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Abstract: Traditionally, quantitative electroencephalography (QEEG) studies collect data within
controlled laboratory environments that limit the external validity of scientific conclusions. To probe
these validity limits, we used a mobile EEG system to record electrophysiological signals from hu-
man participants while they were located within a controlled laboratory environment and an un-
controlled outdoor environment exhibiting several moderate background influences. Participants
performed two tasks during these recordings, one engaging brain activity related to several complex
cognitive functions (number sense, attention, memory, executive function) and the other engaging
two default brain states. We computed EEG spectral power over three frequency bands (theta: 4-7
Hz, alpha: 8-13 Hz, low beta: 14-20 Hz) where EEG oscillatory activity is known to correlate with
the neurocognitive states engaged by these tasks. Null hypothesis significance testing yielded sig-
nificant EEG power effects typical of the neurocognitive states engaged by each task, but only a
beta-band power difference between the two background recording environments during the de-
fault brain state. Bayesian analysis showed that the remaining environment null effects were un-
likely to reflect measurement insensitivities. This overall pattern of results supports the external
validity of laboratory EEG power findings for complex and default neurocognitive states engaged
within moderately uncontrolled environments.
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1. Introduction

Quantitative electroencephalography (QEEG) involves the complex numerical anal-
ysis of digitally recorded EEG signals that can provide significant insight into the func-
tional relevance of bioelectric brain activity [1]. Traditionally, these analyses have been
applied to EEG data collected within controlled laboratory environments, primarily due
to the physical limitations of the recording equipment; traditional EEG systems require
large amplifiers and computers that cannot be easily transported. Nevertheless, EEG data
collected from controlled recording environments are beneficial for quantitative analysis
because such data reflects well-defined experimental manipulations and clean measure-
ment of the EEG signals. This yields strong internal validity among independent and de-
pendent variables and robust performance of numerical analysis algorithms applied to
the EEG signals.

However, a major drawback to recording EEG in controlled environments is that the
external validity of any quantitative results is limited [2,3]. There are three main factors
limiting the external validity of these results [4]. First, active behavior of participants in
most laboratory studies is highly constrained because the physical effects of gross motor
movements often degrades the signal quality of noninvasive brain imaging technologies.
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Second, most laboratory studies utilize simple static, regularized stimuli that are crude
approximations to the dynamic, irregular stimulation found in naturalistic environments.
Third, laboratory studies are generally free of environmental background influences
(static or dynamic, regular or irregular) that can modify neurocognitive performance.
Thus, it remains unclear if the QEEG findings produced by controlled laboratory studies
generalize to the case of data collected within uncontrolled environments.

Fortunately, mobile EEG technologies have recently emerged that have opened up
new possibilities for the measurement of EEG signals related to active behavior conducted
inside or outside of the laboratory [2]. This technology involves small, battery-powered,
wearable EEG amplifiers that can record the brain signals of participants while they nat-
uralistically engage in task performance within a variety of interactive environments [5—
11]. Research using this technology is still in its early stages, with key methodological,
analytical, and interpretational hurdles yet to be resolved [2,12-16]. Nevertheless, mobile
EEG technology has reached the point that it can now be used to study the external valid-
ity of laboratory QEEG findings, which is a goal of the present study.

In exploring the external validity limits of laboratory-based QEEG findings, it is use-
ful to take an incremental approach in which the main factors affecting these limits (listed
earlier) are investigated separately. In the present study, we examined the effect of uncon-
trolled background influences in the physical environment because manipulating this fac-
tor is relatively straightforward and little study has been given to it to date. Previous mo-
bile EEG studies have mainly focused on neurocognitive performance within a single
physical or virtual environment (e.g., laboratory, classroom, outdoor, virtual) [8,11,12,17-
26]. To our knowledge, only two mobile EEG studies to date [27,28] have directly com-
pared human neurocognitive performance between different physical environments with
different physical characteristics and levels of dynamic irregularity. The first study [27]
examined differences between a controlled indoor laboratory and an uncontrolled out-
door bicycle pathway. However, cognitive task performance in this study (auditory odd-
ball detection) was also paired with a different physical activity in each environment (sit-
ting indoors, bicycling outside). The second study [28] removed this confound by exam-
ining cognition during bicycling activity within a quiet park and a noisy roadway. In the
present study, we also recorded mobile EEG from participants performing neurocognitive
tasks during the same physical activity within two different physical environments —sit-
ting in a controlled laboratory environment (closed space, minimal noise, static tempera-
ture and atmosphere) and a moderately uncontrolled outdoor environment (open space,
background noise, weather changes; see Figure 1).
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Figure 1. EEG recording environments: (a) Laboratory environment; (b) Outdoor environment.

Another important factor to consider when testing the external validity of laboratory
QEEG findings is the particular perceptual, cognitive, and motor functions that an indi-
vidual performs during mobile EEG recording. Previous mobile EEG studies have focused
on several functions (vigilant attention, perceptual novelty and stimulus significance, mo-
tor activity) as engaged by a variety of simple and complex tasks [8,11,12,17-27]. How-
ever, certain tasks might be expected to be more greatly influenced by the background
environment than others, particularly tasks engaging executive functioning in complex,
flexible combination with other cognitive functions [29]. In the present study, participants
performed the paced auditory serial addition test (PASAT) [30,31], a mental task that en-
gages several complex cognitive functions, including number sense, attention, working
memory, and executive control [32-34]. However, in order to assess QEEG metrics reflect-
ing cognitive engagement during the PASAT, a comparison condition is needed in which
cognition is relatively disengaged. Here the control condition was EEG activity recorded
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while participants performed a simple resting state task [35-38], where an individual re-
mains in an unstimulated state of wakeful rest in a manner that engages a default mode
of brain activity [39]. This resting task was also of interest in and of itself as a metric of the
effects of background environment on the endogenous neurocognitive processing of the
default mode state.

A third factor to consider when testing the external validity of laboratory QEEG find-
ings is the particular QEEG metric utilized to index brain functioning. The majority of
previous studies using mobile EEG to study brain function have utilized event-related
potential (ERP) measures of averaged stimulus-locked EEG activity [5,12,17,19-
22,25,27,40], with few studies examining tonic or event-related spectral power
[8,16,23,24,26]. Other studies have used measures of spectral power or functional connec-
tivity to study the technical performance of mobile EEG equipment rather than brain func-
tion per se [7,9]. Here, we utilized EEG spectral power as the QEEG metric because previ-
ous research has demonstrated correlations between EEG oscillations within three fre-
quency ranges (theta: 4-7 Hz, alpha: 8-13 Hz, low beta: 14-20 Hz) and the neurocognitive
states engaged by the PASAT and resting state task [35-38,41-50].

Finally, we expected that a moderate influence of background environment would
likely be small and idiosyncratic. Thus, to ensure sufficient sensitivity to both real and
null effects, we employed null hypothesis significance testing (NHST) augmented by
Bayesian model selection via use of Bayes factors. We observed EEG power effects typical
of the neurocognitive states engaged by the PASAT and resting state task, but did not
observe major EEG power differences between the two background recording environ-
ments for all three frequency bands. These results support the external validity of the EEG
spectral power metric for complex and default neurocognitive states. (Note: This manu-
script is based in part on an unpublished Master’s thesis submitted by the first author to
Texas State University [51].)

2. Materials and Methods
2.1. Participants

All procedures were approved by the Institutional Review Board at Texas State Uni-
versity. For this study, 26 young adults were recruited through Texas State University’s
SONA System recruiting pool. However, resting task EEG data from 5 participants were
lost due to equipment malfunction; thus data from n = 21 participants were retained for
the resting task. EEG data for the PASAT was also lost for 3 of the 5 participants, with lost
resting task data due to equipment malfunction; thus data from » = 23 participants were
initially available for the PASAT task. However, analysis of PASAT EEG requires a control
condition for comparison, which here was the resting state eyes open condition (see Sec-
tion 2.8 Statistical Analysis, below). Thus, the data for the 2 participants with complete
PASAT data but missing resting state condition data were also excluded from the analysis
to yield a final sample of n = 21 participants (mean age = 19.52, 95% CI = (18.60-20.45), 4
males and 17 females) for both the PASAT and the resting task. The participants were
given course credit for participation in the study. All participants gave written informed
consent in accordance with the Declaration of Helsinki. The Texas State University Insti-
tutional Review Board approved this study.

2.2. Background Recording Environments

Participant task performance and EEG signals were recorded in two environments
within a single experimental session on the same day: our lab on the Texas State Univer-
sity campus and an outdoor area just outside the lab building (Figure 1), with the order of
recordings within the two environments balanced across participants (for additional in-
formation about balancing, see Section 2.6 General Procedure, below).
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The laboratory was a brightly lit, quiet, and stable environment maintained at a comfort-
able room temperature (approximately 21-22 °C per Texas State University policy). Partici-
pants sat in an office chair during task performance and EEG recording (Figure 1a), with a
field of view consisting of stationary objects (e.g., office furniture, computer equipment, table,
etc.). Only the researchers were present in the lab during the experimental session.

In the outdoor environment, participants sat on a metal bench during task perfor-
mance and EEG recording (Figure 1b). In contrast to the laboratory, the outdoor environ-
ment was more complex and dynamic than the laboratory. The outdoor area contained
trees and plants, buildings, small animals (birds, squirrels), people, other objects (e.g., bi-
cycles, maintenance vehicles), etc., with all these elements at times stationary or in motion.
Thus, the perceptual fields of the participants were filled with a multitude of potential
visual and auditory distractions from participant task performance. However, outdoor
sessions mostly took place in between class breaks where there was a minimal presence
of people traveling through the outdoor area from one class to another.

In addition, the outdoor and laboratory environments also differed in terms of ambi-
ent lighting and other weather-related variables (Table 1). Outdoor experimental sessions
always occurred during daylight hours, with most of the sessions occurring mid-day to
early afternoon; this yielded a brightly sunlit environment on a clear day. (All sessions
occurred over a period of time from October 2019 through February 2020.) However, the
ambient lighting was affected by cloud cover, which varied from session to session while
remaining relatively stable within a session. On average, there was 43% cloud cover (i.e.,
partly cloudy) during any given session, with a corresponding decrease in ambient light-
ing relative to a clear day. We assume that atmospheric pressure and relative humidity
were similar to the lab, given that these variables are largely driven both inside and out-
side campus buildings by the local weather. Nonetheless, on average, outdoor tempera-
ture was slightly lower than inside the laboratory (Table 1), although the latter tempera-
ture was well within the 95% CI of the average outdoor temperature. Finally, unlike the
laboratory, the air of the outdoor environment typically exhibited a gentle breeze (4 m/s
on average; see Table 1).

Table 1. Mean outdoor environment variables across experimental sessions.

Temperature Relative Humidity Atmospheric Pressure Wind Speed Cloudiness  Time of Day
19 57 742 4 43 14:00
(16—21) (47-68) (730—753) (3-5) (23-64) (13:00—-15:00)

Note: Temperature units: °C, Relative Humidity units: %, Atmospheric Pressure units: mm Hg, Wind Speed units: m/s,
Cloudiness: % sky cover, Time of Day format: 24-hour clock. Square brackets show 95% Cls. Weather variable averages
are based on information for the date and time of each experimental session obtained from an online weather data repos-
itory (Weather Underground, www.wunderground.com, accessed on 20 February 2021).

2.3. PASAT

In the PASAT task, participants listened to a human voice speak a single digit once
every 3 s and then mentally added the most recent pair of digits together. For example, if
the first two digits were “4” and “8”, then the participant should have written “12”. If the
next digit was “2”, then the participant should have written “10”, as that is the new sum
of 8 and 2. The auditory stimuli were presented to participants at a comfortable listening
level via headphones from prerecorded audio files. Open back headphones (Model HD-
6XX, Sennheiser, Wedemark, Germany) were used to ensure that participants would still
be able to hear the background sounds within the natural environment. The open back
headphones offered no noise cancellation while still providing adequate sound of the task
stimuli to the participants.

Participants were given one of two prespecified versions of the task in each background
recording environment, with the two versions of the task balanced between environments
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across participants (for additional information about balancing, see Section 2.6 General Proce-
dure, below). Each PASAT consisted of 60 trials, with participants writing their answers on a
premade score sheet. Each participant’s PASAT score was then computed as the total number
of correct trials (max score = 60); this was computed separately for each performance environ-
ment. The participants were given a brief practice run in the first environment before they
began the task and asked again in the second environment if they needed to reconfirm the
task procedure. No feedback about task accuracy was given to participants during PASAT
performance. PASAT performance lasted approximately 3 min. (We note that EEG recording
for the PASAT lasted this 3 min plus approximately another 7 min due to technical recording
limitations; see Section 2.5 EEG Recording, below).

2.4. Resting State Task

Participants underwent EEG recording while seated with eyes either closed or open
over two separate blocks. Each resting state block lasted 10 min (with the first 5 min of
EEG recordings retained for data analysis due to technical recording limitations; see Sec-
tion 2.5 EEG Recording, below). In both environments, participants were verbally in-
structed to fixate their eyes on an arbitrary visual location in front of them for the duration
of the task. Participants were also instructed to remain relaxed, alert, and awake, and to
minimize eye movements/blinks during the recording in both environments. For each par-
ticipant, the order of eyes open/closed periods was the same in each environment, but this
order was balanced between environments across participants (for additional information
about balancing, see Section 2.6 General Procedure, below).

2.5. EEG Recording

Continuous electroencephalographic brain activity was recorded using an OpenBCI
Cyton mobile EEG amplifier (OpenBCl, New York, NY, USA) powered by a small 3.7 V
500 mAMh, lithium ion polymer battery (Adafruit, New York, NY, USA); see Figure 2a,b.
EEG recording parameters followed standard recommendations [52]. EEG signals were
measured from sintered Ag/AgCl electrodes placed on the scalp at 16 international 10-20-
electrode locations (Figure 2c). One additional electrode was affixed below the left eye to
measure electrooculographic (EOG) activity (eye movements and blinks). The recording
electrodes were embedded in a stretch lycra cap placed on the participants’ heads, with
the electrode cap assembled in our lab from a commercially available electrode cap as-
sembly kit (EasyCap, Herrsching, Germany).

Figure 2. Mobile EEG recording setup: (a) Back view of EEG cap and recording amplifier. The amplifier was attached to
the back of the cap via a Velcro patch and connected to cap leads via a custom-made connector; (b) Side view of EEG cap
and recording amplifier. (¢) Extended 10-20 scalp locations of EEG recording electrodes. Selected electrodes of interest
(EQISs) for data analysis were sites FZ and OZ. Note that M1/M2 sites outside the radius of the head represent locations
that are below the equatorial plane (FPZ-T7-T8-OZ plane) of the (assumed spherical) head model. Site LVEOG was located
below the left eye approximately at the same latitude as sites M1 and M2.
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The EEG recording cap was connected to the amplifier unit via a custom-made con-
nector constructed in our lab (see Figure 2a,b). The amplifier was wirelessly connected to
a USB dongle plugged into a recording laptop. The amp/USB connection used a high-
power Bluetooth signal to control the device via the OpenBCI graphics user interface
(GUI) recording and control software. EEG data were recorded to a Secure Digital (SD)
card inside the EEG amplification unit. Raw data files were digitally stored in hexadecimal
format on the SD card, and then later converted to decimal format text files via the
OpenBCI GUI. The OpenBCI amplifier initially samples EEG signals at 125 Hz before au-
tomatically resampling them to 250 Hz; data were further resampled to 256 Hz during
hexadecimal-to-decimal conversion of the data files. All electrode impedances were kept
below 5 kQ during recording. EEG signals were recorded with respect to a vertex (CZ)
reference and a ground placed at AFZ.

We planned to record and analyze EEG data over the first 5 min of task performance
for the resting task and first 3 min for the PASAT in order to eliminate any effects of mental
fatigue due to extended time-on-task. The OpenBCI GUI records data for preset periods
of time in 5 min steps. However, we experienced a recording limitation in which the Cyton
unit recorded for a time length 1-3 min shorter than specified in the GUI. We overcame
this limitation by recording EEG for approximately 10 min for each session and task. We
then only retained the necessary number of minutes of EEG data for each task analysis.

2.6. General Procedure

Upon arrival, participants were informed of the procedure for the experiment before con-
sent and equipment setup. Depending on the order of experimental session balancing, partic-
ipants began the experiment either in the lab or in the outdoor environment (Figure 1). Partic-
ipants then performed the resting task and the PASAT, with the order of performance of the
two tasks within each environment balanced across participants. For each participant, the or-
der of task performance was the same in each environment, but this order was balanced be-
tween environments across participants. In this study, the balancing of all relevant variables
(environment, resting state condition, PASAT version, and task order) was achieved using a
predetermined order list. Participants were then assigned to the next available order on the
list when they arrived at the experimental session. Due to the need to exclude some participant
data caused by equipment malfunction (see Section 2.1 Participants), all balancing in this
study was approximately achieved in the final retained data set (although deviations from the
ideally balanced orders were small).

The equipment and participant were then moved to the other recording location and
the process repeated. We note that how quickly the EEG recording started in each envi-
ronment depended on the order of the recordings. The recording in the first environment
of the session occurred after the EEG setup, which lasted approximately 30-40 min. The
recording in the second environment of the session only lasted approximately 10-15 min,
which also involved a basic setup of the recording computer, task instruction reminders,
and a check of EEG setup/connection status. However, the balancing of the order of the
environments across participants should have controlled for any differential adaptation
effects due to this time difference.

2.7. EEG Preprocessing and Spectral Power Analysis

Converted EEG data files were imported and processed within MATLAB computing
software (MathWorks, Natick, MA, USA). Resting state and PASAT continuous EEG data
were each decomposed into 1-second baseline-corrected epochs with 50% overlap, yield-
ing 600 epochs and 180 epochs for the 5 min (300 s) and 3 min (180 s) of retained data for
each task, respectively (see Section 2.5 EEG Recording, above). EEG data were then trans-
formed to a digitally linked mastoids reference. Artifacts were removed from the EEG
data using standard techniques [52], including automatic removal of epochs contaminated
by eye blinks/movements (according to a + 50 mV rejection threshold applied to the left
EOG channel) and manual removal of epochs contaminated by electromyographic (EMG)
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muscle activity, head motion, and other signal artifacts. Due to a high prevalence of mo-
tion artifacts resulting from the increased mobility of participants given the use of a mo-
bile EEG system, artifact rejection was focused on maximizing the number of available
epochs at relevant electrodes of interest (sites FZ and OZ; see Figure 2 and Section 2.8
Statistical Analysis, below) rather than across all electrodes across the scalp. For the rest-
ing task, the average number of epochs remaining after artifact removal was M =467, 95%
CI = (440-493) for the laboratory environment and M = 447, 95% CI = (417-479) for the
outdoor environment. For the PASAT, the average number of epochs remaining after ar-
tifact removal was M = 229, 95% CI = (193-264) for the laboratory environment and M =
237, 95% CI = (206-268) for the outdoor environment. There were no statistical between-
environment differences in retained trial numbers for either task (ps < 0.332, Boi > 2.76; see
Section 2.7 Statistical Analysis for description of test statistics). Faulty EEG channels were
replaced using an EEGLAB-based spherical spline interpolation algorithm [53] applied to
the remaining channels (mean number of FZ channel interpolations = 0.14, 95% CI = (0-
0.30); mean number of OZ channel interpolations = 0.19, 95% CI = (0.02-0.36)).

We computed EEG spectral power from the artifact-free EEG data via Fast Fourier
Transform with a 1-second Hamming window. EEG power values were converted to dec-
ibel (dB) units. Following previous EEG studies of resting mental states, attention, work-
ing memory, and executive function [35,37,38,45-47,49,50], we quantified EEG power as
the average power at frontal site FZ and at posterior site OZ within three separate fre-
quency bands (theta: 4-7 Hz; alpha: 8-13 Hz; low beta; 14-20 Hz). EEG power was quan-
tified for each participant and environmental condition, and for the resting task, each rest-
ing state condition (eyes closed, eyes open).

2.8. Statistical Analysis

We statistically analyzed behavioral and EEG power data using null hypothesis sig-
nificance testing (NHST) augmented by Bayesian model selection via use of Bayes factors.
NHST was used to compare the probability distribution of data described by an alterna-
tive hypothesis Hi1 of the presence of an experimental effect to the probability distribution
described by the null hypothesis Ho of no effect. NHST was achieved using ANOV As and
Pearson correlation coefficients, where the associated F-values were used as an input to
Bayes factors in order to compute direct probabilistic measures of the evidence for each
hypothesis [54]. This is useful to adjudicate non-significant NHST outcomes, which can-
not be readily interpreted as evidence for the null hypothesis [55].

2.8.1. Null Hypothesis Significance Testing (NHST)

For the resting task, we applied 2 x 2 x 2 repeated measures analysis of variance
(ANOVA) with factors of Environment (Laboratory, Outdoor), Resting State (Eyes Closed,
Eyes Open), and Electrode (FZ, OZ). Following standard convention, we used a statistical
significance criterion of p <0.05. ANOVAs were conducted separately for each EEG power
frequency band.

In order to assess EEG power reflecting cognitive engagement during the PASAT, a
comparison condition is needed in which cognition is relatively disengaged. We utilized
the eyes open resting state as this comparison condition. Hence for the PASAT task, we
applied 2 x 2 x 2 repeated measures ANOV As with factors of Environment, Task (PASAT,
Eyes Open Resting State), and Electrode with a statistical significance criterion of p < 0.05.
ANOVAs were conducted separately for each EEG power frequency band. Additionally,
we analyzed PASAT performance scores via one-way repeated measures ANOVA with a
within-participant factor of Environment.

Finally, the across-participant relationships between EEG power and the six outdoor en-
vironment weather-related variables listed in Table 1 (Temperature, Relative Humidity, At-
mospheric Pressure, Wind Speed, Time of Day; see Section 2.2 Background Recording Envi-
ronment) were assessed via Pearson correlation coefficients with a statistical significance cri-
terion of p < 0.05 after correction for multiple comparisons across the six separate tests.
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2.8.2. Bayes Factor Analysis

A Bayes factor is the marginal likelihood ratio of two hypotheses (null hypothesis,
alternative hypothesis), each specified as a statistical model, which quantifies the degree
to which the data have increased or decreased the odds of one hypothesis relative to the
other [54]. This then allows the determination of the probability of (“evidence for”) each
hypothesis given the data. Here, we converted repeated-measures ANOVA information
(F-values, degrees of freedom, and sample size) and Pearson correlation coefficients (via
their associated F-values and degrees of freedom) into Bayes factors Bo in favor of the null
hypothesis using an established formula based on the Bayesian Information Criterion
(BIC) approximation of the Bayes factor [56-59]. This BIC-based method has the ad-
vantage that it does not require the specification of prior distributions [59]. Bayes factors
in favor of the alternative hypothesis were then calculated as Bio = 1/Boi. We interpreted
the strength of support for a hypothesis as indicated by a Bayes factor according to the
Jeffreys’ scale [60]: weak, 1 < B <3.16; substantial, 3.16 < B < 10; strong, 10 < B < 31.62; very
strong, 31.62 < B < 100; decisive, B > 100. Following [56,57], we computed the probability
of the null hypothesis given the data as P(Hol Data) = Boi/(1 + Bo1) and the probability of
the alternative hypothesis given the data as P(H:i|Data) = 1 - P(HolData).

2.8.3. Effect Size Analysis

As an extra step to assess the external validity of the present data, we conducted an
analysis in which the sizes of the main effects for each task were compared to the effect
sizes obtained from a simple meta-analysis of several laboratory EEG studies that utilized
these tasks. For simplicity, we focused our analysis on each task’s main effect that statis-
tically quantified the activation of the specific neurocognitive states engaged by each task.
For the resting task, this was the main effect of Resting State; for the PASAT, this was the
main effect of Task. It was not our intent to perform an exhaustive meta-analysis of the
previous literature, but only to identify enough studies to obtain a reasonable estimate of
the general effect sizes observed in the laboratory. Moreover, we only utilized studies with
design and analysis structure that could be easily compared to that of the present study.
We chose studies to include in the meta-analysis according to the following criteria: (1) a
study utilized a resting state task, an arithmetic task, and/or the PASAT, (2) a study used
a repeated-measures contrast to compare EEG power across experimental variables simi-
lar to the present study (resting task: eyes open versus eyes closed; PASAT: arithmetic
performance versus rest or similar control condition); and (3) a study explicitly reported
the information necessary to compute effect size (means, standard deviations/errors,
and/or values of inferential statistics). Using these criteria, we identified 7 studies using
the resting task, with 4 of these studies measuring theta and beta power [37,47,61,62], and
all 7 studies measuring alpha power [35-38,47,61,62]. We also identified 9 studies using
an arithmetic task or the PASAT, with 5 of these studies measuring theta power [63-67],
7 measuring alpha power [63-65,67-70], and 3 studies measuring beta power [66,69,71].
For ease of comparison across studies, the Hedges’ g effect size statistic was used because
it reflects a standardized difference that is corrected for bias [72,73]. This statistic was cal-
culated for all studies using appropriate formulas to compute mean effect sizes and 95%
confidence intervals (Cls) across studies [72-74]. We then compared this to Hedges' g
computed for the present study’s corresponding main effects of interest, with this com-
parison performed separately for the laboratory and outdoor EEG power, and also after
collapsing across these two conditions.
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3. Results

All empirical data and MATLAB data analysis scripts are available online at the
Texas State University Data Repository (https://dataverse.tdl.org/dataverse/brainscieeg;
accessed on 20 February 2021).

3.1. Resting Task EEG Power

Figure 3 shows spectrum plots of resting state EEG power; mean resting state EEG
power values for each frequency band of interest are listed in Table 2. The resting state
spectrum demonstrated the typical greater eyes closed versus eyes open power over all
three frequency bands, with the largest difference present within the alpha band. These
observations were supported by the statistical analysis (Table 3), which showed a signifi-
cant main effect of Resting State for all three frequency bands, with strong to decisive
Bayesian evidence for these differences in the theta- and alpha-bands and weaker evi-
dence for the beta-band difference. Main effects of Electrode were also significant for these
bands with strong to decisive Bayesian evidence (Table 3), indicating greater EEG power
over the posterior versus frontal scalp for the alpha and beta frequency bands and vice
versa for the theta band (Table 2).

- -
o O O O
L]

(074

0

5 10 15 20 0 5 10 15 20
Frequency (Hz) Frequency (Hz)

s | ab - Eyes Closed === Qutdoor - Eyes Closed
mmm|ab - Eyes Open = = = Qutdoor - Eyes Open

Figure 3. EEG spectral power (in decibels) at (a) frontal site FZ and (b) posterior site OZ for eyes closed (solid lines) and
eyes open (dashed lines) resting states in the laboratory (black lines) and outdoor (red lines) environments.
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Table 2. Mean resting state EEG power.

Frequency Band  Environment Eyes Closed Eyes Open
FZ 0oz FZ (0)4
24.88 22.70 23.65 21.33
Laboratory
Thet (23.65—26.11)  (20.97—24.42) (22.65—24.65)  (20.03—22.63)
e 2543 23.02 242 219
Outdoor
(24.22—26.64)  (21.47—24.56) (23.24—25.15) (20.82—22.97)
24.05 26.2 21.74 22.99
Laboratory
Ao (22.77—25.34)  (24.31—28.08) (20.57—22.92) (21.15—24.84)
pha 2445 26.15 212 23.08
Outdoor
(22.98—25.92)  (24.17—28.12) (20.78—2347)  (21.12—25.04)
17.46 18.61 16.65 17.62
Laboratory
5 (1640—1852)  (17.29—19.93) (15.65—17.65)  (16.42—18.81)
eta 1827 19.18 17.33 17.82
Outdoor

(16.97—19.56)  (18.02—20.34) (1624—1842)  (16.60—19.04)
Note: All values are in decibels (dB); 95% Cls in square brackets.

Table 3. Analysis of variance (ANOVA) for Resting Task EEG power.

Frequency Band Effect F(1,20) n% Bn B P(HolData) P(H:lData)
ENV 1.79 0.08 1861 0.54 0.65 0.35
RS 10.38 ** 0.34 0.06 17.60 0.05 0.95
ELEC 28.52 *** 0.59 0.00 2400.18 0.00 1.00
Theta ENV x RS 0.09 0.01 4.36 1t 0.23 0.81 0.19
ENV x ELEC 0.02 0.00 453 1 0.22 0.82 0.18
RS x ELEC 0.00 0.00 4.58 1 0.22 0.82 0.18
ENV x RS x ELEC 0.60 0.03 3.37 1 0.30 0.77 0.23
ENV 0.25 0.01 4.03t 0.25 0.80 0.20
RS 29.35 *** 0.60 0.00 2866.86 0.00 1.00
ELEC 9.43 ** 0.32 0.08 12.59 0.07 0.93
Alpha ENV xRS 0.00 0.00 4.58 1 0.22 0.82 0.18
ENV x ELEC 0.39 0.02 3.74 1 0.27 0.79 0.21
RS x ELEC 3.84 0.16 0.72 1381 0.42 0.58
ENV x RS x ELEC 0.06 0.00 445 0.22 0.82 0.18
ENV 4.74 * 0.19 0.49 2.04 1 0.33 0.67
RS 5.32* 0.21 0.38 260t 0.28 0.72
ELEC 8.17 ** 0.29 0.13 7.97 t 0.11 0.89
Beta ENV x RS 0.38 0.02 3.77 1 0.27 0.79 0.21
ENV x ELEC 0.22 0.01 4.08 *t 0.25 0.80 0.20
RS x ELEC 1.25 0.06 2431 0.41 0.71 0.29
ENV x RS x ELEC 0.52 0.03 3.50 1 0.29 0.78 0.22

ANOVA factor labels: ENV = Environment, RS = Resting State, ELEC = Electrode. F-value significance: * =p <0.05, *=p <
0.01, ***=p < 0.001. Bayes factor evidence strength: + = weak, t1 = strong, t1t = very strong to decisive.

Importantly, there was a significant main effect of Environment for beta-band power
(Table 3), with slightly greater power for the outdoor versus laboratory environment (Ta-
ble 2). However, the Bayesian evidence for this effect was weak. There were no significant
main effects of Environment for the theta and alpha bands (Table 3), with weak Bayesian
evidence for the theta band null effect and strong evidence for the alpha band null effect.
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Finally, we performed a correlational analysis of the across-participant relationships
between the six outdoor environment weather-related variables listed in Table 1 and the
outdoor versus laboratory resting state EEG power difference after collapsing across the
resting state and electrode factors. We found no significant correlations for any frequency
band after correcting for multiple comparisons across the six separate tests, all ps = 1.00,
Bo1 =4.47, P(HolData) = 0.82.

3.2. PASAT EEG Power and Behavioral Performance

Figure 4 shows spectrum plots of PASAT EEG power; mean PASAT EEG power val-
ues for each frequency band of interest are listed in Table 4. Statistical analysis (Table 5)
comparing EEG power between the PASAT and the resting state eyes open comparison
condition demonstrated a statistically significant main effect of Task for the alpha band.
PASAT alpha-range power was significantly lower than then resting state eyes open com-
parison condition, with strong Bayesian evidence for this effect. This difference is in the
direction expected to occur during the complex cognitive states (attention, working
memory, executive control) engaged by the PASAT (see Section 4. Discussion, below).

(=
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Figure 4. EEG spectral power (in decibels) at (a) frontal site FZ and (b) posterior site OZ for PASAT (solid lines), and eyes
open resting states (dashed lines) for comparison, in the laboratory (black lines) and outdoor (red lines) environments.
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Table 4. Mean PASAT EEG power.
Frequency Band Environment FZ (074
23.69 21.52
Laboratory
(22.77-24.61) (20.65—22.40)
Theta
23.55 21.21
Outdoor
(22.77-24.33) (20.37—22.05)
19.82 21.47
Laboratory
(18.85—20.79) (19.91-23.02)
Alpha
19.85 21.69
Outdoor
(18.84—20.87) (20.29—-23.10)
16.77 18.84
Laboratory
(15.70—17.85) (17.36—20.33)
Beta
16.6 19.00
Outdoor

(15.62—17.59)
Note: All values are in decibels (dB); 95% Cls in square brackets.

(17.74—20.27)

Table 5. Analysis of variance (ANOVA) for PASAT versus Resting Task Eyes Open EEG power.

Frequency Band Effect F(1,20) n% Bo B P(HolData) P(H:lData)
ENV 0.61 0.03 3.34 1 0.30 0.77 0.23
TASK 1.11 0.05 2.60 0.38 0.72 0.28
ELEC 59.17**  0.75 0.00  410,005.21 ** 0.00 1.00
Theta ENV x TASK 3.32 0.14 0.92 1.09* 0.48 0.52
ENV x ELEC 0.05 0.00 4.48 1 0.22 0.82 0.18
TASK x ELEC 0.02 0.00 4.54 1 0.22 0.82 0.18
ENV x TASK x ELEC 0.05 0.00 4.45 0.22 0.82 0.18
ENV 0.18 0.01 417t 0.24 0.81 0.19
TASK 14.07 ** 041 0.02 58.68 ttt 0.02 0.98
ELEC 11.29 ** 0.36 0.04 23.94 ttt 0.04 0.96
Alpha ENV x TASK 0.03 0.00 4.50 0.22 0.82 0.18
ENV x ELEC 0.02 0.00 4.54 tt 0.22 0.82 0.18
TASK x ELEC 1.68 0.08 1961 0.51 0.66 0.34
ENV x TASK x ELEC 0.34 0.02 3.84 1 0.26 0.79 0.21
ENV 0.66 0.03 3251 0.31 0.76 0.24
TASK 1.02 0.05 2721 0.37 0.73 0.27
ELEC 29.10**  0.59 0.00 2720.88 0.00 1.00
Beta ENV x TASK 131 0.06 2.36'1 0.42 0.70 0.30
ENV x ELEC 0.03 0.00 4.52 1t 0.22 0.82 0.18
TASK x ELEC 7.01*% 0.26 0.20 5.12 0.16 0.84
ENV x TASK x ELEC 0.89 0.04 2901 0.35 0.74 0.26

ANOVA factor labels: ENV = Environment, TASK = Task, ELEC = Electrode. F-value significance: * = p <0.05, ** = p < 0.01,
*** =p <0.001. Bayes factor evidence strength: t+ = weak, tt = strong, t11 = very strong to decisive.

Main effects of Electrode were significant for all three frequency bands with strong
to decisive Bayesian evidence (Table 5). These effects indicated greater EEG power over
the frontal versus posterior scalp within the theta band and greater EEG power over the
posterior versus frontal scalp within the alpha and beta bands (Table 4). However, the
beta-band Electrode main effect was accompanied by a significant Task x Electrode inter-
action. Decomposition of this interaction revealed that the posterior versus frontal beta-
band power difference (2.23 uV) was large for the PASAT, F(1,20) = 24.32, p <0.001, Bo1 =
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927.41, P(H1|Data) = 1.00, but smaller (0.73 pV) and statistically weaker for the eyes open
resting state, F(1,20) =4.96, p < 0.038, Bio = 2.23, P(H1|Data) = 0.69.

Notably, although the PASAT spectrum displayed small qualitative differences be-
tween background recording environments (Figure 4), there was no statistical support for
these differences when comparing EEG power between the PASAT and the eyes open
resting state (Table 5). There were no significant main or interaction effects involving the
factor of Environment for all three frequency bands (Table 5), with most of these null find-
ings having strong Bayesian evidence in their favor and few with weak evidence in their
favor. One null effect (a theta-band Environment x Task interaction) approached signifi-
cance (p < 0.084) with weak Bayesian evidence; further decomposition of this interaction
yielded no significant outcomes (ps < 0.101, Bo1 = 1.08 to 4.23).

We also performed a correlational analysis of the across-participant relationships be-
tween the six outdoor environment weather-related variables listed in Table 1 and the
difference between the outdoor and laboratory between-task differences (i.e., PASAT mi-
nus eyes open resting state) in EEG power. We found no significant correlations for any
frequency band after correcting for multiple comparisons across the six separate tests, ps
=0.12 to 1.00, Bo1 = 1.22 to 4.47, P(Ho|Data) = 0.55 to 0.82.

Finally, no PASAT behavioral performance differences were observed between the
laboratory (PASAT score = 44.14, 95%CI (35.62-52.67)) and outdoor (PASAT score = 46.86,
95%CI (39.50-54.22))) recording environments, F(1,20) = 1.22, p < 0.28, Bu = 247,
P(HolData) = 0.71.

3.3. Resting Task and PASAT EEG Power Variability Analysis

Given the fact that the outdoor environment was more complex and less stable than
the laboratory (see Materials and Methods Section 2.2 Background Recording Environ-
ments), we investigated if the variability of EEG power was also affected by the recording
environment. We computed the standard deviation of EEG power for each task condition,
environment, electrode and participant. We used standard deviation as the variability
metric because it has the same initial units as spectral power; these values were then con-
verted to decibels. For simplicity of interpretation, we collapsed EEG power variability
values across electrodes for the statistical analysis.

The pattern of results from these analyses paralleled the EEG power findings; see
Tables 6 and 7. Resting state beta-range power variability was significantly larger for the
outdoor versus laboratory environment with weak Bayesian evidence. Resting state theta-
, alpha-, and beta-range power variability was larger for the eyes closed versus eyes open
conditions with strong to decisive Bayesian evidence. Alpha-range power variability was
significantly smaller during the PASAT versus the eyes open resting state with weak
Bayesian evidence. A theta-band main effect of Task and an Environment x Task interac-
tion both approached significance (ps < 0.082) for the PASAT, but the corresponding
Bayesian evidence for these outcomes was weak. No other environmental effects of EEG
power variability were significant for either task (with weak to strong Bayesian evidence
in favor of the null hypothesis).
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Table 6. Average EEG power variability.

) Resting Task Resting Task
Frequency Band Environment PASAT
Eyes Closed Eyes Open
2451 23.09 23.03
Laboratory
(23.05—25.97) (21.90-24.28) (22.17—-23.89)
Theta
25.03 23.94 22.78
Outdoor
(23.74-26.32) (23.02—24.86) (22.08—23.49)
25.92 23.24 21.13
Laboratory
(24.43-27.41) (21.77-24.71) (19.84—22.43)
Alpha
26.14 23.67 21.26
Outdoor
(24.57-27.70) (22.08—25.25) (20.02—22.50)
18.61 17.59 18.2
Laboratory
Bet (17.45-19.76) (16.50—18.68) (16.98—19.42)
eta
19.29 18.13 18.09
Outdoor

(18.16—20.43)

(17.18-19.08)

(17.02-19.17)

Note: All values are in decibels (dB); 95% Cls in square brackets.

Table 7. Analysis of variance (ANOVA) for EEG power variability.

Frequency Band Effect F(1,20) n% Bo Bio P(Ho|Data) P(H:lData)
ENV 2.09 0.10 1617 0.62 0.62 0.38
Resting Task Theta RS 10.32 ** 0.34 0.06 17.22 1 0.05 0.95
ENV x RS 0.39 0.02 3.74 0.27 0.79 0.21
ENV 0.44 0.02 3.65 0.27 0.79 0.21
Resting Task Alpha RS 30.72 *** 0.61 0.00 3823.47 **t 0.00 1.00
ENV x RS 0.04 0.00 4.49 t* 0.22 0.82 0.18
ENV 4.37* 0.18 0.57 1.74% 0.36 0.64
Resting Task Beta RS 6.20 * 0.24 0.27 3.71% 0.21 0.79
ENV x RS 0.10 0.01 4.34 0.23 0.81 0.19
ENV 1.24 0.06 244 0.41 0.71 0.29
PASAT Theta TASK 3.36 0.14 0.90 1.12¢ 0.47 0.53
ENV x TASK 421 0.17 0.62 1.621 0.38 0.62
ENV 0.38 0.02 3.76 1 0.27 0.79 0.21
PASAT Alpha TASK 20.82 *** 0.51 0.00 390.76 *tt 0.00 1.00
ENV x TASK 0.25 0.01 4.03 0.25 0.8 0.2
ENV 0.61 0.03 3.34 1 0.30 0.77 0.23
PASAT Beta TASK 0.43 ** 0.02 3.67 * 0.27 0.79 0.21
ENV x TASK 2.31 0.10 1451 0.69 0.59 0.41

ANOVA factor labels: ENV = Environment, RS = Resting State, ELEC = Electrode, TASK = Task. F-value significance: * = p
<0.05, ** =p <0.01, *** = p <0.001. Bayes factor evidence strength: t = weak, 11 = strong, 11 = very strong to decisive.

Finally, we performed a correlational analysis of the across-participant relationships
between the six outdoor environment weather-related variables listed in Table 1 and (1)
the difference between outdoor and laboratory resting state EEG power variability after
collapsing across the resting state and electrode factors, and (2) the difference between
outdoor and laboratory between-task differences (i.e., PASAT minus eyes open resting
state) in EEG power variability. We found no significant correlations for any frequency
band after correcting for multiple comparisons across the six separate tests, ps = 0.53 to
1.00, Bo1 = 3.61 to 4.47, P(Ho| Data) = 0.78 to 0.82.
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3.4. Effect Size Analysis

Table 8 shows the estimated observed sizes of the Resting State main effect (Eyes
Closed versus Eyes Open) for the resting task. The table lists effect sizes for the laboratory
and outdoor conditions separately, and after collapsing across these two conditions.
Given the absent to weak evidence for statistical interactions between the ANOVA factors
of Resting State and Electrode (see Table 3), observed effect sizes were derived from EEG
power collapsed across sites FZ and OZ. Table 8 also shows the effect sizes estimated from
the resting state studies we included in the meta-analysis (see Section 2.8.3 Effect Size
Analysis, above). For these studies, the effect sizes were based on reported statistics de-
rived from EEG power at either posterior scalp sites or collapsed across the whole scalp.
In general, the observed effect sizes were in the same direction as and smaller than the
meta-analytic effect sizes. This observation is supported by the fact that the confidence
intervals of the observed and meta-analytic effects did not overlap.

Table 8. Observed versus Meta-Analytic Hedges’ g for EEG Power Main Effect of Resting State.

Frequency Band Effect Hedges’ g Observed Hedges’ g Meta-Analysis
0.74
Laboratory
(0.64—0.83) 1.24
0.50
Theta Outdoor
(0.41—0.60)
0.68 (1.19—1.29)
Collapsed
(0.58—0.77)
1.11
Laboratory
(1.01—1.22) 1.30
0.63
Alpha Outdoor
(0.53—0.73)
1.13 (1.26—1.33)
Collapsed
(1.03—1.24)
0.52
Laboratory
(0.42—0.61) 0.82
041
Beta Outdoor
(0.32—0.50)
0.48 (0.77—0.87)
Collapsed
(0.39—0.58)

Note: 95% ClIs in square brackets.

Table 9 shows the estimated observed effects sizes for the Main Effect of Task (PA-
SAT versus Resting Task Eyes Open) for the PASAT. The table lists the effect sizes for the
laboratory and outdoor conditions separately, as well as after collapsing across these two
conditions. Given the absent evidence for statistical interactions between the ANOVA fac-
tors of Task and Electrode (see Table 5), observed effect sizes were derived from EEG
power collapsed across sites FZ and OZ for theta- and alpha-band power. In the case of
beta-band power, however, separate assessments were performed for the two scalp sites
due to previous observations of distinct frontal beta increases and posterior beta decreases
during arithmetic performance [66,69,71] (for further discussion, see Section 4.2 Discus-
sion: PASAT below). Table 9 also shows effect size estimates derived from the mental
arithmetic/PASAT studies we included in the meta-analysis (see Section 2.8.3 Effect Size
Analysis, above). For these studies, the effect sizes were based on reported statistics de-
rived from EEG power at frontal scalp sites for theta-band power, posterior scalp sites or
collapsed across the whole scalp for alpha-band power, and at frontal and posterior sites
separately for beta-band power.
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Table 9. Observed versus Meta-Analytic Hedges’ g for EEG Power Main Effect of Task.

Frequency Band Effect Hedges’ g Observed = Hedges’ g Meta-Analysis
Laborat 0.08
aboratory (~0.01-0.17) 0.56
h Outd 0%
Theta Hraoor (-0.45—-0.27)
-0.21 (0.51-0.62)
Collapsed
(-0.30—-0.12)
-0.74
Laboratory
(-0.84—-0.64)
-0.63 -0.36
Alpha Outdoor
(~0.73——0.54) (~0.38—-0.33)
-0.79
Collapsed
(—0.88—-0.69)
Laborat 0.07
aborator
Y (-0.02-0.16) 0.4
-0.30
Beta-Frontal Outdoor
(-0.39--0.21)
-0.17 (0.32—0.48)
Collapsed
(-0.26—-0.08)
Laborat 0.46
aborator
Y (0.36-0.55) 051
0.28
Beta-Posterior Outdoor
(0.19-0.38)
0.39 (-0.60—-0.42)
Collapsed
(0.30-0.48)

Note: 95% Cls in square brackets.

Table 9 shows that the overall pattern of effect sizes for the PASAT was more complex
than for the resting task. The presently observed theta-band effect sizes were small in
magnitude and mostly negatively valued, whereas the corresponding theta-band meta-
analytic effect was positive and large in magnitude. The presently observed alpha-band
effect sizes were negative, consistent with the direction of the corresponding alpha-band
meta-analytic effect, but with larger magnitudes than the latter. These theta- and alpha-
band observations are supported by the fact that the confidence intervals of the observed
and meta-analytic effects did not overlap. Furthermore, frontal beta power effect sizes
were negative for the outdoor and collapsed conditions, whereas the corresponding
frontal-beta band meta-analytic effect size estimate was positive, with non-overlapping
confidence intervals between the observed and meta-analytic effects. In contrast, the
frontal beta power effect for the laboratory condition, though positive, was near zero.
Moreover, posterior beta power effect sizes for the laboratory, outdoor, and collapsed con-
ditions were positive, whereas the corresponding posterior beta-band meta-analytic effect
size was negative, with non-overlapping confidence intervals for the two sets of effects.
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4. Discussion

In the present study, we explored the external validity limits of laboratory-based
QEEG findings by examining the influence of physical environment background on com-
plex and simple neurocognitive states as, respectively, engaged by the PASAT and resting
state task. Each participant performed these tasks in a controlled laboratory environment
(closed space, minimal noise, static temperature and atmosphere) and a mildly uncon-
trolled outdoor environment (open space, background noise, weather changes). Brain ac-
tivity associated with these neurocognitive states was quantitatively indexed via compu-
tation of EEG spectral power. We observed a weak between-environment beta band
power effect for the resting task, with greater beta power in the outdoor versus laboratory
environment, but no other reliable spectral power differences between the two back-
ground recording environments in all spectral power bands for either task.

4.1. Resting Task

The resting state task engages a default mental state, characterized by internal cogni-
tive processing (conceptualization, episodic working memory, unconstrained verbally
mediated thoughts), endogenously directed attention, and the monitoring of the body,
external environment, and emotional states [39,75-78]. These mental states are correlated
with the oscillatory activity of several resting state brain networks distributed across mul-
tiple brain regions [76], where such activity is disengaged during active goal-directed be-
havior [79]. Importantly, these resting state networks are associated with unique patterns
of wideband (0.1-100 Hz) EEG power [76], although network activity in the theta, alpha,
and beta band ranges predominates [80]. Moreover, the resting EEG power spectrum is
modulated according to whether an individual maintains the resting state with eyes open
and closed. Most studies consistently find greater theta, alpha, and beta spectral power
during eyes closed versus eyes open states [35-38,41,47,61,62], differences that in part re-
flect a transition from “cortical idling” in the absence of visual or cognitive stimulation to
active perceptual and cognitive engagement [80]. We also observed this eyes closed versus
eyes open activity pattern across both environments within all three frequency bands in
the present study. The observation of greater eyes closed versus eyes open EEG power for
both environments supports the external validity of laboratory observations of the resting
state EEG power across all three frequency ranges.

One concern with this observation is the degree to which it reflects the typical tran-
sition from one default mode state to another, or if it reflects environmental factors as well.
For example, eyes open alpha rhythms can also be can be blocked by changes in visual
stimulation via eye movements as participants fixate attention on different visual ele-
ments in their environment [81]. Given that the outdoor environment provided a more
complex and dynamic scene than the laboratory (see Section 2.2 Background Recording
Environments), some proportion of the alpha blocking observed in the eyes open resting
state may have been due to eye movements rather than a general transition away from an
idle cortical state. In addition, resting state EEG power responses in the outdoor environ-
ment may also reflect higher arousal levels due to embarrassment at being seen by others
during the experiment while wearing an awkward-looking EEG cap. Nevertheless, we
did not find statistically meaningful between-environment differences for resting state
theta and alpha EEG power or EEG power variability, nor did we find such differences to
correlate with the six weather-related variables we indexed in the outdoor environment
(see Section 2.2 Background Recording Environments). This suggests that such visual fac-
tor or general arousal differences between the two environments did not contribute much
variance to our present EEG power measurements in the theta and alpha frequency bands.

However, the present observation of greater resting state beta-band EEG power for
the outdoor versus indoor environments suggests that certain resting state processes can
be affected by the environment. In general, the frequency of EEG oscillation reflects the
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size of the recurrent neural network mediating the oscillation [82,83], with higher fre-
quency oscillations reflecting small (local) network activity and low frequency oscillations
reflecting large (global) network activity. Thus, the present between-environment beta-
band difference may reflect differences in local network processing. Moreover, given that
this effect did not differ across the scalp (as indicated by a null Environment x Electrode
effect; see Section 3.1. Resting Task EEG Power, above), it is possible that these beta-band
differences are present in local networks spread across the cortex rather than in specific
brain regions. Furthermore, given that the present beta-band resting state EEG power ef-
fects were observed in the context of greater beta-band EEG power variability in the out-
door environment (see Section 3.3 Resting Task and PASAT EEG Power Variability Anal-
ysis), it is possible that the beta-band EEG power effect reflects more variable activity of
these local networks in response to the unstable outdoor environment. However, testing
these possibilities requires additional EEG source localization analysis to account for the
known volume conduction and spatial dispersion of cortical EEG signals as they travel
through the head from the cortex to the scalp [84,85]. Such analysis is beyond the scope of
the present study and is a goal for future research.

We must note that the significant beta-band effect was weak according to Bayesian
evidence criteria (see Section 3.1. Resting Task EEG Power, above). Given the weakness of
the effect, we cannot rule out the alternative possibility that it merely reflects residual
EMG contamination of the EEG signal that was not entirely removed by our artifact rejec-
tion procedure (see Section 2.7 EEG Preprocessing and Spectral Power Analysis, above).
Muscle activity generates wide-band high frequency gamma (25-100 Hz) EEG signals that
overlap with the beta range [82,86], and it is possible that participants were less relaxed
and exhibited more muscular tension and movement in the outdoor environment relative
to the laboratory environment. This interpretation would be consistent with our observa-
tion that between-environment differences in resting state beta power did not correlate
with the six weather-related variables we indexed in the outdoor environment. Although,
the likelihood of this alternative possibility is low given that we focused on the lower beta
band (14-20 Hz) that is less susceptible to EMG contamination, future research is needed
to replicate the present beta-band power finding.

We also performed an effect size analysis in which we compared the observed sizes of
the resting task’s primary, neurocognitively relevant main effect (differences in eyes closed
versus open resting states) to the effect sizes obtained from a simple meta-analysis of several
laboratory EEG studies that utilized this task. We found the directions of the presently ob-
served resting state primary effects were consistent with the directions of the meta-analysis
effects. This was case for the EEG data recorded in the laboratory and outdoor environments,
which supports the external validity of labratory resting state EEG findings. However, we also
found the presently observed effects sizes to be smaller than the meta-analytic effect sizes ob-
tained from laboratory-recorded data. Given that smaller effect sizes were observed for the
present resting state data recorded in both environments, it is likely that this reflects a perfor-
mance difference between traditional laboratory and mobile EEG technology. Mobile EEG
technology is known to exhibit lower signal-to-noise ratios than traditional EEG systems
[9,13,15,16], and it is possible that the smaller effect sizes observed in the present study reflect
this factor. This is a topic for further research.

4.2. PASAT

The PASAT is an arithmetic task that requires numerical information to be repre-
sented, retained, and transformed within the mind. The task engages a complex combina-
tion of cognitive functions, including number sense, attention, short- and long-term
memory, and executive control [32-34]. Similar to the resting task, the mental states of the
PASAT are correlated with the oscillatory activity of several brain networks distributed
across multiple brain regions [76,79,87]. Unlike the resting task, however, these networks
are engaged during active goal-directed behavior, with their activity anti-correlated with
the activation of the resting state default mode network [79]. Relative to a rest or baseline
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state, EEG spectral power patterns elicited during simple arithmetic tasks typically exhibit
increases in frontal theta and/or beta power [63-67,71], decreases in posterior beta power
[66,69], and decreases in posterior or scalp-wide alpha power [63-65,68-70]. The frontal
theta and beta power changes are thought to reflect executive engagement, active cogni-
tion and concentration, and/or functional binding [48,66,67,88,89]. The alpha power
changes likely reflect a transition from “cortical idling” in the absence of visual or cogni-
tive stimulation to active perceptual and cognitive engagement [64,65,69,90], similar to the
alpha power decrease seen during the resting task when transitioning from eyes closed to
eyes open states.

In the present study, we observed similar alpha power decreases during PASAT per-
formance relative to the resting task eyes open control condition (see Section 3.2 PASAT
EEG Power and Behavioral Performance, above). This finding was observed in the context
of a null effect of background recording environment for the alpha power bands and an
absence of a correlation between the six weather-related variables we indexed in the out-
door environment and the difference between the outdoor and laboratory between-task
differences in EEG power. Furthermore, we compared the observed sizes of the PASAT’s
primary, neurocognitively relevant main effect (differences in PASAT versus eyes open
resting state control) to the sizes of similar effects obtained from a simple meta-analysis
of several laboratory EEG studies that utilized this task. This analysis yielded observed
alpha-band effect sizes that were negative and large in magnitude, consistent with the
meta-analytic alpha-band effects. These results support the external validity of these alpha
EEG power effects as observed in the laboratory.

However, we did not observe any meaningful between-task differences in theta-
power. It is unclear if the lack of these between-task differences is due to effects of envi-
ronment or something specific to the PASAT. If environmental influences obscured the
presence of a true theta power effect, then this should be detectable in the form of a main
ANOVA effect of environment and/or an interaction of environment with other experi-
mental variables. Yet, we did not observe any significant theta-band effects of environ-
ment (both from the ANOVAs and the Pearson correlations between EEG power and the
six weather-related variables we indexed in the outdoor environment), and the Bayesian
evidence for these null effects were mostly well-above chance; P(HolData) ranged from
0.72 to 0.82, save for an Environment x Task ANOVA interaction, P(HolData) = 0.48 (see
Section 3.2 PASAT, above). In addition, the present effect size analysis showed that the
observed theta-band effects were either positive but near zero in value, or negative val-
ued. This is in contrast to the large positive-valued meta-analytic theta-band effect, but it
is consistent with the inferential tests for theta-band EEG power during the PASAT. Re-
garding the possibility that these discrepant null theta-band task effects are specific to the
PASAT, a survey of past EEG research literature yields little insight. Thus, far, surpris-
ingly few EEG studies have focused directly on PASAT performance-elicited electrophys-
iological responses. Instead, most past studies have focused on using this task in conjunc-
tion with EEG to understand longitudinal changes in PASAT performance due to practice
or brain injury [91-93]. The few studies that have focused on PASAT-elicited EEG re-
sponses found no theta band differences when PASAT performance is compared to some
control condition (e.g., another active task or default resting states) [70,94]. Thus, while
the present null theta power effects are in line with previous findings, and thus support a
conclusion of external validity for these effects, this conclusion is tentative until the pre-
sent theta power null finding is replicated by future research.

We also did not observe clear between-task differences in beta-band power. We did
find a significant Task x Electrode interaction for beta-band power, but further analysis
showed that this interaction reflected a positive difference between posterior versus
frontal power that was stronger for the PASAT than the eyes open resting state. However,
there were no significant between-task differences at either scalp location (see Section 3.2.
PASAT EEG Power and Behavioral Performance). The effect size analysis showed a dif-
ferent pattern of task-related beta-band EEG power compared to the meta-analytic effect
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estimate obtained from previous studies. Task-related posterior beta-band EEG power
was positive-valued, in contrast to the negative value of the corresponding meta-analytic
effect. The effect size analysis also suggested a different pattern of task-related beta-band
EEG power across environments. Task-related frontal beta-band power was positive-val-
ued (though near zero) within the laboratory environment, in agreement with the positive
value of the corresponding meta-analytic effect, yet was negative-valued within the out-
door environment. Nevertheless, statistical tests (ANOV As, Pearson correlations) involv-
ing the factor of environment were non-significant with above-chance Bayesian evidence
for these null effects (P(HolData) ranged from 0.70 to 0.82). We suggest that this complex
pattern of discrepant results for the PASAT beta-band power could be due to two factors:
(1) neurocognitive differences in arithmetic versus PASAT performance (the latter of
which involves both mathematical and working memory cognition) or (2) a true difference
in arithmetical neurocognition across different environments that was too small to be fully
detected by our current experimental design or was otherwise obscured by other factors
(for example, unmeasured environmental characteristics or a lower-signal to-noise ratio
for mobile EEG). Determining which (if any) of these factors is responsible for the present
observations is a topic for future research.

4.3. Study Limitations

Interpretation of the present observations must be tempered by consideration of the lim-
itations of the present study. One limitation was the small sample size and resulting low sta-
tistical power. However, this limitation is somewhat mitigated by the use of Bayes factors,
which allow us to estimate the probability of null and alternative effects. This allowed us to
interpret non-significant NHST outcomes as evidence for the null hypothesis [55].

A second limitation of this study is that it has lowered internal validity with respect
to the main factor of interest, the effect of background influences in the physical environ-
ment. This was in part by design because the objective of our study was to evaluate the
external validity of QEEG research in different physical environments. We had no direct
control of these influences in the outdoor environment, influences that fluctuated greatly.
We had no control over levels of student activity on campus, noise levels, and weather
activity. We did implement limited control over the time of day experimental sessions
were conducted; the majority of participants were run during mid-afternoon hours when
the campus was highly active. However, due to time constraints, not all experimental ses-
sions were conducted at the same hours of the day and thus some sessions were conducted
during periods of quiet campus activity. Thus, it remains possible that the present null
effects of environment resulted in part from limited distractions in the outdoor environ-
ment that were not strong enough to influence task performance.

A third limitation of the present study is that measurement of the various character-
istics of the two physical environments was limited. While we did not observe a direct
relationship between several key weather variables (see Section 2.2 Background Record-
ing Environments) and EEG power, there are multiple other characteristics of these envi-
ronments that we did not assess. Thus, it is unclear to which the present results can be
generalized to other environments.

A fourth limitation of the present study is that we only used two basic behavioral
tasks that did not involve large-scale active movement to appraise neurocognitive func-
tioning. Thus, we cannot generalize our findings to other tasks engaging similar cognitive
processes as studied here; this is a topic for future research.

Finally, a fifth limitation of this study is that our population sample was entirely
composed of young, college students. It is likely that their demographic characteristics
(e.g., level of education, mathematical experience) influenced PASAT performance and
electrophysiological outcomes. Investigating the external validity of the present QEEG
metrics for other populations performing these tasks is a topic for future research.
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5. Conclusions

In conclusion, the present study probed the validity limits of laboratory QEEG by
using a mobile EEG system to record EEG signals from human participants while they
performed two neurocognitive tasks (PASAT, resting state task) within a controlled labor-
atory environment and a moderately uncontrolled outdoor environment. Null hypothesis
significance testing (NHST) showed significant EEG spectral power effects typical of the
neurocognitive states engaged by these tasks (number sense, attention, memory, executive
function), but only a beta-band EEG power difference between the two recording envi-
ronments for the resting task. Bayesian analysis showed that the remaining null effects of
environment were unlikely to reflect measurement insensitivities. The overall pattern of
these results supports the external validity of laboratory EEG spectral power findings for
the complex and default neurocognitive states engaged in moderately uncontrolled envi-
ronments. They also serve to bolster the credibility of efforts to use mobile EEG systems
to index neurocognitive performance in non-laboratory environments.

Human beings operate in a multitude of environments each day, which range dras-
tically regarding the type and concentration of stimuli that are present, yet differences in
environmental influences on cognition have been understudied. The present study used
QEEG methods to only evaluate the effects of two particular physical environments using
two specific cognitive tasks. Future mobile EEG research should study additional physical
environments and tasks in order to further examine the external validity of QEEG and to
better understand human neurocognition in real-world environments.
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