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Abstract: Autism spectrum disorder (ASD) covers a range of neurodevelopmental disorders in-
volving impairments in communication and repetitive and stereotyped patterns of behavior and
reciprocal social interaction. 5-Aminoisoquinolinone (5-AIQ), a PARP-1 inhibitor, has neuroprotective
and anti-inflammatory effects. We investigated the influence of 5-AIQ-treatment in BTBR T+ Itpr3tf/J
(BTBR) mice as an autism model and used flow cytometry to assess the effect of 5-AIQ on FOXP3,
Helios, GATA3, IL-9, IL-10 and IL-17A production by CXCR6+ and CD4+ T cells in the spleen.
We also confirmed the effect of 5-AIQ treatment on expression of FOXP3, Helios, GATA3, IL-17A,
IL-10, and IL-9 mRNA and protein expression levels in the brain tissue by quantitative PCR and
western blotting. Our results demonstrated that 5-AIQ-treated BTBR mice had significantly increased
numbers of CXCR6+FOXP3+, CXCR6+IL-10+, and CXCR6+Helios+ cells and decreased numbers
of CD4+GATA3+, CD4+IL-9+, and CD4+IL-17A+ cells as compared with those in untreated BTBR
mice. Our results further demonstrated that treatment with 5-AIQ in BTBR mice increased expression
for FOXP3, IL-10, and Helios, and decreased expression for GATA3, IL-17A, and IL-9 mRNA. Our
findings support the hypotheses that 5-AIQ has promising novel therapeutic effects on neuroimmune
dysfunction in autism and is associated with modulation of Treg and Th17 cells.
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1. Introduction

Autism spectrum disorders (ASD) cover a range of common neurobehavioral disorders
characterized by impairments in social interaction and verbal and nonverbal communica-
tion, and stereotyped patterns of behaviors and reciprocal social interaction [1]. Presently,
the pathogenesis of ASD remains unclear, but immune dysfunction has been suggested
as a major etiological component associated with ASD pathophysiology [2]. Furthermore,
several genetic studies linked ASD with genes that are involved with various immune func-
tions [3,4]. In addition, immunological abnormalities have been reported in children with
ASD, specifically in the levels of inflammatory mediators and autoimmune responses [5,6].
There is strong evidence that disruption of cytokine levels has a significant role as a risk
factor for several neurodevelopmental defects, including autism [7,8]. Previous studies
showed that increased chemokine and cytokine levels were associated with increased aber-
rant behavior and impaired development [9,10]. Recently, we reported that dysregulation
of inflammatory mediators and transcription factors’ expression are associated with the
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severity of ASD development [11,12], although the underlying mechanisms of this action
remain elusive.

A range of immunomodulatory proteins may be involved in ASD. Regulatory T
(Treg) cell differentiation and function are driven by the FOXP3 transcription factor, and
the expression of FOXP3 has been shown to be decreased in individuals who develop
neurologic diseases; for example, a decreased frequency of Treg cells has been found in
children with ASD [13,14]. IL-10 is an anti-inflammatory cytokine produced by CD4+
Treg cells and can suppress inflammatory responses [15,16]. Helios is a transcription
factor which binds to the FOXP3 promoter and triggers FOXP3 synthesis [17]. GATA3 is a
transcription factor that is associated with inflammation and cytokine production [18,19]
and is also involved in sympathetic neuron development [20]; upregulation of GATA3
expression is involved in the development of serotonergic neurons [21].

IL-9 is involved in the development of autoimmune and neuroinflammatory disor-
ders [22,23], has an important immunoregulatory role in the progression of neurodevel-
opment [24], and is highly expressed in the central nervous system (CNS) [25]. IL-17A
promotes sociability in the mouse model of neurodevelopmental disorder [26], and in-
creased production of IL-17A in pregnant mothers can promote autism-like phenotypes
in offspring [27,28]. Increased IL-17A signaling correlates with immune aberration in
ASD [29]. Blocking of IL-17A expression was also shown to ameliorate ASD-like behav-
iors [26].

Poly(ADP-ribose) polymerase-1 (PARP)-1 can promote tumor growth and progres-
sion through DNA repair activity [30]. The therapeutic effect of a PARP-1 inhibitor on
experimental animals has been shown to downregulate the inflammatory response [31].
A PARP-1 inhibitor was shown to significantly ameliorate lipopolysaccharide-induced
neurobehavioral and neurochemical abnormality in mice [32]. In our previous study, we
highlighted the beneficial effects of 5-aminoisoquinolinone (5-AIQ) on self-grooming, mar-
ble burying, and enhanced social interactions in BTBR T+ Itpr3tf/J (BTBR) mice in a mouse
autism model, and also highlighted the contribution of Th1/Th22 cells [33].

The BTBR mouse autism model has become a standard method for the assessment
of the efficacy of potential drugs that would target the autism disorder in clinical stud-
ies. BTBR mice demonstrate several behavioral characteristics including repetitive self-
grooming, social deficits and impaired communication that may be relevant to autism.
These factors are all relevant to the core symptoms of ASD [34]. In addition, aberrant im-
mune responses have been observed in BTBR mice [35,36]. BTBR mice were characterized
by lower levels of Foxp3+ and higher levels of RORγt+, T-bet+, and GATA-3+ production
in CD4+ T cells [12]. C57BL/6 (C57) mice displayed higher levels of sociability and are
frequently used as a comparative strain against BTBR mice [37,38]. In the present study, we
investigated the effect of 5-AIQ on Treg cells and expression of proinflammatory cytokines
in BTBR and C57 mice. We hypothesize that 5-AIQ treatment could be used to ameliorate
the immune abnormalities of autism

2. Material Methods
2.1. Reagents and Antibodies

5. -AIQ was obtained from Matrix Scientific (Columbia, SC, USA. Roswell Park Memo-
rial Institute). RPMI 1640 medium was purchased from Sigma-Aldrich (St. Louis, MO,
USA). Antibodies to FOXP3 (#SC-130666), Helios (#SC-390357), GATA3 (#SC-268), and IL-
17A (#SC-374218) were purchased from Santa Cruz Biotech, (Dallas, TX, USA). GolgiStop
was purchased from BD Biosciences (San Diego, CA, USA). Conjugated phycoerythrin
(PE), fluoro-isothiocyanate (FITC), PE/Dazzle 594, allophycocyanin (APC). APC anti-
CD4 (#100412), FITC anti-CD4 (#100510), APC anti-CXCR6 (#151106), FITC anti-CXCR6
(#151107), PE anti-FOXP3 (#126404), PE anti-Helios (#137206), APC anti-GATA3 (#653806),
PE anti-IL-17A (#506903), PE anti-IL-9 (#514104), and APC anti-IL-10 (#505010) monoclonal
antibodies, red blood cell lysis buffer, fixation buffer, and intracellular staining permeabi-
lization buffer were all obtained from BioLegend (San Diego, CA, USA). TRIzol reagent
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was purchased from Invitrogen (Carlsbad, CA, USA). SYBR Green and High-Capacity
cDNA reverse transcription kit were purchased from Applied Biosystems (Foster City,
CA, USA). Primers were synthesized by GenScript (Piscataway, NJ, USA). Nitrocellulose
membranes were obtained from Bio-Rad Laboratories (Hercules, CA, USA). Western blot
chemiluminescence kit was purchased from Millipore (Billerica, MA, USA).

2.2. Animals

Male BTBR and C57 mice aged 10–12 weeks were purchased from the Jackson Labora-
tory (Bar Harbor, ME, USA). Mice were housed in a room at the Animal Facility of King
Saud University, in which the temperature (22 ◦C ± 1 ◦C) and relative humidity were con-
trolled with a 12-h light/dark cycle (07:00 h lights on). The mice were allowed free access
to water and food ad libitum. Animal experiments were started after an acclimation period
of 7 days. All animal experiments were conducted according to the National Institutes of
Health guidelines for the care and use of animals in research and were approved by the
King Saud University Animal Ethics Committee (Approval number KSU-SE-18-27).

2.3. Drug Administration

To explore the effect of 5-AIQ treatment, the animals were divided as follows: C57 mice
receiving saline alone by (intraperitoneal, i.p.) injection served as the control group; C57
mice treated with 5-AIQ (1.5 mg/kg, i.p); BTBR mice receiving saline alone by i.p. injection;
and BTBR mice treated with 5-AIQ (1.5 mg/kg, i.p). Treatments were administered for
10 days. The volume of drug administered to each mouse was given based on individual
body weight. The dose of 5-AIQ was selected based on previous studies [31,33,39,40].

2.4. Qualitative Intracellular Cytokine and Transcription Factor Detection by Flow Cytometry

We used flow cytometry analysis to assess the production of FOXP3, Helios, GATA3,
IL-9, IL-17A, and IL-10 by CXCR6+ and CD4+ T cells. Briefly, splenocytes were incubated
with phorbol 12-myristate 13-acetate (PMA)/ionomycin (Sigma-Aldrich) for 4 h in the
presence of brefeldin-A (GolgiPlug, BD Biosciences), which prevents the transport of
cytokines and transcription factors out of the cell [12,33,41]. Cells were washed and
surface stained for CD4, and CXCR6 surface receptors (BioLegend, San Diego, CA, USA).
After permeabilization and fixation (BioLegend), the cells were stained with intracellular
cytokines (anti-IL-9, anti-IL-10, and anti-IL-17A; BioLegend) and transcription factors (anti-
FOXP3, anti-GATA3, and anti-Helios; BioLegend). The proportions of CXCR6+FOXP3+,
CXCR6+Helios+, CD4+GATA3+, CD4+IL-9+, CXCR6+IL-10+, and CD4+IL-17A+ cells were
acquired via a FC 500 flow cytometer and analyzed using CXP software (Beckman Coulter,
Indianapolis, IN, USA).

2.5. Reverse Transcriptase Quantitative PCR (RT-qPCR)

Total RNA was isolated from the brain using TRIzol reagent (Invitrogen, Carlsbad, CA,
USA), and the RNA concentration quantified (NanoDrop, Thermo Scientific, Waltham, MA,
USA). cDNA was synthesized, and then amplified using SYBR Green PCR mix (Applied
Biosystems) as previously described [12,42]. The specific primer sequences for FOXP3,
Helios, GATA3, IL-9, IL-10, IL-17A and GAPDH are listed as follows: FOXP3 Forward, 5′-
CTGGACAACCCAGCCATGAT-3′ and Reverse, 5′-ACATTGATCCCAGGTGGCAG-3′; He-
lios Forward, 5′-CTTCCATAGCCAGAGCGAGG-3′ and Reverse, 5′-AGTGGGGATAGGGA
AGGCAT-3′; GATA3 Forward, 5′-GGAGTCTCCAAGTGTGCGAA-3′ and Reverse, 5′-
TGGAATGCAGACACCACCTC-3′; IL-9 Forward, 5′-ACTGAGTTCCAGACTCCCGT-3′

and Reverse, 5′-CAGTTGGGACGGAGAGACAC-3′; IL-10 Forward, 5′-TAAGGCTGGCCA
CACTTGAG-3′ and Reverse, 5′-GTTTTCAGGGATGAAGCGGC-3′; IL-17A Forward, 5′-
TCATCCCTCAAAGCTCAGCG-3′ and Reverse, 5′-TTCATTGCGGTGGAGAGTCC-3′;
GAPDH Forward, 5′-TGACCACAGTCCATGCCATC-3′ and Reverse, 5′-CTCAGATGCCTG
CTTCACCA-3′. The relative expression of FOXP3, Helios, GATA3, IL-9, IL-10 and IL-17A
was normalized to GAPDH and calculated according to the 2−∆∆C(t) method.
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2.6. Western Blotting

Total protein was extracted from mouse brain tissue, and quantitation was performed
by direct detect spectroscopy (EMD Millipore). Briefly, protein samples (40 µg) were
separated via 10% SDS-PAGE and transferred to Polyvinylidene fluoride (PVDF) membrane
(Bio-Rad, Hercules, CA) as previously reported (Ansari et al., 2017). Membranes were
incubated with primary antibodies against FOXP3, Helios, GATA3, and IL-17A overnight
at 4 ◦C and subsequently incubated for 2 h with HRP-conjugated secondary antibody
(Santa Cruz Biotech, Dallas, TX, USA) at room temperature. The FOXP3, Helios, GATA3,
IL-17A and β-actin bands were visualized by enhanced chemiluminescence HRP substrate
(Millipore Corporation, Burlington, MA, USA), and their intensity was quantified against
the β-actin band used as a loading control [42].

2.7. Statistical Analysis

All data were expressed as mean ± standard deviation (SD). The data were analyzed
using two-way ANOVA followed by Tukey’s post-hoc test corrected for multiple compar-
isons. Statistical analyses were carried out using GraphPad Prism (GraphPad Software,
San Diego, CA, USA). A p-value of <0.05 was considered significant.

3. Results
3.1. Treatment with 5-AIQ Upregulates Treg Cells in BTBR Mice

To evaluate the therapeutic potential of 5-AIQ administration in the BTBR mouse
model of autism, we first investigated the effect of 5-AIQ on the FOXP3-producing CXCR6+
cells in the spleen. 5-AIQ-treated BTBR mice had an increased percentage of FOXP3-
producing CXCR6+ cells compared with those from saline-treated BTBR mice (Figure 1A).
Using RT-qPCR and western blotting, we investigated the effect of 5-AIQ on expression
levels of FOXP3 mRNA and protein in brain tissue. FOXP3 mRNA and protein expression
levels were upregulated in 5-AIQ-treated BTBR mice compared with those in saline-treated
BTBR mice (Figure 1B,C). In the present study, 5-AIQ treatment in BTBR mice significantly
upregulated generation of Treg cells.

To further reveal the effect of 5-AIQ in BTBR mice, we evaluated Helios expression
by CXCR6+ spleen cells. BTBR mice displayed a significant reduction in the number of
Helios-producing CXCR6+ cells, which was significantly increased by 5-AIQ treatment
(Figure 2A). The mRNA and protein levels of Helios in the brain tissue of BTBR mice were
decreased in comparison with those of C57 mice and were significantly upregulated in
brain tissue of 5-AIQ-treated BTBR mice (Figure 2C,D). These results reveal the effect of
5-AIQ on Helios expression in the autistic mouse model and open a new mechanism of
action of 5-AIQ.

To investigate whether 5-AIQ played an anti-inflammatory effect in BTBR mice, we
detected the production/expression of anti-inflammatory cytokines in spleen and brain
tissues. The number of IL-10-producing CXCR6+ cells was increased in 5-AIQ-treated
BTBR mice compared with levels from the spleen of saline-treated BTBR mice (Figure 3A).
To further investigate whether 5-AIQ could upregulate the activities of Treg cells, we
assessed the level of IL-10 mRNA in the brain of mice. Treatment with 5-AIQ significantly
upregulated the level of IL-10 mRNA, which was related to Treg cell activity (Figure 3B).
Therefore, treatment with 5-AIQ increased expression of IL-10 and could have a potent
immunomodulatory potential for the treatment of autism.

3.2. Effects of 5-AIQ on GATA3 Transcription Factor

We examined the expression of GATA3 in CD4+ T cells from BTBR and C57 mice.
5-AIQ-treated BTBR mice markedly downregulated the expression of GATA3 in CD4+ T
cells as compared with that from spleen cells in untreated BTBR mice (Figure 4A). There
was also a significant decrease in GATA3 mRNA and protein expression levels in the
brain tissue of 5-AIQ-treated BTBR mice (Figure 4B,C). Therefore, 5-AIQ administration
downregulated GATA3 transcription factor signaling in BTBR mice.
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 0.0015; Treatment effect, F(1,20)  =  48.34, p  <  0.0001, Treatment x Strain effect, F(1,20)  =  26.23, p  < 
 0.0001). (D) Cells were gated on forward-side scatter dot plots; the dot plots represent the 
percentages of CXCR6+FOXP3+ cells. Bar graphs represent the percentage of CXCR6+FOXP3+ 
population. The control C57 and BTBR mice received saline intraperitoneal injection. Treated BTBR 
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results are shown as the means ± SD, n = 6, each group; *p < 0.05 compared with saline-treated C57 
mice; a p < 0.05 compared with saline-treated BTBR mice. 
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Figure 1. Effects of 5-AIQ on FOXP3 expression in C57 and BTBR mice. (A) Flow cytometry analysis of intracellular FOXP3-
producing CXCR6+ T cells from mouse spleens (Strain effect, F(1,20) = 13.39, p < 0.0016; Treatment effect, F(1,20) = 71.37,
p < 0.0001, Treatment x Strain effect, F(1,20) = 45.01, p < 0.0001); (B) Reverse Transcriptase Quantitative PCR (RT-qPCR)
analysis of levels of FOXP3 mRNA from mouse brain tissue (Strain effect, F(1,20) = 12.52, p < 0.0021; Treatment effect,
F(1,20) = 68.44, p < 0.0001, Treatment x Strain effect, F(1,20) = 38.81, p < 0.0001) and (C) Western blotting analysis of levels of
FOXP3 protein from mouse brain tissue (Strain effect, F(1,20) = 13.48, p < 0.0015; Treatment effect, F(1,20) = 48.34, p < 0.0001,
Treatment x Strain effect, F(1,20) = 26.23, p < 0.0001). (D) Cells were gated on forward-side scatter dot plots; the dot plots
represent the percentages of CXCR6+FOXP3+ cells. Bar graphs represent the percentage of CXCR6+FOXP3+ population.
The control C57 and BTBR mice received saline intraperitoneal injection. Treated BTBR and C57 mice received 5-AIQ
(1.5 mg/kg) via intraperitoneal injection once daily for ten days. The results are shown as the means ± SD, n = 6, each
group; * p < 0.05 compared with saline-treated C57 mice; a p < 0.05 compared with saline-treated BTBR mice.

3.3. 5-AIQ Treatment Downregulates Th9 Cells in BTBR Mice

The numbers of IL-9-producing CD4+ T cells in the spleen of 5-AIQ-treated BTBR mice
were significantly lower compared with those in saline-treated BTBR mice (Figure 5A). The
relative levels of IL-9 mRNA were also significantly reduced in the brain of BTBR mice
compared with those in saline-treated BTBR mice (Figure 5B). Taken together, these results
indicate that 5-AIQ effectively decreases Th9 cell numbers in BTBR mice.
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Helios-producing CXCR6+ T cells from mouse spleens tissue (Strain effect, F(1,20) = 1.209, p < 0.05; Treatment effect,
F(1,20) = 69.48, p < 0.0001, Treatment x Strain effect, F(1,20) = 20.59, p < 0.0002); (B) RT-qPCR analysis of levels of Helios
mRNA from mouse brain tissue (Strain effect, F(1,20) = 16.41, p < 0.0026; Treatment effect, F(1,20) = 53.77, p < 0.0001,
Treatment x Strain effect, F(1,20) = 29.68, p < 0.0001) and (C) Western blotting analysis of levels of Helios protein from mouse
brain tissue (Strain effect, F(1,20) = 11.79, p < 0.0026; Treatment effect, F(1,20) = 47.47, p < 0.0001, Treatment x Strain effect,
F(1,20) = 31.20, p < 0.0001). (D) Cells were gated on forward-side scatter dot plots; the dot plots represent the percentages of
CXCR6+Helios+ cells. Bar graphs represent the percentage of the CXCR6+Helios+ population. The control C57 and BTBR
mice received saline intraperitoneal injection. Treated BTBR and C57 mice received 5-AIQ (1.5 mg/kg) via intraperitoneal
injection once daily for ten days. The results are shown as the means ± SD, n = 6, each group; * p < 0.05 compared with
saline-treated C57 mice; a p < 0.05 compared with saline-treated BTBR mice.

3.4. Effects of 5-AIQ Treatment on Th17 Cells

To gain a deeper understanding of the mechanism associated in the neuroprotective
effect of 5-AIQ on BTBR mice, we studied the effect of 5-AIQ on Th17 cells, which play an
important role in the neurodevelopment of ASD. We observed a decrease in the number of
IL-17A-producing CD4+ spleen cells in 5-AIQ-treated BTBR mice compared with those from
BTBR saline-treated mice (Figure 6A). The expression levels of IL-17A mRNA and protein
was highest in the brain tissue of BTBR compared with those in C57 mice. However, IL-17A
expression was significantly decreased with 5-AIQ treatment in BTBR mice (Figure 6B,C).
Taken together, these results indicate that 5-AIQ could protect against the development of
ASD in BTBR mice.
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Figure 3. Effects of 5-AIQ on expression of IL-10 in C57 and BTBR mice. (A) Flow cytometry analysis of intracellular IL-10-
producing CXCR6+ T cells from mouse spleens (Strain effect, F(1,20) = 14.27, p < 0.0012; Treatment effect, F(1,20) = 73.62,
p < 0.0001, Treatment x Strain effect, F(1,20) = 35.61, p < 0.0001) and (B) RT-qPCR analysis of levels of IL-10 mRNA from
mouse brain tissue (Strain effect, F(1,20) = 23.33, p < 0.0001; Treatment effect, F(1,20) = 68.56, p < 0.0001, Treatment x
Strain effect, F(1,20) = 45.45, p < 0.0001). (C) Cells were gated on forward-side scatter dot plots; the dot plots represent
the percentages of CXCR6+IL-10+ cells. Bar graphs represent the percentage of CXCR6+IL-10+ population. The control
C57 and BTBR mice received saline intraperitoneal injection. Treated BTBR and C57 mice received 5-AIQ (1.5 mg/kg) via
intraperitoneal injection once daily for ten days. The results are shown as the means ± SD, n = 6, each group; * p < 0.05
compared with saline-treated C57 mice; a p < 0.05 compared with saline-treated BTBR mice.
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Figure 4. Effects of 5-AIQ on expression of GATA3 in C57 and BTBR mice. (A) Flow cytometry analysis of intracellular
GATA3-producing CD4+ T cells from mouse spleens (Strain effect, F(1,20) = 67.84, p < 0.0001; Treatment effect, F(1,20) = 20.07,
p < 0.0002, Treatment x Strain effect, F(1,20) = 7.728, p < 0.0116); (B) RT-qPCR analysis of levels of GATA3 mRNA from
mouse brain tissue (Strain effect, F(1,20) = 171.5, p < 0.0001; Treatment effect, F(1,20) = 16.70, p < 0.0006, Treatment x Strain
effect, F(1,20) = 12.49, p < 0.0021) and (C) Western blotting analysis of levels of GATA3 protein from mouse brain tissue
(Strain effect, F(1,20) = 27.36, p < 0.0001; Treatment effect, F(1,20) = 24.79, p < 0.0001, Treatment x Strain effect, F(1,20) = 17.18,
p < 0.0005). (D) Cells were gated on forward-side scatter dot plots; the dot plots represent the percentages of CD4+GATA3+
cells. Bar graphs represent the percentage of CD4+GATA3+ population. The control C57 and BTBR mice received saline
intraperitoneal injection. Treated BTBR and C57 mice received 5-AIQ (1.5 mg/kg) via intraperitoneal injection once daily for
ten days. The results are shown as the means ± SD, n = 6, each group; * p < 0.05 compared with saline-treated C57 mice; a
p < 0.05 compared with saline-treated BTBR mice.
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Figure 5. Effects of 5-AIQ on expression of IL-9 in C57 and BTBR mice. (A) Flow cytometry analysis of intracellular
IL-9-producing CD4+ T cells from mouse spleens (Strain effect, F(1,20) = 17.33, p < 0.0005; Treatment effect, F(1,20) = 11.3,
p < 0.0031, Treatment x Strain effect, F(1,20) = 7.31, p < 0.0147) and (B) RT-qPCR analysis of levels of IL-9 mRNA from mouse
brain tissue (Strain effect, F(1,20) = 251.9, p < 0.0001; Treatment effect, F(1,20) = 26.00, p < 0.0001, Treatment x Strain effect,
F(1,20) = 16.13, p < 0.0007). (C) Cells were gated on forward-side scatter dot plots; the dot plots represent the percentages of
CD4+IL-9+ cells. Bar graphs represent the percentage of CD4+IL-9+ population. The control C57 and BTBR mice received
saline intraperitoneal injection. Treated BTBR and C57 mice received 5-AIQ (1.5 mg/kg) via intraperitoneal injection once
daily for ten days. The results are shown as the means ± SD, n = 6, each group; * p < 0.05 compared with saline-treated C57
mice; a p < 0.05 compared with saline-treated BTBR mice.
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Figure 6. Effects of 5-AIQ on expression of IL-17A in C57 and BTBR mice (A) Flow cytometry analysis of intracellular
IL-17A-producing CD4+ T cells from mouse spleens (Strain effect, F(1,20) = 120.8, p < 0.0001; Treatment effect, F(1,20) = 30.52,
p < 0.0001, Treatment x Strain effect, F(1,20) = 13.54, p < 0.0115); (B) RT-qPCR analysis of levels of IL-17A mRNA from
mouse brain tissue (Strain effect, F(1,20) = 62.22, p < 0.0001; Treatment effect, F(1,20) = 14.47, p < 0.0011, Treatment x Strain
effect, F(1,20) = 7.797, p < 0.0112) and (C) Western blotting analysis of levels of IL-17A protein from mouse brain tissue
(Strain effect, F(1,20) = 127.8, p < 0.0001; Treatment effect, F(1,20) = 13.8, p < 0.0014, Treatment x Strain effect, F(1,20) = 5.909,
p < 0.0246). (D) Cells were gated on forward-side scatter dot plots; the dot plots represent the percentages of CD4+IL-17A+
cells. Bar graphs represent the percentage of CD4+IL-17A+ population. The control C57 and BTBR mice received saline
intraperitoneal injection. Treated BTBR and C57 mice received 5-AIQ (1.5 mg/kg) via intraperitoneal injection once daily for
ten days. The results are shown as the means ± SD, n = 6, each group; * p < 0.05 compared with saline-treated C57 mice; a
p < 0.05 compared with saline-treated BTBR mice.

4. Discussion

Inhibition of PARP-1 has been shown to prevent neurobehavioral and neurochemical
abnormalities [32]. PARP-1 inhibition decreased brain infarction and neutrophil infiltration
after transient focal cerebral ischemia [43] and can protect against traumatic injury and
decrease nitric oxide production [44]. A previous study also demonstrated that inhibition
of PARP-1 reduced motor deficits as well as improved behavioral assessment [45]. Neuro-
protective effects for PARP-1 inhibition have also been presented [46]. Therapeutics that
ameliorate the core symptoms of ASD remain unavailable and are sorely needed due to
the increasingly recognized high prevalence of the disorder. Recently, we demonstrated
that treatment with 5-AIQ markedly attenuated repetitive behavior and enhanced social
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interaction, which could indicate that correct immune functioning had been restored [33].
In the present study, we sought to determine how the effect of 5-AIQ on Treg/Th17 cells
could help elucidate potential therapeutic indications for the treatment of ASD.

Several studies have evaluated the role of Treg cells in immune-mediated inflamma-
tory diseases as an important contributing feature [47,48]. Furthermore, Treg cells are
diminished in neuro-immunological diseases and this reduction has been associated with
upregulation of other cell types [49,50]. Treg cells play a critical function in immunological
self-tolerance to prevent severe systemic inflammation and their deficiency contributes
to ASD and autoimmune disease [51,52]. Treg deficiency has also been reported in chil-
dren with autism [14]. In our recent studies, we found that decreased levels of Treg cells
potentially contribute to the ASD-like behavior in BTBR mice [12,53]. Previous results
have identified the role of Helios in Treg differentiation [54]. In accordance with previous
reports, FOXP3+ Tregs highly expressed CCR4, CCR5, CCR6, CXCR3, and CXCR6 [55].
We have also reported that immune dysregulation in ASD individuals is associated with
decreased levels of Treg cells [11,56]. FOXP3 is a key transcription factor for Treg cells. In
the present report study, FOXP3- and Helios-producing CXCR6+ cells in 5-AIQ-treated
BTBR mice were significantly higher than those in untreated BTBR mice. We also found
that 5-AIQ treatment markedly increased the mRNA and protein expression of FOXP3 and
Helios in the brain tissue of BTBR mice. Importantly, our findings suggest that enhancing
Treg cells by treatment with 5-AIQ may provide beneficial effects in ASD, which could
represent a promising approach for ASD pharmacotherapy development.

The anti-inflammatory cytokine IL-10 has been shown to improve the neuronal thresh-
old of vulnerability to ischemic damage in the CNS [57]. IL-10 is also known to inhibit
glutamate-mediated neuronal apoptosis [58], and IL-10 production is known to be signifi-
cantly lower in BTBR mice than in C57 mice [37]. However, the mechanisms underlying
the neuroprotective activity of IL-10 are not fully understood. We investigated how 5-AIQ
produced an anti-inflammatory effect in BTBR mice and assessed the expression of impor-
tant IL-10 anti-inflammatory cytokines in mouse spleen and brain tissue. The expression
level of IL-10 was significantly decreased in untreated BTBR mice, whereas this was signif-
icant increase in 5-AIQ-treated BTBR mice. We propose that 5-AIQ has neuroprotective
effects against ASD because of the ability of 5-AIQ to increase the expression of IL-10 in
BTBR mice.

BTBR mice have been reported to have an increased number of Th2 cells, which
induce B cells to produce immunoglobulin [59], and a higher level of serum IgG has been
demonstrated in BTBR mice [60]. In addition, expression of GATA3 has been shown to be
associated in the development of the CNS [61]. This higher expression of GATA3 of ASD
individuals could be useful as a disease biomarker [11,62]. We determined that expression
of GATA3 in CD4+ spleen cells and brain tissue was significantly higher in untreated BTBR
(autistic) mice, providing further evidence to support previous reports that GATA3 may be
essential in the pathophysiology of ASD, possibly by causing abnormalities in the immune
system [11,12,63]. We observed a marked reduction of GATA3-producing CD4+ T cells in
5-AIQ-treated BTBR mice when compared with those in saline-treated BTBR mice. There
was also a decrease in expression of GATA3 mRNA and protein levels in 5-AIQ-treated
BTBR mice. These results further confirmed the therapeutic effect of 5-AIQ on BTBR mice.

IL-9 mediates several types of inflammation in autoimmune diseases [64,65]. A
previous study found that IL-9 production was significantly increased in brain tissue [66]. In
addition, IL-9 has been implicated as a mediator of Th17-driven inflammatory diseases [66].
IL-9 promotes Th17 cell migration into the CNS via the CC chemokine ligand-20 (CCL20)
produced by astrocytes [23]. Here, treatment with 5-AIQ decreased the abundance of
IL-9-producing CD4+ T cells, as well as expression of mRNA in spleen cells and brain
tissue of BTBR mice. Taken together, these data suggest that treatment with 5-AIQ is able
to restore the both production and expression of IL-9, suggesting that 5-AIQ could be a
therapeutic candidate for restoring neuroimmune dysfunction in ASD.
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Whole brains were utilized for different molecular analyses without perfusion in
this study. T cells from the brain tissue were not isolated to evaluate their exact role in
inflammatory/anti-inflammatory signaling. Therefore, differences in molecular parameters
observed in treated and untreated groups could originate both from immune cells such
as T cells and from neuronal cells such as microglial cells in the brain. Further, it should
be kept in mind that findings in whole-brain gene expression and protein levels might be
different in specific brain areas this can provide more relevant information with regards to
ASD. These are the limitations of this study.

Th17 cells have been recognized as inducers of autoimmunity and their exaggerated
functions causes pathogenesis of inflammatory and autoimmune disorders [67]. Th17
cells have also been suggested to have an important role in ASD. Elevated levels of IL-
17A have been detected in children with autism [68,69]. A genome-wide copy number
variant analysis identified IL17A as one of many genes enriched in autistic patients [70].
As shown in a recent study, the expression of Th17 cells were higher in ASD [11,71], and a
direct association between Th17 and disease severity in children with ASD has also been
reported [72]. We observed a significant reduction in the abundance of IL-17A-producing
CD4+ T cells in the spleens of 5-AIQ-treated BTBR mice. Moreover, 5-AIQ treatment
significantly downregulated expression of IL-17A mRNA and protein in the brain tissue
of BTBR mice. These findings suggest that inhibition of IL-17A production via treatment
with 5-AIQ could be helpful in treating the behavioral deficits in ASD. Therefore, the
efficacy of 5-AIQ in reducing IL-17A expression is a novel finding and adds to the potential
therapeutic indications for treating ASD with 5-AIQ

5. Conclusions

Our study has provided several pieces of evidence that address the pivotal role of
PARP-1 inhibition in the mouse autism model. We have demonstrated that 5-AIQ had
a therapeutic effect on BTBR mice, which was associated with modulation of Treg and
Th17 cells. We also confirmed the effectiveness of 5-AIQ, emphasizing the importance of
neuroimmune function as a target that deserves to be investigated in preclinical studies of
anti-inflammatory therapeutic approaches in ASD. Furthermore, our study highlighted a
promising experimental strategy to evaluate new molecular targets possibly involved in
the development of neuroimmune dysfunctions in ASD.
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6 (CXCR6); Cluster of differentiation 4 (CD4); T helper (Th); GATA binding protein 3 (GATA3);
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