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Abstract: Motor imagery (MI) is a classical method of brain–computer interaction (BCI), in which
electroencephalogram (EEG) signal features evoked by imaginary body movements are recognized,
and relevant information is extracted. Recently, various deep-learning methods are being focused on
in finding an easy-to-use EEG representation method that can preserve both temporal information
and spatial information. To further utilize the spatial and temporal features of EEG signals, an
improved 3D representation of the EEG and a densely connected multi-branch 3D convolutional
neural network (dense M3D CNN) for MI classification are introduced in this paper. Specifically, as
compared to the original 3D representation, a new padding method is proposed to pad the points
without electrodes with the mean of all the EEG signals. Based on this new 3D presentation, a densely
connected multi-branch 3D CNN with a novel dense connectivity is proposed for extracting the EEG
signal features. Experiments were carried out on the WAY-EEG-GAL and BCI competition IV 2a
datasets to verify the performance of this proposed method. The experimental results show that
the proposed framework achieves a state-of-the-art performance that significantly outperforms the
multi-branch 3D CNN framework, with a 6.208% improvement in the average accuracy for the BCI
competition IV 2a datasets and 6.281% improvement in the average accuracy for the WAY-EEG-GAL
datasets, with a smaller standard deviation. The results also prove the effectiveness and robustness
of the method, along with validating its use in MI-classification tasks.

Keywords: motor imagery (MI); electroencephalogram (EEG); dense connectivity; 3D convolutional
neural network (3D CNN)

1. Introduction

Modern neurophysiological studies have proven that the power spectrum of some
characteristic frequency components in electroencephalogram (EEG) signals can be altered
by an actual body movement or imaginary motor movement. A reduction in the power
spectral ratio is called event-related desynchronization (ERD), and an increase in the power
spectral ratio is called event-related synchronization (ERS) [1,2]. The brain–computer
interface (BCI), based on the ERS/ERD phenomenon, offers a way for communication
between computers and the human brain by analyzing the electrical signals generated by
the nervous system [3]. When people think of moving any of the body parts, this motor
imagery-based system can trigger neuronal activity in some areas of the motor cortex
related to the movements [4]. Brain signal recording methods are divided into invasive
recording and noninvasive recording. Invasive recording is implanting the sampling
electrode array into the brain through surgical craniotomy. Its advantages are high accuracy
and less noise. Its disadvantages are that it cannot ensure the stability of the structure
and function of the electrodes in the brain for a long time, because it is easy to cause
immune responses and calluses, which lead to the decline or even disappearance of the
EEG signal. On the contrary, a noninvasive recording method is achieved directly by
attaching electrodes to the scalp to maintain good mechanical contact and conductivity.
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Compared with the invasive method, it is more simple and safe, and the experimental time
is greatly shortened, but there is more noise, and a lot of training is needed. Because of
their respective advantages, both methods are widely used [5]. The EEG signal is one of
the widely used noninvasive electrical signals in BCIs. If these EEG signals are recorded
and classified correctly, the classification results can be used to control auxiliary equipment
such as robots and wheelchairs for motor-disabled people [6]. Thus, the classification
of EEG signals can be effectively applied in BCIs. Note that many factors may affect
the performance of BCIs, such as the health status of the subjects or the environment.
Meng et al. [7] studied the effects of soft drinks and coffee under a resting state. The
study is the first to show caffeine and sugar intake can affect brain–computer interface
(BCI) performance.

On the basis of the ERS/ERD phenomenon, brain–computer interface (BCI) researchers
have proposed a great number of methods for moto imagery (MI) classification. Various
machine-learning algorithms are widely used in EEG signal classification. In previous
studies, machine-learning methods such as dynamic connectivity analysis [8], frequency
band analysis [9], continuous wavelet transform [10], and filter bank common spatial
pattern (FBCSP) [11] have been widely proposed for EEG decoding.

The general spatial pattern (CSP) algorithm and CSP-based methods are recognized
as effective methods for feature extraction in brain–computer interfaces (BCIs). However,
due to the inherent defects of the CSP objective function and the nonstationarity of the EEG
signal, its corresponding features are not necessarily optimal in the feature space used by
CSP. To address this issue, Jin et al. [12] designed a new feature-selection method by select-
ing features based on an improved objective function. In particular, some improvements
were made in suppressing outliers and finding features with large interclass distances.
On this basis, a fusion algorithm based on Dempster–Shafer theory was proposed. The
experimental results show that the proposed method reduces the extra computational
overhead and improves the performance of the MI-based BCI system significantly.

The performance of brain–computer interfaces (BCIs) based on motor imagery (MI) is
vulnerable to noise and redundant information in multichannel electroencephalograms
(EEGs) [13]. Jin et al. [14] proposed a correlation-based channel selection (CCS) method
to select the channel with more relevant information. The purpose was to improve the
performance of MI-based BCI classification. Furthermore, Jin et al. [15] also proposed a
bispectrum-based channel selection (BCS) method for EEG classification based on BCIs,
the sum of logarithmic amplitudes (SLA) and the first-order spectral moment (FOSM)
features extracted from bispectrum analysis have been proposed for selecting EEG channels
without redundant information. Their proposed algorithm can achieve better classification
performance with fewer channels.

Most of these methods artificially extract the time-frequency features from EEG sig-
nals and then combine these artificially extracted features into feature vectors, which are
further used to classify the EEG signals in train classifiers such as support vector machine
(SVM) [16] or decision tree [17]. Although CSP-based methods and other BCI frameworks
have been successfully applied to MI classification, the architecture of these frameworks
divides feature extraction and classification into two stages, which makes the feature-
extraction model parameters and subsequent classifiers use different objective functions
for training. Therefore, in the above-mentioned methods, the selection of the best filter
band is subjective, and it depends primarily on the quality of the handmade features [18].
Thus, if the suboptimal frequency band is selected in the feature-extraction process, the
classification performance might not be the best. In addition, for severe nonstationary EEG
signals, the manual determination of the fixed frequency band may not be effective, so
these methods may not be well extended to a larger population due to the heterogeneity
among subjects.

Compared with the machine-learning framework, the deep-learning method [19]
does not require the manual extraction of the feature. It embeds feature extraction and
classification into a single end-to-end network; this end-to-end training method can well
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avoid the disadvantages of manual feature extraction in traditional machine learning.
Recently, the application of deep learning in EEG classification tasks has become a research
hotspot. To apply deep-learning methods to MI classification, EEG signals need to be
represented in a processable form, which is a prerequisite to be satisfied. To meet this
premise, EEG signals are often represented as a two-dimensional array, considering the
number of sampling electrodes as the height and the time step as the width [20]. A typical
method described in [21] is to represent EEG signals as 2D images by a short-time Fourier
transform (STFT) method.

However, this two-dimensional representation cannot keep the spatial information of
the EEG, and the correlation between the adjacent electrodes cannot be reflected in the two-
dimensional array, which results in the unsatisfactory classification performance of EEG
coding. To address the shortcomings of the above two-dimensional representation methods
and to obtain better performance, some more-dimensional representation methods were
introduced. Zhao et al. [22] proposed a new 3D representation method for EEG signals,
which not only retains the spatial features but also retains the temporal features. Based
on that, they proposed a multi-branch 3D convolutional neural network (CNN) with only
three convolution layers in each branch to automatically extract the MI-related features.
However, certain issues are yet to be answered in this research. Although such a 3D
representation and 3D CNN can maximize the retention of time and space features, it also
introduces some invalid features in the 3D representation because of the padding of the
no-electrode point with 0. On the other hand, the results in [23,24] indicate that adapting
deep architecture can improve the training effect; a deeper model means better nonlinear
expression ability, can learn more complex information, and can fit more complex feature
input, but the multi-branch 3D CNN possesses only three convolution layers, which is too
shallow for extracting the EEG signal features; meanwhile, simply increasing the depth of
the network will easily lead to an overfitting problem [24].

To address these problems, a new 3D presentation method has been proposed in
this study, which preserves both spatial and temporal features similar to the 3D presen-
tation in [22], and at the same time, it fully utilizes the features of EEG signals in the 3D
presentation. Based on this improved 3D presentation, a deeper and novel end-to-end
deep-learning architecture called densely connected multi-branch 3D CNN (dense M3D
CNN) is proposed to extract the EEG signal features and complete classification tasks;
differently from simply increasing the depth of the network, our method can prevent the
overfitting problem because of its dense connectivity. One of the primary contributions
of the proposed framework is that the improved 3D presentation completely utilizes the
features of the EEG signal and partially improves the classification accuracy. Another
contribution of the proposed method is that new dense connectivity is employed to de-
sign the competitive densely connected multi-branch 3D CNN, which eventually enables
the network to effectively learn the temporal and spatial information for classification.
The most advanced performance on WAY-EEG-GAL and BCI competition IV-2a datasets
has been achieved through this study. The classification performance was significantly
improved on two public datasets.

2. Methods

In the following sections, we will first describe the improved 3D representation of the
EEG and then describe the overall architecture of the multi-branch dense 3D CNN block
and structure of the densely connected multi-branch 3D CNN.

2.1. Improved 3D Representation of EEG

Zhao et al. [22] designed a three-dimensional model of the EEG. Firstly, according
to the distribution of the sampling electrodes, the EEG signal is converted into a two-
dimensional array, and then, the points without electrodes are filled with 0. After that,
this 2D array is expanded to a 3D array by using the temporal information of the EEG
signals. However, such a padding method introduced many invalid features in the 3D
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representation and did not permit the efficient utilization of the 3D presentation of all
the electrode signals. When it comes to comparing the representation of EEG signals in
this paper with that of the padding method in [22], the points without electrodes here are
padded with the mean of all the EEG signals.

Note that for the BCI competition IV-2a, in a 7 × 7 × 240 3D presentation, “7 × 7”
represents the spatial distribution of the electrodes, which is determined by the number
and distribution of the sampling electrodes retaining the spatial information of the EEG,
and “240” means the sampling points of the EEG signal, which are determined by our
cropped strategy (introduced in the following section) and retain the temporal information
of the EEG signal.

This padding method is easy to handle and can make full use of the 3D presenta-
tion of all the EEG signals. Figure 1 schematically demonstrates the 3D representation
(7 × 7 × 240 array) according to these 22 sampling electrodes’ locations in a 10–20 sys-
tem based on the BCI competition IV-2a. Similarly, Figure 2 schematically shows the 3D
representation (11 × 11 × 480 array) according to these 32 sampling electrodes based on
the WAY-EEG-GAL dataset. It can be observed that this representation method not only
completely retains the temporal information of the EEG signals but also retains the spatial
information of the sampling electrode’s distribution to a certain extent, at the same time
resulting in the complete utilization of the 3D presentation of all the electrode signals.
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Figure 2. EEG signal 3D representation for the WAY-EEG-GAL datasets. Left: sampling electrodes’ spatial distribution. 
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2.2. The Densely Connected Multi-Branch 3D CNN

Based on the 3D representation, a densely connected multi-branch 3D CNN was
introduced in this study for MI classification. In this section, the layout of the densely
connected multi-branch 3D CNN is introduced, including the multi-branch dense 3D
CNN block and the overall structure of the proposed dense M3D CNN. Later, the specific
configuration is described.

Network Overview

Huang et al. [25] proposed a novel convolutional network architecture (dense convo-
lutional network) wherein the dense connectivity improves the back propagation of the
gradient, making the network easier to train, thereby improving the classification effect.
Based on this, similar dense connectivity in our deep 3D CNN was introduced.

The multi-branch dense 3D CNN block: Inspired by [22], a dense multi-branch 3D
CNN was designed as a dense 3D CNN block with three different receptive field networks
to extract the EEG signals’ features. Furthermore, a dense connection in the three networks
was observed. These were further combined into a dense block referred to as the dense
multi-branch 3D CNN block.

Figure 3 illustrates the overall architecture of the dense multi-branch 3D CNN block.
The feature maps from the previous layer as input to the current layer. After convoluting
through a 3D convolution layer, it is connected to the feature maps generated by all
the previous 3D convolution layers. The bottleneck layers (1 × 1 × 1 3D convolutional
layers) are introduced after a concatenation operation to reduce the input feature maps and
improve the computational efficiency.

Overall structure. Figure 4 schematically depicts the architecture of the resulting
densely connected multi-branch 3D CNN. Consequently, the layer concatenates the feature
maps produced by all the preceding layers. Unlike in the method in an earlier study [25],
the connection occurs after the convolution layer; i.e., the connection develops between
the feature maps generated by the current convolution layer and those produced by all the
previous convolution layers, as shown in Figure 3. With X0, X1 . . . . . . Xí−1 as input:

Xl = Hl([X0, . . . . . . . Xl−1]) (1)

where [X0, X1 . . . Xí−1] means the concatenation of the feature maps generated by all the
previous 3 × 3 × 3 convolution layers: 0, ..., í− 1. This network is referred to as the densely
connected 3D convolutional neural network due to its dense connectivity. Just as in the
dense connection method of the dense multi-branch 3D CNN block in Figure 3, in (1), Hí is
a composite function with three continuous operations: bottleneck layers (a 1 × 1 × 1 3D
convolution layer) to reduce the number of input feature maps and batch normalization
(BN) [26], followed by an ELU, an excellent activation function. Besides, the depth can be
easily adjusted by changing the number of dense blocks in the model.

From the comparison between Figures 4 and 5, we can see that our framework is
much deeper than that of [22]. The multi-branch 3D CNN possesses only three convolution
layers, which is too shallow for extracting the EEG signal features, but our network has
10 convolution layers with dense connectivity, which can better extract the features of the
EEG signal, so as to obtain a better classification effect.
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2.3. Details about Dense 3D CNN

As shown in Figure 4 and Table 1, there are 10 convolutional layers (which include six
convolution layers in the dense block), which are all connected with dense connectivity
in three dense layers. Meanwhile, a dropout method is introduced after the two dense
layers to alleviate the overfitting problem. The dropout percentages are 0.5 (the optimal
dropout percentages were obtained through many experiments with different dropout
percentages ranging from 0.3 to 0.7 with an interval of 0.1). Note that, compared to the
framework proposed by Zhao et al. [22], this method significantly improves the depth of
the network to effectively extract the features of the EEG signal, along with improving
the classification performance of the network. Inspired by the structure of VGG [23], the
classical small convolution filter (3 × 3 × 3) was chosen to reduce the parameters and
increase the network depth.
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Table 1. Overall structure parameter of dense M3D CNN.

Layer Name Size Strides Filters

Conv1 3 × 3 × 3 2 × 2 × 2 8

Conv
3 × 3 × 3 1 × 1 × 1 16
1 × 1 × 1 1 × 1 × 1 16

Block1 Dense multi-branch 3D CNN block 32

Block2 Dense multi-branch 3D CNN block 96

Conv
3 × 3 × 3 1 × 1 × 1 96
1 × 1 × 1 1 × 1 × 1 96

Conv
3 × 3 × 3 1 × 1 × 1 96
1 × 1 × 1 1 × 1 × 1 96

Dense (Dropout rate = 0.5) 256

Dense (Dropout rate = 0.5) 64

Dense Different MI classes
Conv means 3 × 3 × 3 3D convolution layer + bottleneck layers + batch normalization (BN) + ELU.

2.4. Training and Testing Strategy

Cropped training has been applied to the image recognition field for increasing the
training data and improving the training effect [24,27]. In terms of EEG processing, cropped
training is also widely preferred [20,28]. The cropped strategy on BCI IV 2a datasets [22]
was adopted here. A cropped training approach for EEG 3D representation was adopted
by sliding a 3D window that covers all the electrodes on each EEG data trial along the time
dimension with a data stride of 1. The 3D window size on the time dimension is related to
the sampling rate of the EEG data and the characteristics of the specific task; for the BCI
competition IV 2a dataset, since the sampling frequency is 250 Hz, the 3D window size
was 240. Through this approach, the cropped strategy with a temporal size of 240 would
generate 74 cropped data for a given original trial with 313 timesteps.

For WAY-EEG-GAL datasets, a new data cropped strategy has also been proposed,
which will be introduced later.

When it comes to network optimization, similar to in earlier work [25], all the weights,
as well as the initial value, were initialized using the normalized initialization method
in [29], and the learning rate was 0.01. The negative log-likelihood cost was adopted as
the optimization criterion, and the optimization method used ADAM with the default
parameter values described in [30]. In the training process, if the cost did not reduce within
20 epochs, the training was stopped, and the network weight with the lowest cost was
restored from the epoch.

In the process of testing, a clipping strategy was used to improve the testing accu-
racy, too. Considering the real-time performance of the 3D CNN network in the test
process, we set the data stride parameter of the clipping strategy to 5, which reduced the
calculation time.

3. Experiments and Results
3.1. EEG Data

The proposed methods were evaluated on the WAY-EEG-GAL and the BCI competition
IV 2a datasets.

The BCI competition IV 2a dataset consists of EEG data from nine subjects; 22 Ag/AgCl
electrodes were used to record the EEG signals. Each subject recorded two sessions on
different days, and the recorded signals were sampled at 250 Hz. The recorded signals were
sampled at 250 Hz and bandpass filtered between 0.5 and 100 Hz. A single run consisted
of 48 trials, which yielded 288 trials per session. The duration of each trial consisted of a
fixed period of 2 s and a reminder period of 1.25 s, followed by a period of 4 s of motor
imagery. More details on the datasets are available in [31].
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In the presented study, a 1.25 s period of EEG data were chosen as the experimental
data, after the visual cue in each trial. These were further represented as 3D representations
without any preprocessing. The sampling frequency was 250 Hz, so 313 sampling points
could be generated in 1.25 s of sampling time. It can be concluded from the results of [22]
that for the EEG signal with a 250 Hz sampling frequency, the EEG signal with 240 sampling
points covered the features related to motor imagery.

Additionally, the WAY-EEG-GAL dataset is not only the first but also the only pub-
lished dataset of EEG signals related to different stages of action identification tasks
obtained from 12 subjects. The EEG data in this dataset consist of all the EEG signals in
the whole process of the experimental paradigm. In the aspect of EEG signal recording,
32 EEG sampling electrodes were used, which meet the international 10–20 standard. In
the process of each subexperiment, the EEG signals were continuously sampled by the
EEG sampling electrode, with a sampling frequency of 500 Hz. In terms of the time-point
recording of experimental data, the dataset provides 43 time-point pieces of information:
the start time of each subexperiment, the time when the indicator LED lit up, and the
time when the indicator LED light went out. Through such time-point information, the
brainwave signal data could be mapped with different events, one by one. This time-point
information was placed in the human joints or moved from sensors on the surface of an
animal. A complete description of the grasp-and-lift experiment is available in [32].

As the sampling frequency of these data is 500 Hz, the time steps were adjusted to
480 sampling points to match the previous research results.

The experimental results in [19] prove that cropped training has better classification
performance than trial-wise training. For the BCI competition IV 2a dataset, a cropped
training method for EEG signals was adopted from an earlier study [22], such that the 3D
window covered all the sampling electrodes along the temporal data with a stride of 1, by
sliding a 3D window. A clipping strategy with a time size of 240 generates 74 clipping data,
as given in an original EEG signal with 313 time steps. In this study, the same cropped
strategy was used as in [22] to expand the training and test datasets for the BCI competition
IV 2a dataset.

For the evaluations using cross-validation, the training and testing datasets of the BCI
IV dataset 2a were combined and then randomly divided into ten subsets of equal size,
out of which nine subsets were used as training data, and one of them was used as the
validation data in each run.

While dealing with the WAY-EEG-GAL datasets, considering the continuity between
the stages of the action, four-class MI-classification experiments were transferred to three
continuous binary classification experiments; at the same time, due to the reduction in
classification classes, the numbers of nodes in the last dense layers were reduced to 2; for
this experiment, our training strategy was the same as the one for the BCI competition IV
2a dataset. A cropped method similar to that mentioned earlier was used [22]. Cropping
was performed with a temporal length of 480. Thus, the cropped strategy generated some
cropped data, as shown in Table 2. Note that the achieved numbers of training data for
different stages were unbalanced.

In order to balance these training datasets, another data-cropping method was pro-
posed. This adjustment method follows the principle of keeping the data number of each
class at around 6000 or less. There are two distinct cropping methods for different situations.
When clipping with a cropped step of 1, if the number of cropped data for some classes is
still less than 6000, the data are cropped with 1, and based on the number of these data,
another class is cropped. Thus, the cropped step size can be calculated as:

step =
num_c1
num_c2

(2)

where num_c1 is the number of data in a class with more than 6000 data and num_c2 is the
number of data of another class with fewer than 6000 data.
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Table 2. The numbers of training data of four motion stages obtained by cropping strategy.

Subject ID C1 C2 C3 C4

S1 5512 196,238 5560 5295
S2 52,032 276,729 6327 14,673
S3 6065 186,403 5487 5530
S4 6278 201,843 8543 8792
S5 27,890 228,718 6202 7210
S6 26,462 233,637 6147 14,712
S7 78,849 239,767 21,997 26,298
S8 10,791 217,182 5676 6036
S9 27,349 210,387 7009 14,817
S10 25,707 251,869 8154 9750
S11 56,070 233,336 7971 19,627
S12 51,158 247,668 19,423 41,810

If the number of data for both the classes is more than 6000 when clipped with a
cropped step of 1, the number of cropped data is set to around 6000 by clipping them with
steps such as (3) and (4).

step1 =
num_c1

6000
(3)

step2 =
num_c2

6000
(4)

where num_c1 is the number of the class 1 data and num_c2 is the number of the other
class’ data.

Note that this cropped method can ensure that the training data of each class are
almost equal but not completely equal. The purpose of this method is to balance different
types of EEG data for improving the classification effect of the model. For the evaluations
using the cross-validation of the WAY-EEG-GAL datasets, the training and testing datasets
were combined and then randomly divided into nine subsets of equal size, out of which
eight subsets were used as training data and a single subset was used as the validation
data in each run.

The average value of each cropped 3D array was subtracted from two datasets, and
the training datasets were shuffled before each training epoch.

3.2. Overall Comparison

The framework described in an earlier study [22] was compared with our proposed
three dense M3D CNNs with different depths using the BCI competition IV-2a and the
WAY-EEG-GAL datasets.

The multi-branch 3D CNN is a deep-learning framework with a three-branch 3D
CNN, where each branch has a distinct receptive field. Based on previous studies, the
multi-branch 3D CNN is considered to be a state-of-the-art classification method for the
BCI IV 2a.

The multi-branch 3D CNN was compared with the proposed three kinds of densely
connected 3D CNNs with different depths, namely, the dense M3D CNN1, dense M3D
CNN2, and dense M3D CNN3, which contain one, two, and three dense blocks, respectively.

Tables 3 and 4 summarize the classification accuracies exhibited by the multi-branch
3D CNN and the proposed three dense 3D CNNs with different depths for both the BCI IV
2a and the WAY-EEG-GAL datasets, respectively. From Table 3, it can be observed that for
the BCI IV 2a datasets, the multi-branch 3D CNN achieved a 75.015% average classification
accuracy for all the subjects.
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Table 3. Comparison of cross-validation results for four different networks for the BCI IV-2a datasets.

Subject Multi-Branch
3D CNN

Dense M3D
CNN1

Dense M3D
CNN2

Dense M3D
CNN3

1 77.397 81.333 82.894 77.500
2 60.140 63.156 67.336 60.254
3 82.927 88.019 88.117 87.889
4 72.288 80.261 79.444 76.556
5 75.836 80.778 82.117 83.483
6 68.988 72.444 74.285 72.536
7 76.036 84.667 86.563 85.601
8 76.855 82.325 81.918 81.567
9 84.665 87.556 88.333 86.588

Mean 75.015 80.060 81.223 79.108

Standard deviation 7.344 7.841 6.845 8.719

p-value
(multi-branch 3D CNN) - 4.07 × 10−5 6.16 × 10−6 2.37 × 10−3

p-value
(dense M3D CNN1) 4.07 × 10−5 - 2.41 × 10−2 0.114

p-value
(dense M3D CNN2) 6.16 × 10−6 2.41 × 10−2 - 2.19 × 10−2

p-value
(dense M3D CNN3) 2.37 × 10−3 0.114 2.19 × 10−2 -

p-value (“NETWORK”) means the significance of the difference (p-value) between different networks’ performance.

Table 4. Comparison of cross-validation results for four different networks for the WAY-EEG-
GAL datasets.

Experiment Class
Multi-

Branch 3D
CNN

Dense M3D
CNN1

Dense M3D
CNN2

Dense M3D
CNN2

C1 and C2
C1 55.623 75.565 73.479 74.281
C2 83.557 79.576 80.407 81.217

C2 and C3
C2 94.305 89.281 90.885 90.541
C3 51.584 64.748 66.438 65.854

C3 and C4
C3 70.259 77.517 75.542 76.853
C4 68.746 71.882 73.523 73.015

Mean 70.679 76.428 76.712 76.960

Standard deviation 16.243 8.175 8.271 8.351

p-value
(multi-branch 3D CNN) - 9.04 × 10−3 7.82 × 10−3 7.22 × 10−3

p-value
(dense M3D CNN1) 9.04 × 10−3 - 0.359 0.163

p-value
(dense M3D CNN2) 7.82 × 10−3 0.359 - 0.246

p-value
(dense M3D CNN3) 7.22 × 10−3 0.163 0.246 -

p-value (“NETWORK”) means the significance of the difference (p-value) between different networks’ performance.

The average accuracy of the dense M3D CNN1, dense M3D CNN2, and dense M3D
CNN3 reached 80.060, 81.223, and 79.108%, respectively, all higher than that for the multi-
branch 3D CNN, with a p-value < 0.01. The dense M3D CNN2 achieved the highest
accuracy of 81.223% and the lowest standard deviation of 6.845%, which means the dense
M3D CNN2 has the best performance and excellent robustness for different subjects.
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To further certify the classification ability of the proposed method, the performance of
the multi-branch 3D CNN was evaluated for the proposed methods on the WAY-EEG-GAL
datasets. The results in Table 4 are the average classification accuracies for 12 subjects.
Table 4 clearly illustrates the experimental results for the dense 3D CNN used on the WAY-
EEG-GAL datasets, which is encouraging, as the dense 3D CNN with three dense blocks
(dense M3D CNN3) achieved a significantly higher average accuracy of 76.960% than the
multi-branch 3D CNN. Moreover, the average accuracy increased as the network depth
became deeper. The average accuracies of the dense M3D CNN1 and dense M3D CNN2
reached 76.428 and 76.960%, respectively, which are also remarkably more competitive
than that of the multi-branch 3D CNN. These experimental results verify the extraordinary
performance of the proposed densely connected multi-branch 3D CNN with an improved
3D presentation method for decoding the EEG signals of motor imagery.

3.3. Influence of New 3D Presentation

Based on the overall comparison stated above, the dense 3D CNN with new 3D
presentation is significantly more competitive than the multi-branch 3D CNN. In this
section, we describe how the proposed dense M3D CNN2 and multi-branch 3D CNN
were trained with the 3D presentation proposed earlier [22] and the currently proposed 3D
presentation, respectively, on the BCI IV 2a datasets.

The experimental results in Table 5 prove that our proposed 3D presentation improves
the performance in EEG decoding. The average accuracy of the training with the proposed
3D presentation was 1.86 and 0.285% higher, respectively, for two different networks than
that of the training with the old 3D presentation in [22]. Simultaneous 0.217 and 0.137%
reductions in standard deviation were also observed for the different subjects, respectively.
The proposed 3D presentation pads the points without electrodes with the mean of all the
EEG signals, which also contain the features of all the electrode signals, instead of zero. This
means, compared to the 3D presentation described in [22], the proposed 3D presentation
not only retains the entire temporal information of the EEG and the sampling electrodes’
spatial distribution information but also makes full utilization of the 3D presentation of all
the electrode signals to improve the effectiveness and robustness of the framework.

Table 5. Comparison of cross-validation results for training on two different networks with different
3D presentations.

Subject Multi-Branch
3D CNN

Multi-Branch
3D CNN *

Dense M3D
CNN2

Dense M3D
CNN2 *

1 77.397 77.725 81.556 82.894
2 60.140 61.578 66.222 67.336
3 82.927 84.751 87.778 88.117
4 72.288 73.892 79.658 79.444
5 75.836 78.335 81.889 82.117
6 68.988 72.414 74.556 74.285
7 76.036 78.667 85.667 86.563
8 76.855 79.287 82.556 81.918
9 84.665 85.222 88.556 88.333

Mean 75.015 76.875 80.938 81.223
Standard deviation 7.344 7.127 6.982 6.845

* indicates that the network was trained with our proposed improved 3D presentation.

3.4. Influence of Dense Connectivity

Huang’s research [25] found that dense connectivity has several impressive advan-
tages such as encouraging feature reuse, enhancing feature propagation, and effectively
alleviating the vanishing-gradient problem. To demonstrate the efficacy of dense connec-
tivity, a 3D CNN was designed without dense connection (namely, the M3D CNN2), which
had the same depth and parameters as the dense M3D CNN2 described in Section B. It was
further compared with the proposed network for the BCI IV 2a datasets.
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Table 6 shows the detailed results for both the networks. The average accuracies of the
3D CNN and proposed dense 3D CNN reached 77.114 and 81.223%, respectively. Compared
to the 3D CNN without dense connectivity, the classification accuracy of the proposed
network for subject 2, subject 3, and subject 5 was significantly improved to 6.863, 5.556,
and 5.135%, respectively. These experimental results prove that our network has better
classification effects for all the subjects, with smaller standard deviations, thereby indicating
that the dense M3D CNN2 is more effective and robust owing to its dense connectivity.

Table 6. Comparison of cross-validation results for training on network without dense connection
with results for the proposed network.

Subject M3D CNN2 Dense M3D CNN2

1 78.424 82.894
2 60.473 67.336
3 82.561 88.117
4 75.549 79.444
5 76.982 82.117
6 72.215 74.285
7 81.617 86.563
8 80.364 81.918
9 85.842 88.333

Mean 77.114 81.223
Standard deviation 7.431 6.845

p-value
(M3D CNN2) - 5.71 × 10−5

p-value
(dense M3D CNN2) 5.71 × 10−5 -

p-value (“NETWORK”) means the significance of the difference (p-value) between different networks’ performance.

3.5. Different Numbers of Branches in Dense Block

For the experiments mentioned earlier, the results were compared for different depths
of the network, indicating that the classification effect is the best for a densely connected
multi-branch 3D CNN with two dense blocks. The experimental results in an earlier
study [22] confirm that compared to the results for three single-branch 3D CNNs, the
results for the multi-branch 3D CNN show better performance than the other three single-
branch networks for nine subjects. In general, the multi-branch 3D CNN achieved higher
average classification accuracies and lower standard deviations for different subjects, which
proves that the multi-branch architecture is more effective and robust than the single-branch
architecture. To further explore the influence of the number of branches in the dense block
on the classification accuracy, a set of experiments was carried out on three networks
with different numbers of branches, which were composed of SRF, SRF and MRF, and a
multi-branch 3D CNN dense block.

Table 7 summarizes the classification accuracies derived for the three networks with
different numbers of branches in the dense blocks. Particularly, the * indicates that there is
one branch in the dense block, and the ** suggests the presence of two branches.

The results in Table 7 suggest that the classification performance of the dense 3D CNN
improves with the number of branches in the dense block, with the average accuracies of
the dense 3D CNN *, dense 3D CNN **, and dense M3D CNN reaching 78.895, 79.526, and
81.223%, respectively.

Meanwhile, the standard deviation for the network with three branches was only
6.845%, which is lower than that for the other methods. Comparing the three different net-
works, it can be concluded that the more-branch architecture can significantly outperform
fewer-branch architectures for all the subjects. This indicates that the more branches the
network of the model has, the better the model can complete the classification task.
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Table 7. Comparison of cross-validation results for training on networks with different numbers of
branches in dense block.

Subject Dense 3D CNN * Dense 3D CNN ** Dense M3D CNN

1 81.33 80.556 82.894
2 64.731 64.518 67.336
3 85.956 87.593 88.117
4 78.289 80.847 79.444
5 81.634 80.349 82.117
6 70.953 69.812 74.285
7 83.913 83.667 86.563
8 79.385 82.014 81.918
9 83.749 86.382 88.333

Mean 78.895 79.526 81.223
Standard deviation 6.864 7.571 6.845

* indicates that there is one branch in dense block; the ** means there are two branches.

Visualizing the convergence process of network training can help us to understand the
performance of the network more intuitively. In this subsection, three different 3D CNN
networks’ (the dense 3D CNN *, dense 3D CNN **, and dense M3D CNN) accuracies and
losses for subject 1 (Because the results for the other subjects were very similar, we analyzed
them with subject 1 as the representative.) for the experimental validation dataset for thirty
training epochs are described. From Figure 6, we can see two interesting phenomena.
First, all the models (including the dense 3D CNN * and dense 3D CNN **) converged,
and the loss values and accuracies were in a stable state from the sixth training epoch,
which means that our network has a fast learning ability and can prevent overfitting well.
According to this phenomenon, in our experiment, we only trained fifteen epochs for all
the networks on all the subjects. Second, the performance of the dense M3D CNN was
slightly better than that of the other two networks, which was due to the combination
of more branches with different filter sizes, which can better extract the features of EEG
signals from different dimensions.
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Overall, the results of the experiments demonstrate that, owing to the dense connec-
tivity, our proposed dense M3D CNN performs well during the training process without
any obvious signs of overfitting, which shows its resistance to overfitting, achieving
improved performance.

3.6. Different Electrode-Selection Modes and Comparison with the State of the Art

Research shows that BCI systems with fewer electrodes can also achieve good per-
formance [22], and the real-time performance and convenience of full-set EEG sampling
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electrodes are not as good as those of sets of fewer sampling electrodes. In this section, we
describe the adoption of four optional electrode-sampling modes, named A-type, B-type,
and C-type, as shown in Figure 7. At the same time, the parameters of the dense M3D
CNN were adjusted (The sizes of all the convolution layers except the first share layer were
changed to 2 × 2 × 3.) for different kinds of electrode-selection mode.
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The performance of three types of subset sampling electrode-selection modes, full-set
EEG sampling electrode modes, and three state-of-the-art MI-classification methods were
compared. The classification results were calculated using the testing dataset of each
subject using the weights trained on the training dataset of the corresponding subject.

Here, Cohen’s kappa coefficient [33] was used to evaluate the performance of the
different networks. The kappa values reported in Table 8 were all averaged over 50 results
using different model initializations. The kappa value is defined as in (5), where P0 is the
proportion of observed agreements and Pe is the probability that the agreement is due
to chance.

Kappa =
P0 − Pe

1 − Pe
(5)

We briefly introduce three state-of-the-art algorithms.
FBCSP: FBCSP [11] is a two-stage method. Firstly, a group of bandpass filters and the

CSP algorithm are used to extract the optimal spatial features from a specific frequency
band, and then, the classifier is trained to classify the extracted features.

C2CM: C2CM [34] first uses FBCSP as a data preprocessing method, and then uses the
CNN to extract features. The performance of this method is better than that of FBCSP, but
the trouble is changing the parameters according to different objects.

Multi-branch 3D CNN: The multi-branch 3D CNN [22] is a deep-learning framework
with a three-branch 3D CNN, where each branch has a distinct receptive field. Based on pre-
vious studies, the multi-branch 3D CNN is considered to be a state-of-the-art classification
method for the BCI IV 2a.

Table 8 summarizes the classification accuracies derived for the FBCSP, C2CM, multi-
branch 3D CNN, and dense M3D CNN with full-set EEG sampling electrodes and A-type,
B-type, and C-type for the BCI IV 2a datasets, respectively.
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Table 8. Comparison of the kappa values for different sampling types and the state of the art.

Subject ID Full-Set A-Type B-Type C-Type FBCSP C2CM Multi-Branch
3D CNN

1 0.775 0.643 0.635 0.710 0.68 0.833 0.699
2 0.543 0.409 0.416 0.440 0.42 0.537 0.459
3 0.824 0.750 0.781 0.698 0.75 0.870 0.788
4 0.604 0.673 0.538 0.541 0.48 0.556 0.594
5 0.777 0.638 0.486 0.584 0.40 0.5 0.647
6 0.591 0.556 0.490 0.421 0.27 0.273 0.538
7 0.837 0.701 0.727 0.651 0.77 0.861 0.653
8 0.672 0.605 0.608 0.584 0.76 0.778 0.702
9 0.870 0.790 0.757 0.845 0.61 0.727 0.713

Mean 0.721 0.641 0.604 0.608 0.571 0.659 0.644
Standard
deviation 0.121 0.112 0.131 0.135 0.206 0.204 0.100

p-value
(full-set) - 3.56 × 10−3 6.38 × 10−4 2.27 × 10−4 7.06 × 10−3 9.54 × 10−3 5.06 × 10−3

p-value
(A-type) 3.56 × 10−3 - 7.30 × 10−2 2.24 × 10−2 1.09 × 10−2 0.37 0.442

p-value
(B-type) 6.38 × 10−4 7.30× 10−2 - 0.436 0.199 0.115 6.55 × 10−2

p-value
(C-type) 2.27 × 10−4 2.24 × 10−2 0.436 - 0.222 0.151 0.106

p-value
(FBCSP) 7.06 × 10−3 1.09 × 10−2 0.199 0.222 - 3.28 × 10−4 6.27 × 10−3

p-value
(C2CM) 7.06 × 10−3 0.37 0.115 0.151 3.28 × 10−4 - 0.377

p-value
(multi-

branch 3D
CNN)

5.06 × 10−3 0.442 6.55 × 10−2 0.106 6.27 × 10−3 0.377 -

p-value (“METHOD”) means the significance of the difference (p-value) between different methods’ performance.

On the one hand, by comparing the results for these networks, we can see, intuitively,
the advantages of our network with full-set EEG sampling electrodes; the kappa value of
our network is much higher than the values of all the other networks. Especially, compared
with C2CM, which has the highest kappa value as far as we know, the kappa value of our
proposed network is 0.21, which is 0.062 higher than that of the C2CM, with a 0.083 decrease
in variance. Compared with the other two algorithms, the FBCSP [11] and multi-branch 3D
CNN [22], our method is more significant and has a better classification effect; although the
kappa variance of our network is slightly larger than that of the multi-branch 3D CNN [22],
the robustness of our network is still at a high level, which means our framework performs
significantly more robustly for different subjects.

On the other hand, our proposed dense M3D CNN with fewer sampling electrodes
also achieved a state-of-the-art classification effect. From Table 8, we can see that, for the
BCI IV 2a dataset, the dense M3D CNN with the A-type, B-type, and C-type sampling
methods proposed in this study achieved 0.641, 0.604, and 0.608 kappa values, respectively,
for nine subjects, all higher than the 0.571 kappa value of FBCSP. This shows that the pro-
posed method is competent for EEG signal classification even if fewer sampling electrodes
are used.

3.7. Time Consumption

Compared with the 3D CNN, our network effectively deepens the depth of the net-
work and introduces dense connections, which makes the classification effect of the network
significantly improved, but it also inevitably increases the complexity of the network, re-
sulting in an increase in network parameters and training time. In the practical application
of BCI systems, the classification accuracy and time consumption are two factors to be con-
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sidered. The experimental results from [3] show that a BCI system with a response within
1 s is very suitable for real-time applications. In this section, we describe how, to evaluate
the practical performance of a BCI system that was based on the proposed framework, we
performed the training of the dense M3D CNN with different sampling electrode modes
(full-set sampling electrodes, and A-type, B-type, and C-type) on a GeForce GTX 1060Ti
GPU with 6 GB of memory. In detail, the time for fifteen training epochs for subjects one to
nine for the whole training dataset (about twenty-one thousand samples) was recorded
as the training time, and then, the average value of nine training times was taken. Simi-
larly, the testing time for subjects one to nine for the whole testing dataset (about twenty
thousand samples) was obtained in this way. The average training time and testing time
for all the subjects was calculated for the BCI IV 2a dataset, and the results for the training
and testing times with the different methods are listed in Table 9. The results show that
on the one hand, the training time and testing time of the dense M3D CNN with full-set
sampling electrodes were 33 min and 5 s and 21 s, longer than those of the A-type, B-type,
and C-type. This means that fewer electrodes can significantly make the training time less,
but also inevitably make the classification effect worse. On the other hand, though our
dense M3D CNN suffers from a high training time, its fast prediction speed (1.04 × 10−3 s,
21 s for about twenty samples) and high prediction accuracy makes it more competitive for
the implementation of online BCI systems or other clinical applications.

Table 9. Training time and testing time.

Training Time Testing Time

Full-set 00:33:05 00:00:21
A-type 00:27:57 00:00:17
B-type 00:27:41 00:00:17
C-type 00:28:05 00:00:17

Dense 3D CNN * 00:23:26 00:00:15
Dense 3D CNN ** 00:29:41 00:00:19

The * indicates that there is one branch in the dense block, and the ** suggests the presence of two branches.

4. Discussion
4.1. Visualization of Intermediate Features

Visualizing the intermediate features of our proposed network can help us to under-
stand how the network learns and why it achieved such high-quality results. In this section,
we describe how we visualized the intermediate features of our proposed network with
the A-type input mentioned above. The network was trained on the training dataset of
subject 1 in advance.

The A-type EEG signal of subject 1 was selected as the sample input because this
input has fewer sampling electrodes, and the corresponding network also achieves a
relatively acceptable performance level, which helps in obtaining more concise and easier-
to-understand results.

In order to fully display the 3D input and the 4D features constructed by the network,
we converted this information into a set of two-dimensional waveforms, as shown in
Figure 8. For example, the first graph in Figure 8 shows an EEG signal represented by
3D representation. The distribution of the subgraph represents the spatial distribution of
the first two dimensions, that is, the nine electrodes. By a similar method, four series of
features obtained by sliding a group of 3D convolution filters along each dimension of the
input were converted into four waveform subgraphs. The distribution of the subgraphs
represents the spatial distribution of the extracted features. All the subsequent graphs
follow the same transformation rules.
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Figure 8 shows the analysis results of the visualization of the trained dense M3D
CNN for subject 1 for the BCI IV 2a dataset, and we can see several interesting properties
from that. Firstly, by observing the input of the raw EEG signals, we found that the EEG
signals from different sampling electrodes were slightly different, which is related to the
distribution between the electrodes. These differences can be considered as an explanation
why the full-set EEG sampling mode can achieve better classification results than fewer-
electrode sampling modes (more sampling electrodes means that the EEG signals have
more different unique characteristics).

Secondly, the first convolutional layer reduces the size of the feature map (in both the
temporal and spatial dimensions), and it is more like a collection of various waveforms
with complementary filters. In the extracted features, almost all the waveform information
of the EEG signal is preserved. Thirdly, as the layers become higher, the size of the
feature remains unchanged, the extracted features become more abstract, and the visual
interpretability becomes worse. In the time domain, the 3D CNN filter begins to provide
higher-level concepts with higher activation values, such as certain crest and high-frequency
characteristics. This phenomenon can be considered as the extraction process for EEG
time-domain features. The localized features that exist on the previous layer begin to
disappear, and the uniqueness of features from different spatial locations is more obvious.
This phenomenon can be considered as the extraction process for EEG spatial features. As
the layers become higher, the extracted features become more complex and unexplainably
different from the image field, so it becomes difficult to find the relationship between the
represented raw EEG signals and extracted features. Although these representations carry
increasingly less information about the visual content of the EEG signals, there is more
information related to the classification results, which proves that deepening the network
depth can improve the classification accuracy.

4.2. Efficacy of Mean Filling

Zhao et al. [22] first proposed the 3D representation of EEG signals, and then extracted
the EEG signal features with a 3D CNN. This 3D presentation is able to preserve both
the temporal features of the EEG and the electrode’s spatial features. Their proposed 3D
presentation pads the no-electrode point with 0, which has no features of the EEG signals.
Here, the proposed 3D presentation pads the points without electrodes with the mean of
all the EEG signals, which also contains the features of all the electrode signals. In this
manner, the EEG features can be more evident and easier to classify, thereby improving
the performance in EEG decoding. Inspired by this method, other padding methods
could be considered for future work, as long as the padding methods do not destroy the
representative features of the EEG signals.

4.3. Multi-Branch Architecture

In the field of deep learning, many successful methods such as the multi-branch 3D
CNN [22] and channel-projection mixed-scale CNN [35] adopt multi-branch architectures.
Zhao et al. [22] compared the classification effects of three single-branch 3D CNNs with
that of the multi-branch 3D CNN and verified the advantages of a multi-branch framework
as compared to the single-branch framework. Our experiments further conclude that with
an increase in the branches of dense blocks, the classification effects become better.

Figure 9 depicts the accuracy comparison of models with different numbers of
branches. In general, except for subject 4, the classification accuracy of the network
improved significantly with an increase in branches, which proves the effectiveness of the
multi-branch network. However, our experiments indicate that with an increase in the
number of branches, the parameters increase correspondingly, which results in increased
training time and degraded real-time performance. If the computing power is adequate, the
classification accuracy can be marginally increased by increasing the number of branches.
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4.4. Efficacy of Dense Connectivity

The experimental results in [25] prove that DenseNets utilize the parameters more
efficiently than alternative frameworks. Besides, the DenseNet BC with a bottleneck layer
is particularly parameter efficient. Owing to the better use of parameters, the dense connec-
tivity can prevent overfitting in a better way. From Figure 10, it can be observed that the
proposed dense connectivity is different from that described earlier [25], as that composite
function is composed of batch normalization (BN), a ReLU, and a 3 × 3 convolution layer
(here, an ELU was taken as the activation function). Moreover, they introduced a 1 × 1
convolution as a bottleneck layer before each 3 × 3 convolution to reduce the number
of input feature maps. However, the connection in the proposed method connects the
feature maps of the current layer with those produced in all the previous convolution layers
(without batch normalization + ELU), similarly, followed by a 1 × 1 × 1 convolution layer.

As demonstrated in Figure 11, compared to the 3D CNN without dense connections,
the proposed dense 3D CNN can effectively improve the classification effect of the frame-
work. It can be concluded that the dense 3D CNN is more competitive than the 3D CNN
without dense connections. Due to its dense connectivity, the densely connected 3D CNN
enhances the gradient backpropagation, making the model easier to train. Additionally, the
dense connectivity enables the network to reuse the features, which can effectively enhance
the utilization efficiency for the features in the network.

4.5. Network Depth

Researchers have improved the training effect by deepening the depth of the network,
such as VGG [23] and ResNet [24]. The experimental results in Tables 3 and 4 illustrate the
depth of our framework as an important factor. In the previous experiment, three different-
depth 3D CNNs were designed with one, two, and three dense blocks, respectively. The
results in Table 4 suggest that, for the BCI competition IV-2a datasets, the average accuracy
of the dense 3D CNN with two dense blocks is higher than that of two other dense 3D
CNNs, with one dense block and three dense blocks. This indicates that if the model
depth is too shallow, it will not extract features properly, and if the network is too deep,
the quantity of the network parameters will be too high to enhance the complexity of
the network, implying overfitting and a marginal reduction in the classification effects.
Thus, the proposed network with two dense blocks has a relatively appropriate depth for
achieving the best classification effects.
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For the WAY-EEG-GAL datasets, as shown in Table 4, the average accuracy increased
as the network became deeper. This indicates that with an improvement in the model
depth, the model can extract the features in a better way. The depth of the model can be
further increased to improve the classification accuracy in future work. The different results
for the two datasets suggest that different datasets have different optimal model depths.
Thus, the depth of the network needs to be changed for different datasets to achieve better
classification effects.

Note that, to alter the depth of the network, there are various other ways, such as
adding a single convolution layer instead of a dense block to the network and modifying
the depth of the dense block so that the network can be changed to accurately obtain the
relatively optimal depth. These methods are not discussed in this paper.

4.6. The Influence of Different Initializations

As we know, due to the nature of neural networks, random initializations are required.
In this section, we describe the use of three different initialization methods for the BCI
competition IV-2a datasets to verify the influence of different parameter initialization
methods on the results. The three initialization methods were random initialization with
a larger variance (10), large variance (1), small variance (1 × 10−3), and smaller variance
(1 × 10−4), and the variance was 0.01. The results, presented in Table 10, indicate that the
kappa values (These kappa values were all obtained from the average kappa values for
nine subjects.) with the different initialization methods were approximately equal; this
means that different initializations do not affect the results significantly. We think this is
mainly due to ADAM (an optimization method), which calculates the updated values of
each parameter, so different initialization methods do not affect the results significantly.

Table 10. The kappa values with different initialization methods.

Variance 1 × 10−4 1 × 10−3 0.01 1 10
Average
kappa 0.720 0.715 0.719 0.722 0.717

4.7. Neuroscience and Brain–Computer Interface (BCI)

A brain–computer interface (BCI) is a direct information link between humans and
external devices. A brain–computer interface system takes EEG signals as input signals,
and then, through signal processing, it can identify a human’s intention and, finally, convert
the human’s thinking activity into a command signal, which can realize the control of
external devices and communication with the outside world; furthermore, it can also input
information into the brain through electrical stimulation and interact with the brain. As a
new, complex, and interdisciplinary technology, brain–computer interface technology is
widely used in many fields, and its future prospects are expected. Recently, neuroscience,
the basis of the brain–computer interface, has made great progress, which is directly pro-
moting the development of brain–computer interfaces. The research into and applications
of neuroscience and brain–computer interfaces will surely benefit many people, especially
motor-disabled people. The EEG signal-decoding algorithm applied in BCIs will also
become very important. Our algorithm is simple and efficient, has good classification
effects and good robustness, and can be widely used in BCI applications.

5. Conclusions

In the discussed proposal, an improved 3D representation method is mentioned, which
fully utilizes the features of EEG signals in the 3D presentation. Furthermore, based on that
approach, a densely connected multi-branch 3D CNN was designed for motor imagery
EEG classification tasks. The densely connected multi-branch 3D CNN can effectively
extract EEG features to achieve good performance in motor-imagery-classification tasks
due to its deep structure and dense connectivity. The classification effect for the BCI IV 2a
datasets and the WAY-EEG-GAL datasets suggests that the proposed method has better
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performance as compared to the state-of-the-art multi-branch 3D CNN. Furthermore, the
proposed method is user-friendly and can be applied to other MI-classification tasks as an
effective method.
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