrated in the peak and in the tails as
compared to TD. In particular, the AUT 85th quantile is higher than the 85th quantile for
TD (qTD = 0.1725 and qAUT = 0.1823).

3.3. Correlation between Centrality Measures

Since different centrality measures can convey similar information, we inspected the
Spearman’s correlation between the vectors of 818 values for all nodes in the networks,
calculated separately for the TD and the AUT groups. For the TD group, averages were
taken over the K = 5× 104 repetitions, obtaining one value per node. The correlations
between the vectors of node centrality measures were used as distances to generate a
cluster map as shown in Figure 3. We observe that some pairs of centrality measures have
very high correlation values (>0.99). Even if the correlation values are different for TD and
AUT groups, the resulting cluster structure is the same, highlighting four main clusters of
centrality measures:

• Cluster I: Betweenness centrality and weighted betweenness centrality;
• Cluster II: Degree, strength, nearest-neighbor degree, nearest-neighbor strength, close-

ness centrality, weighted closeness centrality, clustering coefficient;
• Cluster III: Inverse participation ratio;
• Cluster IV: Spectral centrality and weighted spectral centrality.
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This result suggested that we should consider one type of centrality measure for
each cluster, since highly correlated centrality measures are supposed to provide the same
information about node relevance.

Figure 2. Distribution of the Spearman’s correlation coefficients for the TD and AUT groups. The 85th percentile of each
distribution is also shown (average value for TD, a single value for AUT), used as the threshold for network reconstruction.

(a) Control group TD. (b) Case group AUT.

Figure 3. Spearman correlation-based cluster maps of the centrality measures.

3.4. Whole-Network Comparison

In the comparison at the global network level, the centrality measures were averaged
over all the nodes within each network, obtaining K = 5 · 104 values for each of the
12 centrality measures in the TD group, and 12 single values for the AUT group. The
Box-Cox regularized distributions for TD group and the single values for AUT group are
displayed in Figure 4 for each centrality measure. The statistical significance of the group
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differences was computed by counting how many values from each TD distribution were
more extreme than the corresponding AUT value, yielding an empirical p-value for each
centrality measure based on the percentile. The results are shown in Table 2, reporting both
the z-scores and the p-values. In the table, the centrality measures are grouped based on the
clusters identified in Section 3.3, and ranked within each cluster according to the z-score
effect size. In general, we observe large differences between the TD distribution and AUT
single values, reflecting the different structure of the two networks at a global level. The
results of the analyses with subsampling for both AUT and TD groups are shown in the
Supplementary Materials and are in good agreement with those shown here.

Figure 4. Box-Cox normalized distributions for the TD group (blue) and single values for the AUT group (red) for the node
centrality measures.

Table 2. The z-scores and p-values for the node centrality measures, grouped according to the clusters
found in Section 3.3 and ranked within each cluster based on the z-score.

Cluster Centrality
Measure

z-Score p-Value

I Betweenness 3.85 6× 10−5

Weighted betweenness 3.84 6× 10−5

II

Clustering coefficient 5.88 <2× 10−5

nn-degree 4.77 <2× 10−5

nn-strength 4.31 <2× 10−5

Weighted closeness −4.09 6× 10−5

Closeness −3.62 0.00014
Strength 2.33 0.011
Degree 0 by constr. 1 by constr.

III Inverse participation ratio 4.69 <2× 10−5

IV Weighted spectral −3.40 0.0019
Spectral −3.21 0.0019
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3.5. Single-Node Comparison

The same analysis was performed at a single-node level, comparing the TD distribu-
tions with the single AUT values. Ranking the z-score of the single nodes allowed us to
identify which nodes—i.e., brain features—mostly contributed to the differences between
TD and AUT groups. We only analyzed the centrality measures with the largest difference
within each cluster: betweenness centrality (BC) for cluster I, clustering coefficient (Clust)
for cluster II, inverse participation ratio (IPR) for cluster III, and weighted spectral centrality
(WSC) for cluster IV. Tables 3–6 report the top five brain features for the chosen centrality
measures. We comment on the biological relevance of these identified brain features in
Section 4.

Table 3. Top-ranking brain features of betweenness centrality (Cluster I).

Rank Hemisphere Brain Area Measure z BC

1 R Postcentral Gray volume 2.808
2 R Medial orbitofrontal Gray volume 2.584
3 R Superior frontal Average thickness 2.310
4 R Rostral middle frontal Average thickness 2.214
5 L Rostral middle frontal Gray volume 2.207

Table 4. Top-ranking brain features of clustering coefficient (Cluster II).

Rank Hemisphere Brain Area Measure z Clust

1 R Pars triangularis Surface area 6.705
2 R Caudal middle frontal Surface area 6.046
3 R Rostral middle frontal Surface area 5.893
4 R Caudal middle frontal Gray volume 5.686
5 R Postcentral Mean curvature 5.097

Table 5. Top-ranking brain features of inverse participation ratio (IPR) (Cluster III).

Rank Hemisphere Brain Area Measure z IPR

1 R Middle temporal Surface area 4.087
2 R Entorhinal Standard thickness 3.643
3 L Lateral occipital Gray volume 2.772
4 L Insula Surface area 2.735
5 R Insula Surface area 2.734

Table 6. Top-ranking brain features of weighted spectral centrality (WSC) (Cluster IV).

Rank Hemisphere Brain Area Measure z WSC

1 L Precentral Mean curvature −1.836
2 L Precuneus Standard thickness −1.708
3 L Postcentral Curvature index −1.705
4 L Superior parietal Curvature index −1.679
5 L Superior frontal Standard thickness −1.626

3.6. Network Visualization

UMAP embedding [21] was used to visualize the networks (Figure 5), where for the
TD network one of the random subsamplings was represented. In the top row, nodes are
colored according to feature laterality; i.e. if they are global features for the whole brain, if
they belong to one hemisphere, or if they are a combination of both hemisphere features (as
described above). In the bottom row, the color scale is based on clustering coefficient values
and the centrality measure with the highest difference between TD and AUT networks.
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left hemisphere

asymmetry right-left

average right-left

right hemisphere

global or non-lateral

TD AUT

𝑥UMAP 𝑥UMAP
𝑦
U
M
A
P

𝑦
U
M
A
P

𝑥UMAP

TD AUT

𝑥UMAP

𝑦
U
M
A
P

𝑦
U
M
A
P

Figure 5. Representation of TD and AUT weighted networks with UMAP layout. Top: nodes colored by feature laterality.
Features refer to the right or left hemisphere, to the average or to the difference (asymmetry) between corresponding
left-right features, or global features referring to the whole brain. Bottom: nodes colored by clustering coefficient values.
We annotate the number IDs of the top-20 features with the largest variation in clustering coefficients.

Two observations emerge in terms of the global structure, even if both network have
an identical link density: first, the AUT network presents more segregated clusters as
compared to the TD network; secondly, in the AUT network, features tend to form clusters
with similar values of clustering coefficients.

4. Discussion

In the last decade, much progress has been made in uncovering neuroanatomical
underpinnings that differentiate ASD patients from TD at the group level (see [22] for a
recent review), but most neuroimaging studies have been conducted with small sample
sizes that in turn could produce inconsistent and poorly replicated findings [23].

To try to overcome biases related to underpowered studies [24], worldwide data-
sharing initiatives have been developed also in the ASD field, including ENIGMA
ASD (http://enigma.ini.usc.edu/ongoing/enigma-asd-working-group/, accessed on
1 October 2020) working group, National Database for Autism Research (NDAR)
(https://ndar.nih.gov/, accessed on 1 October 2020), and Autism Brain Imaging Data
Exchange (ABIDE) [14].

In the current study, we have applied second-order statistics to brain features em-
bedded in a network framework to identify differences in their interrelations in the TD

http://enigma.ini.usc.edu/ongoing/enigma-asd-working-group/
https://ndar.nih.gov/
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and AUT groups. Node centrality measures then allowed us to rank and identify the
single features that were most associated with the differences found between TD and
AUT patients.

In particular, the structure of frontal brain regions seems to mostly differentiate ASD
from TD individuals, especially in the inferior frontal cortex, orbitofrontal cortex, and mid-
dle frontal cortex. In particular, we identified a significant alteration of the pars triangularis
belonging to Broca’s area–a region of inferior frontal cortex implicated in higher-order
skills that are generally impaired in ASD individuals, including expressive language, action
imitation, attribution of mental states, and empathy [25]. The medial orbitofrontal cortex is
a critical brain region for regulating social behavior and inhibiting inappropriate social con-
duct [26] and has been also implicated in repetitive behavior–a core symptom of ASD [27].
Rostral middle frontal region (RMFG), a sub-region of the dorsolateral prefrontal cortex
(DLPFC), is critical for executive functions, the cognitive processes that allow the selection
of actions appropriate to our current activities or goals [28], among which dysfunction
in emotion regulation [29], planning [30], mental flexibility [31], response inhibition [32],
working memory [33], and cognitive control [34] have been consistently identified in ASD.
The caudal middle frontal gyrus (MFG) (encompassed in the DLPFC) is also implicated
in higher-level cognition: specifically, a hierarchical model has been proposed according
to which caudal MFC provides cognitive control over current processing (e.g., stimuli
translated into actions), while RMFC provides cognitive control over future processing
(e.g., goals or plans). The superior frontal gyrus (SFG) belongs to the anterior rostral region
of the medial frontal cortex (arMFC) and represents an important node of the social brain
that has a role in social cognitive tasks requiring theory of mind (ToM) abilities [35]. The
middle temporal gyrus (MTG) is part of the network that is alleged to be the basis of
language, emotion, and social cognition, and has also been proposed to underpin ASD
deficits in mentalizing, set-shifting, irony processing, and eye-gaze processing [36]. The
anterior-most region of the parahippocampal gyrus, the entorhinal cortex, is part of the
key anatomical structures critical for memory function, which is disrupted in ASD subjects
when evaluated with a comprehensive test battery [37,38]. Importantly, the altered cortical
thickness we observed in the entorhinal cortex is consistent with findings derived from the
large ASD data set of the ENIGMA-ASD working group [39]. The precentral gyrus is part
of the core human mirror neuron system–a neural circuit that processes information related
to the perception and execution of biological motions, whose dysfunction has been related
to a set of ASD symptoms (impairment in communication, language, and the capacity to
understand others) [40].

Besides the well-replicated alterations in the frontal cortical regions [41,42]), struc-
tural alterations in other brain structures were detected in the current work. For example,
functional differences in the superior parietal lobe (SPL) have previously been linked to
impairments in motor learning [43], but also to social symptoms in ASD [44]. The pre-
cuneus operates together with the paracentral lobule, which is part of the SPL, to produce
a sense of self and of spatial environment [45] and to modulate social interactions [46].
Interestingly, a brain system in the precuneus/SPL region with reduced functional con-
nectivity has been described using the ABIDE data set [14] in ASD subjects [47] and has
been related to the impaired representation of oneself in the world, which in turn may
impact on the theory of mind skills of ASD patients [48]. The involvement of the insula
has been previously observed in the ASD literature, in terms of hypoactivation during
socio-emotional processing tasks [49] and hyperactivation in response to executive function
processes in early developmental stages [50]. Conversely, the largest multi-site MRI brain
morphometry study to date that included, inter alia, the ABIDE I [14] and ABIDE II [51]
datasets (N = 1571 for ASD, N = 1651 for TD) did not detect differences in insula volume
or thickness between individuals with ASD and typical controls [39]. The insula plays
a crucial role in the “salience network”, which is charged with integrating external stim-
uli with self-perceptions and emotional states, alterations of which are related to several
impairments of ASD [52].
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We found structural alterations also in the postcentral gyrus (PCG) in ASD children
compared with TD. The human PCG includes the primary somatosensory cortex, which
is critical for somatosensory information processing (touch, proprioception, nociception,
and temperature). Crucially, hypo and hyper-reactivity to sensory stimuli are distinguish-
ing features of ASD that are included within the main ASD criteria of restricted interests
and repetitive behaviors in the DSM-5 and may negatively impact the daily life of ASD
individuals and their families [53]. The atypical brain structure we detected in PCG is
also consistent with previous studies in ASD subjects [54,55]. Besides this, we identified
brain alterations in the lateral occipital region, which plays a specific role in object recogni-
tion [56]. Even if object recognition is not specifically impaired in ASD, as in the case of face
recognition [57], it is characterized by an atypical time course (i.e., delay in the processing
of global information) compared with TD peers [58].

In summary, the current study, implementing a network-based analysis of sMRI data,
suggests that neural underpinnings of ASD include GM alterations in distributed cortical
and subcortical regions crucial for socio-cognitive and/or motor processes.

The second-order relations between features (i.e., their correlation) we extracted with
our network approach highlight relationships between the levels of the features rather than
differences in the feature values between AUT and TD groups. This might suggest that
signatures for patient classification, and possibly for their stratification related to different
levels of severity in the pathology, might be sought in a combination of ratios between
the values of some specific features (e.g., the most relevant we identified and some of
their closest neighboring features) that could be measured at a single-patient level. This
analysis goes beyond the scope of this paper and requires progress towards new studies
that would require at least another patient database in order not to be biased by the results
obtained with ABIDE I dataset and a sufficient sample size for the scopes of classification
and stratification.

5. Conclusions

In this work, we have considered a well-known dataset related to autistic disorder,
namely ABIDE I, which is one of the largest publicly available, and have performed a
network-based analysis of the features extracted from the MR images available for the
patients in order to characterize their second-order relationships (i.e., correlations between
variables, transformed in weighted networks for control and autistic patient groups).

The analysis showed significant differences both at a global level (properties of the
whole network averaged over single-node measures) and also at the level of single features.
With this latter analysis, we could rank features based on their statistical score, and we
could provide a biological interpretation of these features related to the known literature
and to specific brain areas and cognitive functions.
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