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Abstract: Objective: The aim of this work was to examine (electroencephalogram) EEG features that
represent dynamic changes in the functional brain network of a surgical trainee and whether these
features can be used to evaluate a robot assisted surgeon’s (RAS) performance and distraction level in
the operating room. Materials and Methods: Electroencephalogram (EEG) data were collected from
three robotic surgeons in an operating room (OR) via a 128-channel EEG headset with a frequency of
500 samples/second. Signal processing and network neuroscience algorithms were applied to the
data to extract EEG features. The SURG-TLX and NASA-TLX metrics were subjectively evaluated
by a surgeon and mentor at the end of each task. The scores given to performance and distraction
metrics were used in the analyses here. Statistical test data were utilized to select EEG features that
have a significant relationship with surgeon performance and distraction while carrying out a RAS
surgical task in the OR. Results: RAS surgeon performance and distraction had a relationship with
the surgeon’s functional brain network metrics as recorded throughout OR surgery. We also found
a significant negative Pearson correlation between performance and the distraction level (−0.37,
p-value < 0.0001). Conclusions: The method proposed in this study has potential for evaluating RAS
surgeon performance and the level of distraction. This has possible applications in improving patient
safety, surgical mentorship, and training.

Keywords: robot-assisted surgery; electroencephalogram; functional brain network; RAS surgi-
cal performance

1. Introduction

Robot-assisted surgery (RAS) offers advantages such as improved three-dimensionality
for surgery, magnified images of the work area, and improved dexterity compared to the
traditional surgical framework. While the advantages of RAS are appreciated, the lim-
itations of the robotic user interface and the steep learning curve [1,2] are factors that
contribute to a lower utilization of robot-assisted technologies. Even in areas where RAS is
widely used, such as gynecology and urology, the outcomes in RAS seem to predominantly
correlate with the level of expertise of the individual surgeon [3,4].

Although expertise and performance frequently have been used interchangeably,
they do not convey the same meaning in the field of RAS. Even the performance of
expert surgeons may be poor in certain surgical situations, i.e., cases with intra-operative
challenges [5,6].

A surgeon’s physical and mental performance highly effects patient safety [7]. Several
factors in a surgical environment can affect a surgeon’s performance [8,9]. Goodell et al.
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observed that cognitive distractions lengthen the completion time of laparoscopic surgical
tasks [10]. Haptic feedback, a metric that is missed in the current RAS framework, has been
frequently mentioned as a key factor influencing surgical performance [11]. It has been
proposed that a lack of haptic feedback causes prolonged operative times and learning
curves and increases the risk of surgical errors [12–15], especially those causing tissue
damage [16]. In addition, Arora et al. investigated the impact of stressors on performance
in the operating room (OR) [17]. They found that the frequent low severity stressors that
occurred in the OR were technical-, patient-, and equipment-related problems. In contrast,
infrequent yet severe stressors consisted of teamwork-related issues. The occurrence of
these situations is associated with an increase in surgeon self-reported stress [17]. Elhage
et al. studied individual surgeon performance using three surgical approaches with a
simulated task [18], namely, open, laparoscopic, and RAS. In their study, six urological
surgeons performed a simulated suturing task utilizing all three types of surgery. They
found that in an in vitro model of anastomosis surgery, RAS maintains minimal access and
has the accuracy of open surgery with less surgeon discomfort than laparoscopic surgery.

Another factor that contributes to poor surgical outcomes is a lack of training and
low skill level. Porter et al. [19] investigated variations in outcomes between patients with
rectal cancer treated by expert surgeons trained in colorectal surgery versus non-specialist
colorectal surgeons and between surgeons with high- versus low-volume work. The
analysis showed that the risk of local recurrence increased, and disease-specific survival
was lower in patients treated both by non-specialist colorectal surgeons and by surgeons
performing less than 21 procedures during the study. The best result was obtained for the
surgeons with specialized training and high surgical practice volumes (10.4% recurrence
and 67.3% survival) and worst by surgeons without specialized training and low surgical
practice volumes (44.6% recurrence and 39.3% survival) [19].

High performance in multifaceted tasks such as surgery depends upon several factors,
including the learner’s ability to develop perceptual, cognitive, and motor skills [20]. The
human brain is a complex system that includes various subsystems which interact with
each other and dynamically change over different temporal scales while interacting with
changes in the environment. It has been shown for motor skill acquisition that there are
changes of functional connectivity throughout areas of the brain [21,22].

Several effects on surgical performance and methods for performance evaluation, e.g.,
subjective and cognitive, have been discussed and proposed in the literature; however, no
clinically practical method has been developed and validated for the automatic evaluation
of surgical performance. The use of robotics in complicated surgical areas requires close
monitoring throughout the operation to ensure that patient safety is maintained [23].

On the other hand, several sources of distraction (defined as “events that cause a
break in attention and a concurrent orientation to a secondary task” [24]) in the OR may
affect performance. The OR is rich with different sources of distractions, including phone
calls, beeper pages, and conversations not pertinent to the surgical procedure [25,26].
Distractions in general can arise from the surgeon’s own personal attitude or from the
surrounding OR environment.

In this study, we developed a model that represents the relationship between a sur-
geon’s performance and distraction level while carrying out RAS surgical tasks in the OR
using only surgeon electroencephalogram (EEG) data. There are several metrics that can
be derived from EEG data, such as overall spectral features, time–frequency data, and
cross-frequency dynamics; however, none of these features express the communication be-
tween individual brain areas. We propose the utilization of brain network metrics extracted
from EEG data, representing communication and information transformation between
brain areas, and extract relationships between those metrics and surgical performance and
distraction here.
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2. Materials and Methods

This study was conducted in accordance with the relevant guidelines and regulations
and was approved by Roswell Park Comprehensive Cancer Center Institutional Review
Board (I-241913).

Data Recording Setup: Utilizing a 128-channel electroencephalogram (EEG) head-
set (ANT neuro inspiring technology, Inc, Hengelo, The Netherlands) with a frequency
of 500 samples/second, EEG data were collected from three robotic surgeons in operat-
ing rooms (ORs). EEG data were recorded from 119 brain regions, including the frontal
(2 channels), prefrontal (3 channels), central (7 channels), temporal (2 channels), parietal
(10 channels), occipital (4 channels), frontal-central (19 channels), frontal-temporal (10 chan-
nels), parieto-occipital (17 channels), temporal-parietal (8 channels), and central-parietal
regions (18 channels). From the other 9 channels, 2 were reference electrodes placed on
the mastoids and 7 electrodes (I1, Iz, I2, CPz, PO5, PO6, and Oz) were excluded from this
study due to insufficient signal quality.

Surgeon’s characteristics and assessment: All subjects were RAS surgical fellows
from the Urology Department at the Roswell Park Comprehensive Cancer Center (Table 1).

Table 1. Demographics. RAS: Robot-assisted surgery; OR: operating room.

Subjects Characteristics Characteristic Options Number of Subjects (%)

Age (mean) 30–45 (38) 3 (100)

Dominant hand Right 3 (100)

Gender Male 3 (100)

Experience No prior experience in RAS in the OR 3 (100)

Overall years of surgical training/practice
5–10 2 (67)

10–15 1 (33)

A surgery-specific version of the task load index (SURG-TLX) questionnaire was
subjectively evaluated by each surgeons and NASA task load index (NASA-TLX) question-
naire metrics were subjectively evaluated by a mentor at the end of each task. SURG-TLX
encompasses a multi-dimensional rating of six indices: mental demand, physical demand,
temporal demand, task complexity, situational stress, and distraction [27]. The NASA-TLX
metrics are mental demand, physical demand, temporal demand, performance, effort,
and frustration [28]. Performance scores given by mentor and distraction scored given by
surgeon were used in our analyses. The scale of the SURG-TLX and NASA-TLX metrics is
1–20, where 1 is the lowest and 20 is the highest.

Surgical tasks: The surgical tasks included in this study were a bladder drop, dissec-
tion (lymph nodes, bladder neck, seminal vesicle, peri-ureteric space, lateral pelvic space,
anterior rectal space, vascular pedicle, and prostate apex), urethro-vesical anastomosis,
and suturing.

Parcellation of the brain into systems: Based on the work of [29], regions of the brain
and the corresponding recording electrodes located approximately above those regions,
were “labeled” as motor-, cognition-, and perception-related brain areas. The “motor
process-related areas”, “cognitive process-related areas” and “perceptual process-related
areas” were considered in our analyses.

The electrodes located approximately above the motor process-related areas were:
“F7”, “F3”, “Fz”,”F4”, “F8”, “FC5”, “FC1”, “FC2”, “FC6”, “C3”, “Cz”, “C4”, “CP5”, “CP1”,
“CP2”, “CP6”, “AF7”,”AF3”, “AF4”, “AF8”, “F5”, “F1”, “F2”, “F6”, “FC3”, “FCz”, “FC4”,
“FT7”, “FT8”, “TP7”, “TP8”, “FT9”, “FT10”, “AFF1”, “AFz”, “AFF2”, “FFC5h”, “FFC3h”,
“FFC4h”, “FFC6h”, “FCC5h”, “FCC3h”, “FCC4h”, “FCC6h”, “CCP5h”, “CCP3h”, “CCP4h”,
“CCP6h”, “CPP5h”, “CPP3h”, “CPP4h”, “CPP6h”, “AFp3h”, “AFp4h”, “AFF5h”, “AFF6h”,
“FFT7h”, “FFC1h”, “FFC2h”, “FFT8h”, “FTT9h”, “FTT7h”, “FCC1h”, “FCC2h”, “FTT8h”,
“FTT10h”, “CCP1h”, “CCP2h”, “CPP1h”, and “CPP2h”.
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The electrodes located approximately above the cognitive process-related areas were:
“Fp1”, “Fpz”, “Fp2”, “P7”, “P3”, “Pz”, “P4”, “P8”, “POz”, “C5”, “C1”, “C2”, “C6”, “CP4”,
“P5”, “P1”, “P2”, “P6”, “PO3”, “PO4”, “PO7”, “PO8”, “PO9”, “PO10”, “P9”, “P10”,
“PPO1”, “PPO2 “, “TPP8h”, “PPO9h”, “PPO5h”, “PPO6h”, “PPO10h”, “POO9h”, “POO3h”,
“POO4h”, and “POO10h”.

The electrodes located approximately above the perceptual process-related areas were:
“T7”, “T8”, “O1”, “O2”, “TPP9h”, “TPP10h”, “TTP7h”, “TTP8h”, “TPP7h”, “TPP8h”,
“OI1h”, and “OI2h”.

EEG signal artifact decontamination: We used the advanced source analysis (ASA)
framework developed by ANT Neuro Inspiring Technology Inc., Netherlands, to pre-
process the EEG data. The ASA framework incorporates artifact correction by spatial
filtering. It separates brain signal from artifacts based on their topography and subse-
quently removes artifacts without distorting the brain signal. The separation is determined
based on data intervals with a clear artifactual activity as selected by the user and will be
used to specify the artifact topography. The method determines which parts of the data
are considered brain signals using two criteria: The first criterion specifies the highest
permitted amplitude of the brain signal while the second criterion specifies the highest cor-
relation between brain signal and artifact topography permitted. Then, a spatial principal
component analysis (PCA) method is used to determine the topographies of the artifact-free
brain signals and artifact signals. Finally, the artifact components are removed. It should
be mentioned that in the EEG recording system an active shielding technique protects the
referential EEG inputs from environmental noise (e.g., grid interference noise and cable
movement). Also, by using the “EEGO” software framework for EEG recording, a running
DC offset value was calculated per channel over the data. This offset was subtracted from
the data to compensate for the DC offset. Line noise artifacts were removed by applying
a 60 Hz notch filter to the EEG data. The EEG data from channels were filtered with a
band-pass filter (0.2–250 Hz) with a filter steepness of 24 dB/octave. The EEG artifact
correction was carried out based on blind source separation and using a topographical
PCA-based method. Individual portions of the EEG data were visually inspected for facial
and muscular activity artifacts and other artifacts [30]. Then, a spatial Laplacian (SP)
technique was applied to the signals and the result was used for feature extraction [31].

Brain dynamic features: The brain is parcellated into different areas, including multi-
ple channels [29]. These channels constitute network nodes. Network connectivity was
derived here via coherence analysis. These calculations resulted in a weighted connec-
tivity matrix referred to as the adjacency matrix, where the matrix entries represent the
connection weights between different areas of the brain (EEG channels). The adjacency
matrix was used to extract features of average strength and average search information of
“motor process-related areas”, “cognitive process-related areas” and “perceptual process-
related areas”.

Strength refers to the total communication weights of channels within each area of
the brain. The average strength for each area through each recording was considered
for analysis.

Search Information refers to the amount of information (measured in bits) that is
required to follow the shortest path between a given pair of nodes [32]. This feature was
calculated for pairs of channels within each area and the average value was considered per
area in each recording.

We partitioned each adjacency matrix, calculated for every second of each recording,
into communities (functional states) using the multilayer modularity maximization crite-
ria [33,34]. The expression of a community refers to the phenomenon where brain regions
assigned to the same community are more likely to be strongly connected to one another
as compared to regions assigned to different communities [35].

A generalized Louvain-like “greedy” algorithm and Newman–Girvan (NG) null
network were used for modularity maximization and community detection [33,34]. A con-
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sensus iterative algorithm with 100 repetitions was used to decrease the nondeterministic
effect of the community detection algorithm [34,36].

The functional community data assigned each second for each channel were used to
extract a module allegiance matrix (MAM) for each recording. The values of the matrix’s
elements indicate the probability that two channels can be assigned to the same community
in a set of functional brain networks constructed from the recordings. The MAM was used
to extract the dynamic brain features of average flexibility, integration, and the recruitment
of “motor process-related areas”, “cognitive process-related areas” and “perceptual process-
related areas” (Figure 1).

Network flexibility refers to the fraction of times that a channel within an area changes
its assigned community in successive one second windows throughout a recording [37].
The average of flexibility for all channels within an area is considered as a feature for each
area and recording.

Integration refers to the average probability that a channel is in the same network
community as channels from other brain areas. The average integration for every channel
within each area is considered a feature assigned to each area and recording [33].

Recruitment refers to the average probability that a channel is in the same network
community as other channels from its own area. The average recruitment for all channels
within each area is considered a feature assigned to each area and recording [33].
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Statistics: In our study, we collected EEG recordings from 142 surgeries. The surgeries
included more than ten types of urological surgeries. The surgeries were performed by
three different surgeons. Surgeon’s EEG was recorded, and surgeon’s performance and
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distraction were subjectively scored. A total of 14 EEG features were calculated for each
surgery. All the EEG features are continuous and described here with the median and
inter-quartile range (Q1, Q3). A random intercept model was used to test the differences
in performance scores among the different surgeons. We used a general linear model
to analyze the relationship between surgeon EEG features and performance score and
distraction level.

All tests were two-sided and the statistical significance level was 0.05. All statistical
analyses were performed with SAS® (version 9.4, SAS Institute Inc., Cary, NC, USA).

3. Results
3.1. Performance Evaluation

The median performance score of the 142 surgeries was 12 points with an inter-
quantile range of 8 (Q1) to 15 (Q3). The maximum score received (best performance) was
19 points and the minimum score (worst performance) was 1 point. The average score
for the 142 surgeries (with the standard deviation) was 11.1 ± 4.2 points (data available
in Supplementary Table S1). We did not find any difference between the various surgical
tasks (p = 0.58). We used a random intercept model to test the differences between surgeons
and our results show no differences between surgeons (p = 0.38). The univariate analysis
results are represented in Table 2.

Table 2. Univariate analysis results representing the relationship between performance and EEG features.

Variable Estimate 95% Confidence Interval p-Value

Flexibility motor process-related areas 11.90 (1.28, 22.52) 0.028

Flexibility cognitive process-related areas 15.07 (2.6, 27.53) 0.018

Flexibility perceptual process-related areas 19.50 (7.2, 31.79) 0.0021

Strength motor process-related areas 0.10 (0.04, 0.15) 0.0005

Strength cognitive process-related areas 0.10 (0.05, 0.16) 0.0004

Strength perceptual process-related areas 0.11 (0.05, 0.17) 0.0004

Integration motor process-related areas 26.77 (7.65, 45.89) 0.0064

Integration cognitive process-related areas 28.63 (8.88, 48.38) 0.0048

Integration perceptual process-related areas 39 (13.77, 57.01) 0.0015

Recruitment motor process-related areas 37.12 (13.34, 60.89) 0.0024

Recruitment cognitive process-related areas 48.16 (25.67, 70.65) <0.0001

Recruitment perceptual process-related areas 8.99 (−1.47, 19.45) 0.0915

Search information motor process-related areas 0.44 (0.16, 0.73) 0.0026

Search information cognitive process-related areas 0.52 (0.22, 0.82) 0.0009

Search information perceptual process-related areas 0.54 (0.19, 0.89) 0.0028

The EEG features were selected from univariate analysis at a cut-off of p = 0.25.
Forward model selection was used to detect the effects of the EEG features on the surgeon
performance score. In our multivariate analysis, we found that the flexibility of perceptual
process-related areas, and strength and recruitment of the cognitive process-related areas
were significantly associated with the performance score, where a 0.1 unit increase in the
flexibility of perceptual process-related areas lead to an approximate increase of 2.2 for the
performance score. Every 10 unit increase in strength for the cognitive process-related areas
resulted in an increase of performance of nearly 1 point. A 0.1 unit increase for recruitment
of cognitive process-related areas led to a 5-point increase in performance. The results for
our final model are represented in Table 3 below.
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Table 3. Result of the multivariate linear analysis, representing EEG features associated with RAS
surgeon performance.

Dependent Parameter Estimate p-Value

Performance Intercept −16.78 0.0011

Performance Flexibility perceptual process-related areas 21.57 0.0001

Performance Strength cognitive process-related areas 0.10 <0.0001

Performance Recruitment cognitive process-related areas 50.36 <0.0001

Our results show that RAS surgeon performance has a relationship with the dynamic
features retrieved from the functional brain network.

3.2. Distraction Evaluation

Distraction during surgery may be one important factor that can affect a surgeon’s
performance score (Pearson correlation coefficient = −0.37, p < 0.0001).

We analyzed distraction and its association with EEG features, where distraction was
a SURG-TLX metric that was subjectively evaluated at the end of each surgical task with
a range of 0 to 20 points, where zero represents absolutely no distraction and twenty is
defined as the maximum distraction. For our 142 surgeries, we had 3 missing values and
recorded a total of 139 distraction scores. Our median (Q1, Q3) distraction score was 14
(11, 16), while our average distraction score was 13.3 with a standard deviation of 3.1. The
minimum distraction was 5 and the maximum was 19.

There were no significant differences between surgeons (p-value = 0.17). Because
distractions can happen in any surgery, the type of surgery was not considered as a factor
in our model.

We continued to use a general linear model to detect the relationship between EEG
features and distraction. The results of the univariate analysis between EEG features and
distraction scores are shown in Table 4.

Table 4. Results of univariate analysis, representing the relationship between distraction level and EEG features.

Variable Estimate 95% Confidence Interval p-Value

Flexibility motor process-related areas −6.66 (−14.49, 1.17) 0.0948

Flexibility cognitive process-related areas −10.90 (−20.02, −1.79) 0.0194

Flexibility perceptual process-related areas −11.15 (−20.27, −2.03) 0.0170

Strength motor process-related areas 0.02 (−0.02, 0.06) 0.3148

Strength cognitive process-related areas 0.02 (−0.02, 0.07) 0.3038

Strength perceptual process-related areas 0.02 (−0.03, 0.07) 0.3622

Integration motor process-related areas 15.64 (1.33, 29.95) 0.0324

Integration cognitive process-related areas 15.79 (1.01, 30.58) 0.0365

Integration perceptual process-related areas 15.39 (−0.93, 31.71) 0.0644

Recruitment motor process-related areas 1.69 (−16.3, 19.67) 0.8531

Recruitment cognitive process-related areas −5.02 (−22.52, 12.47) 0.5712

Recruitment perceptual process-related areas −10.30 (−17.89, −2.72) 0.0081

Search information motor process-related areas 0.16 (−0.06, 0.38) 0.1608

Search information cognitive process-related areas 0.17 (−0.07, 0.41) 0.1553

Search information perceptual process-related areas 0.09 (−0.18, 0.36) 0.4958

Our multivariate results show that every 0.1-unit increase in the integration of per-
ceptual process-related areas was associated with a 1.9-point increase in distraction. Every
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0.1-unit increase of the recruitment of perceptual process-related areas was associated
with a 1.2-point lower value for distraction. The other EEG features were not found to be
significantly related to distraction (Table 5):

Table 5. Result of multivariate linear analysis, representing EEG features associated with the RAS
surgeon distraction level.

Dependent Parameter Estimate p-Value

Distraction Intercept 13.71 <0.0001

Distraction Integration perceptual process-related areas 19.35 0.0185

Distraction Recruitment perceptual process-related areas −11.75 0.0025

4. Discussion

The development of an objective model for the evaluation of a RAS surgeon’s perfor-
mance and distraction level can ensure that a surgeon is operating with high performance
and is cognitively engaged, thus improving patient safety. In this study, we have extracted
dynamic features from a functional brain network that was developed utilizing EEG data
for three RAS fellows performing surgery in the OR.

Performance evaluation: Our model shows that both the flexibility of perceptual
process-related areas and the strength and recruitment of cognitive process-related areas
have a significant relationship with surgeon performance in the OR. In contrast, none of the
features extracted from the motor process-related areas had a significant relationship with
performance. We found that the network flexibility for perceptual process-related areas
has a significant relationship with surgical performance. These promising results suggest
the possibility of using these metrics to evaluate RAS surgeon performance in the OR.

Distraction evaluation: The working memory capacity of an individual is limited
in terms of processing information (cognitive load) [38,39]. Continuous practice during
learning maximizes the recruitment of working memory, which frees a portion of the
working memory for processing new information, thus enhancing the ability to acquire
new skills [38]. Cognitive load theory assumes that optimal learning occurs when trainees
have enough cognitive resources devoted for learning (germane), comprehending in-
structions and noise filtering (exogenous), and finally those available to perform the task
(intrinsic) [40]. During learning, exogenous load becomes limited and germane load is
maximized, along with the management of the intrinsic load [41]. Therefore, in compli-
cated tasks such as RAS surgery, the addition of multiple factors (including distractions) is
associated with increased cognitive load which subsequently influences learning [42,43].

• The development of surgical skill progresses through the following three stages [41,44,45]:
• The “cognitive” stage: Trainees initially learn a skill and thoughtfully perform it.
• The “the associative” stage: With practice, trainees become less thoughtful about the

steps required for a skill and can operate with fewer disruptions.
• The “autonomous” stage: The trainee can perform automatically without much

thought, meanwhile paying more attention towards other aspects of surgery.

Distraction management is also a skill that should be acquired throughout the RAS
surgical skill acquisition process, and dealing with distractions alongside performing surgi-
cal tasks is complicated, especially for surgeons-in-training who have not yet automatized
their surgical skills (including distraction management) [46]. Our findings also show that
distraction is associated with a higher integration and lower recruitment of perceptual
process-related areas, confirming that in comparison to surgeons, surgical trainees demand
greater perceptual capacity to handle a given surgical task. Hence, distraction negatively
affects fellow performance and our results also confirm this (−0.37, p < 0.0001).

Proposed method and implications: The proposed method has potential to support
performance and distraction evaluation in surgery; however, since the proposed method
with the existing framework is not processed in real-time, it is required that the application
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validity of results produced using fewer EEG data is explored and an advanced version of
this method is developed for real-time applications.

Strength of the study: This study has introduced dynamic features retrieved from the
functional brain network that have significant relationships with RAS surgeon performance
and distraction while executing risky and complicated surgical tasks in the OR. Upon
validation in more general surgical areas and with a wider array of subjects and tasks,
the proposed method will improve surgical performance evaluation and will result in
improved patient safety in future OR surgeries.

Limitations of the study: The ground truth performance and distraction scores were
assessed subjectively at the end of each task performance. This increased the subjective
effect of the ground truth evaluation and scores used in model development. In addition,
the number of participating RAS fellows was limited to only three here. Collecting data
from more fellows in various surgical disciplines is necessary to be able to investigate the
validity of the developed model in broader applications.

Future studies and recommendations: We have used the term “functional brain
network” for relating to “motor process-related areas”, “cognitive process-related areas”
and “perceptual process-related areas” since these areas could be related to putative
functional brain networks; however, the exact groupings that we used may not firmly
correspond to such networks. This is a matter that requires further investigation and
should be left open to future work.

Another future goal is to gather EEG data from additional RAS fellows while per-
forming diverse surgical tasks in various surgical specialties to validate the proposed
method for broader applications. We will also use more data to investigate how distraction
affects performance.

5. Conclusions

In this study, we have found that the dynamic features extracted from the functional
brain networks of surgeons using RAS can be used to evaluate surgical performance
and distraction.
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