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Abstract: Millions of students follow online classes which are delivered in video format. Several
studies examine the impact of these video formats on engagement and learning using explicit
measures and outline the need to also investigate the implicit cognitive and emotional states of
online learners. Our study compared two video formats in terms of engagement (over time) and
learning in a between-subject experiment. Engagement was operationalized using explicit and
implicit neurophysiological measures. Twenty-six (26) subjects participated in the study and were
randomly assigned to one of two conditions based on the video shown: infographic video or lecture
capture. The infographic video showed animated graphics, images, and text. The lecture capture
showed a professor, providing a lecture, filmed in a classroom setting. Results suggest that lecture
capture triggers greater emotional engagement over a shorter period, whereas the infographic video
maintains higher emotional and cognitive engagement over longer periods of time. Regarding
student learning, the infographic video contributes to significantly improved performance in matters
of difficult questions. Additionally, our results suggest a significant relationship between engagement
and student performance. In general, the higher the engagement, the better the student performance,
although, in the case of cognitive engagement, the link is quadratic (inverted U shaped).

Keywords: online learning; engagement; video format; learning; neuroscience

1. Introduction

Even prior to COVID-19, millions of students attended online classes that can be
followed asynchronously, without real-time interaction with an instructor [1]. Many of
these classes include videos that expose the learning content [2,3]. The courses and videos
are developed by higher education institutions, but also by online learning platforms such
as Coursera (https://www.coursera.org/). Due to differences in practices and resources
available to these content creators, videos are produced in a variety of ways and their
production styles vary substantially within a platform [2]. Video production style identifies
the way a video’s visual aspects are organized and presented to the audience [2]. At
the same time, researchers and practitioners in the field argue that choosing the right
video format is crucial for student engagement and learning results, in addition to costs of
production [1,3–5].

In traditional school settings, instructional material influences learner engagement [6].
Engagement, it is argued, lowers drop-out probability [6], and increases learning [7]. Recent
studies indicate that this relationship between instructional material (video production style
in particular), engagement, and student retention also holds true in the online learning
environment [2,8,9]. In addition, some video production styles seem to have a larger
impact on learning than others. For example, videos that include an instructor’s image
result in higher student performance [10–12], whereas video designs that are too complex
can overload a student’s cognitive capacity and decrease learning [8,12]. It is therefore
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necessary to analyze the impact of video lecture elements on learning performance and
use those findings to improve the format [4]. Although a number of studies have been
conducted that examine video production styles and their impact on engagement and
learning [3], “survey data and secondary data collected via automated methods dominated
the analyses” in the field [13] (p. 17). That data includes user-generated activity such as
video viewing times automatically captured on online learning servers.

Furthermore, it has been demonstrated that neurophysiological measures allow us to
better understand students’ experience in online learning environments [9,14]. Engagement
evolves over time and is subject to important retrospective bias.

Therefore, there is a benefit to using these implicit measures to capture automatic and
unconscious reactions of subjects [15,16]. Even so, no study has compared the lecture cap-
ture and the infographic video production styles by analyzing the evolution of engagement
over time (the duration of the video) [17]. At the same time, there is not necessarily one
optimal format [10] and not much research has been undertaken to analyze all the different
formats in the field [4], such as the infographic video. According to Hansch et al. [2], we
still need to understand how production value affects learning. They opine that creating
the video is the most expensive aspect of producing an online course. For example, the
creation of a lecture video requires content, filming equipment, a production site, and often
post-editing. The process can become complex and time consuming [3,4]. Da Silva et al. [5]
suggest that beyond the learning efficiency, the choice of an appropriate video design
should be cost-effective. Currently, practitioners in the field justify investment in more
multimedia-rich formats because these are supposed to increase learning and engagement
more than less multimedia-rich material [9]. It is therefore relevant to study the gains, in
terms of engagement or achievement, that are associated with these costs.

Thus, this paper aims to advance current findings by comparing the lecture capture
and infographic video formats to identify the format that engages the students more
emotionally and cognitively over time (the duration of the video), and that provides better
learning outcomes. In addition, we further examine the relationship between student
engagement and learning outcomes.

2. Related Work

The current literature discusses video formats using the cognitive theory of multimedia
learning (CTML) [18] and the media richness theory [19]. These theoretical frameworks
help to outline the conceptual differences between our two video production styles. The
differences have specific consequences in terms of learning outcomes and engagement.

2.1. Cognitive Theory of Multimedia Learning

Mayer [18] developed the cognitive theory of multimedia learning (CTML), which
aims to explain the relationship between multimedia learning and the cognitive processes
of students regarding the assimilation of knowledge. This model outlines three predictions.
First, a person needs to be actively processing incoming information for learning to happen.
This means that a person first needs to actively use their senses (hearing, seeing) to perceive
the information so that it can then be sent to and processed in the working memory [11].
Second, during “learning”, information is gathered and processed in the student’s working
memory. Visual and auditory information are treated separately, in two channels [11,20,21].
The visuospatial sketchpad processes the visual information, such as an image on the screen,
and the phonological loop handles auditory stimuli, such as the voice of the professor.
Third, at any given time, the visuospatial sketchpad and phonological loop can handle a
restricted amount of information in relation to the limited capacity of the working memory.

Regarding the first prediction, several authors in the multimedia learning field argue
that active attention to the visual and verbal stimuli of the multimedia lecture is required for
effective learning [11,22]. In videos, they suggest that the social cues (voice, face) of the lec-
turer increase the student’s engagement and therefore lead to better performance [3,12,22].
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Consistent with the dual channel principle, it is suggested that video and audio input
delivered at the same time provide better results in terms of engagement and learning
performance in empirical studies [9]. However, these inputs in instructional videos need
to be relevant in terms of improving engagement and learning, in addition to providing a
positive trade-off for the cognitive load they can cause.

Too much load on the visuospatial sketchpad has been found to limit the ability
of students to attend to all the content presented visually in multimedia learning, thus
inhibiting the student’s acquisition of knowledge [4,12,21], and also negatively impact their
engagement (attention, emotions) [4,9,12]. Further, instructor presence does not necessarily
elicit better engagement, satisfaction, and perceived learning [8,12,21]. The benefits of
social presence and nonverbal communication can be counterbalanced by more demand
being placed on the visual channel due to the processing of social cues [11,12]. In general,
the trade-offs seem to be more prominent when students are increasingly exposed to stimuli
and their attentional resources are being depleted [22]. Additional research can clarify the
benefits and trade-offs of different visual and audio elements.

2.2. Media Richness Theory

Another theoretical lens is the media richness theory. According to Trevino et al. [19],
communication channels have different levels of media richness. The phrase “level of
richness” denotes the extent to which a medium can efficiently transmit the information that
allows people to have a prompt and common understanding. Thus, some communication
means are better at transmitting information than others and allow for a rapid reduction in
uncertainty and equivocality to produce the same interpretation. Four criteria allow us
to determine the level of richness of a medium. First, the faster the medium allows for
feedback, the better it is at reducing misunderstanding. Second, the more cues the medium
provides (images, graphics, numbers, voice, body language), the better it is at facilitating
the right interpretation. Third, a diverse vocabulary which includes numbers and natural
language provides rigor (numbers) and context (natural language) at the same time and
improves communication. Fourth, a medium which includes personal focus, in addition to
emotional responses, will provide additional personal meaning and increase the efficiency
of the communication [19,23].

The theoretical propositions for multimedia learning are that instructional material
with higher levels of richness according to the four criteria will be better at transmitting
information and conveying meaning. Empirical research suggests that rich media reduces
the effort needed by parties to understand each other [4]. In multimedia learning, Chang
and Chang [24], and Chen et al. [9], have demonstrated that increasing the richness of the
learning material makes communication more efficient and leads to positive responses
from students. Similar results were also reported by Ilioudi et al. [10], who found that
lecture videos with an instructor’s image were more effective for learning complex topics
than studying them from a book.

However, when Chen et al. [4] compared three different video lecture types which
have seemingly different levels of richness, he found that students’ positive and negative
emotional responses were similar. The research in this field can therefore benefit from
further empirical studies into the effect of media richness on engagement and learning.

2.3. Multimedia Learning and Engagement

Many studies underline the importance of engagement in education. It improves
student learning [3] and retention [25]. In particular, students’ emotions (emotional en-
gagement) are linked to retention [17] and learning [14]. In the context of this research,
it was shown that emotions (emotional engagement) can be influenced by the visual
characteristics of multimedia learning material and in turn impact learning outcomes [9].

Fredricks, Blumenfeld and Paris [6] propose a multidimensional definition of engage-
ment which is composed of behavioral engagement, emotional engagement, and cognitive
engagement. Behavioral engagement is divided into three dimensions: conduct, work
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involvement, and participation. Conduct refers to positive behavior, such as showing up
for class, or not spamming in forums. Work involvement is defined as the effort of simply
doing the work. Participation means involvement in extracurricular activities, contributing
to class discussions, or asking questions [6]. Given the passive research’s context (i.e.,
online videos without behavioral interaction with instructors and peers), we have excluded
this dimension from our study to focus on emotional and cognitive engagement.

Emotional engagement is broadly defined as positive or negative reactions that do not
require cognitive effort and that are spontaneous [16]. Such reactions can be discrete emo-
tions such as interest, boredom, happiness, sadness, and anxiety [6]. In turn, these discrete
emotions can be grouped under arousal (i.e., activation) and valence [14]. Feldman [26]
defines valence as a pleasant or unpleasant emotional state (e.g., happiness, sadness),
whereas arousal describes a physiologically aroused or calm state (e.g., anxiety, boredom).

A person is cognitively engaged when actively trying to understand new informa-
tion [6]. In particular, cognitive engagement is a “psychological process involving attention
and investment” [27] (p. 18). Fredricks, Blumenfeld and Paris [6] support the hypothesis
that it is necessary to study the three engagement components together, because they are
interlinked and together provide a richer characterization of a student’s state.

3. Hypothesis Development

As stated previously, our general research objective is to analyze two different video
formats (lecture capture and infographic video) in terms of engagement (RQ1) and learning
(RQ2). These formats are characterized by social cues, cognitive demand, and media
richness. As supported by our literature review, these characteristics have an impact on the
emotional and cognitive engagement of students. Additionally, the aim of this paper is to
further examine the link between engagement and learning (RQ3).

We argue that our two video production styles are characterized by a different level
of media richness, and that this difference in media richness will produce a significant
disparity in emotional engagement. In this regard, the infographic video provides more
visual cues (second criteria) and richer vocabulary (third criteria) than the lecture capture,
which has only simple video and audio. This will produce more excitement (arousal) and
satisfaction (valence) in the infographic condition. Furthermore, human presence in the
lecture capture can activate substantial cognitive resources, increase the effort required to
process the information and offset the benefits provided by social cueing [4,12]. In light of
the CTML and the media richness theory, we propose that emotional engagement (arousal,
valence) will be higher in the infographic condition.

Hypothesis 1A. Emotional engagement will be higher for infographic video.

As discussed for emotional engagement, we argue that the rich content of the info-
graphic video sustains a student’s attentional engagement more effectively than a mere
focus on the teacher for 15 min, similar to the results of Korving et al.’s [22] research.
Maintaining focus on a single static point can be challenging. Thus, dynamic content with
short shot sequences can be better at maintaining a student’s cognitive attention [5].

Chen et al.’s [9] results also suggest that richer media provides a more immersive
experience for students. Objects which appear on the screen such as tables and images
are well-organized in the infographic condition. There is no second window which shows
the professor or agenda. Therefore, the learner can focus all his attention on the informa-
tion displayed without having to divide it between the professor’s image and the text,
for example. In conclusion, we argue that cognitive engagement will be higher in the
infographic condition.

Hypothesis 1B. Cognitive engagement will be higher for infographic video.

Most research supports the hypothesis that higher media richness has a positive
impact on learning performance, as in the case of infographic video compared to lecture
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capture. Interesting visual effects and graphics which convey further meaning and provide
more context are likely to support more learning, especially in terms of difficult questions.
In addition, according to the CTML, multimedia material which provides audio and video
stimuli will promote better learning. An infographic video presents visual information
in the form of graphics which are processed by the visual loop. At the same time, the
narration provides additional explanations which are processed by the audio loop of the
learner. By comparison, the lecture capture provides narration and an image of a teacher in
the class. However, a simple image of the teacher does not necessarily convey or support
additional information processing in the video loop [21]. Therefore, we propose that the
infographic video format will have a better impact on learning.

Hypothesis 2. Learning performance will be higher for infographic video.

As discussed, many studies argue that there is a significant relationship between the
emotional engagement of students and their learning [8,9,14,21]. In particular, Lee et al.’s [8]
research shows that socialness perception, arousal, and pleasure have an effect on a stu-
dent’s performance. While testing different video course designs, Chen et al. [9] found
that there is a link between negative emotions and students’ lower learning. We expect a
positive correlation between positive emotional states and performance, so we propose
that the higher the emotional engagement, the better the student performance.

Hypothesis 3A. The higher the emotional engagement, the better the student performance.

Cognitive engagement and, more specifically, attention, is considered key for effective
learning in multimedia teaching [22,28]. Chen et al. [4] further proposes that video pro-
duction style is an important focus of analysis because it could affect sustained attention.
He argues that excessively high levels (and deviation) of sustained attention cause stress
and, as a result, students’ performance decreases. Thus, we expect a positive correlation
between attention and performance. However, this relationship is likely to be quadratic
(inverted U shaped).

Hypothesis 3B. There is a quadratic relationship between cognitive engagement and performance.

4. Methods
4.1. Experimental Design and Participants

To test these hypotheses, we conducted a between-subject lab experiment with two con-
ditions. In both conditions the subjects passively watched an approximately 14-min-long
pedagogical video on a segment of a course on Introduction to Organizational Behavior.
During viewing, emotional and cognitive measures were recorded with neurophysiological
instruments (Noldus Information Technology, Wageningen, Netherlands; Biopac, Goleta,
USA; Brain Vision, Morrisville, USA; Mensia Technologies, Paris, France). Furthermore,
pre- and post-test multiple-choice questionnaires were administered to measure student
learning. Upon completion of the experiment, subjects were given a $30 gift card for the
university bookstore. The research protocol was approved by the HEC Montréal-Comité
d’éthique de la recherche (2017-2364-55) before the experiment took place. A total of
16 male and 10 female subjects participated in the study. They were recruited using an
institutional panel of research participants. The subjects were on average 26.20 years old
with a standard deviation of 6.93. Male participants had an average age of 25.56 (standard
deviation (STD) 6.93), and female 27.33 (STD 6.98).

Subjects were randomly assigned to one of the two conditions and were pre-screened
before participation. In the infographic condition, the mean age was 24.33 (STD 6.93). There
were nine males (mean age 22.22, STD 6.93) and three females (mean age 30.67, STD 7.58).
In the lecture condition. the average age was 27.92 (STD 7.11), with seven males (mean age
29.86, STD 7.17) and seven females (mean age 25.67, STD 6.98). First, only subjects who had
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not previously attended any psychology classes at the university level were admitted. This
was done to ensure that no one had prior knowledge of the content in the videos. Second,
subjects who had a psychological diagnosis such as epilepsy were excluded as this could
cause deviations in the electroencephalography (EEG) signal, similar to Gollan et al. [29].

4.2. Experimental Stimuli

Two lecture videos with the assistance of the same professor were created specifically
for the study. Both videos explained exactly the same content, namely, a chapter of the
introductory psychology course at our institution, and had approximately the same length
(14 min). This is within the length range suggested for videos by previous research [4,22,30].
In the rich infographic condition, learners saw a continuous flow of images, graphics, and
text which was synchronized with an audio track (infographic video, see Figure 1); this
condition was designed building upon the best practices suggested by the edX community
on how to build and run an online course (visit edx.readthedocs.io for more details) In
the lecture condition, subjects saw a video recording of a class lecture (lecture capture, see
Figure 2) that was not enriched. A professor and some students who attended the class
are visible. No other content, such as PowerPoint slides, was present. The voice of the
professor was the same in both conditions.
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styles in terms of the theory discussed (media richness and CTML).
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Table 1. Research stimuli in comparison.

Comparison Item Lecture Capture Infographic Video

Cost Low High

Conveyed learning context
A professor presenting the

subject in a traditional
class setting

A visual presentation which
shows dynamic content with a

background voice of the
same professor

Multimedia elements Camera focused on the
professor, audio Graphics, images, text, audio

Media richness Medium High

Social cues Many Some

4.3. Operationalization of the Research Variables

The students’ emotional and cognitive engagement over time was inferred on the basis
of the related neurophysiological states (valence, arousal, attention) which we measured
using implicit and explicit data. Implicit data was collected through neurophysiological
sensors (e.g., electroencephalography (EEG), electrodermal activity (EDA), and facial
expression recognition). Explicit data was self-assessed (e.g., questionnaires). Table 2
illustrates the operationalization.

Table 2. Operationalization of the measures.

Measure Neurophysiological State
(Response to Stimuli) Operationalization

Emotional engagement Affective response: valence

Implicit measure: Facial
expressions (Noldus Information

Technology, Wageningen,
Netherlands)

Explicit measure: SAM
Scale-pleasure

Emotional engagement Affective response: arousal

Implicit measures: Facial
expressions (Noldus Information

Technology, Wageningen,
Netherlands) and EDA (Biopac,

Goleta, USA)
Explicit measure: SAM

Scale-arousal

Cognitive engagement Cognitive response: attention

Implicit measure: EEG (Brain
Vision, Morrisville, USA), Mensia
NeuroRT (Mensia Technologies,

Paris, France)

Learning performance
Difference between pre- and

post-test multiple-choice
questionnaire results

Self-Assessment Manikin (SAM) Scale, see [31].

4.3.1. Emotional Engagement

First, it needs to be noted that emotions are considered multi-componential, and they
can cause different bodily responses (e.g., open mouth, increased heart rate) [14]. These
emotional components are divided into behavioral (facial), experimental (how emotions
make one feel), and physiological (EDA) responses [14]. In other words, “emotional
response can be measured in at least three different systems-affective reports, physiological
reactivity, and overt behavioral acts” [14] (p. 49). Affective reports (such as the Self-
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Assessment Manikin (SAM) Scale) help us understand how participants perceive and feel
about the stimuli [31].

In particular, the SAM scale measures the self-reported affective state (i.e., pleasure
and arousal) using a non-verbal scale [31]. Because the SAM scale is iconographic and
contains only a single item, research shows that it seems to capture a more spontaneous
emotional perception [32]. The SAM scale is a popular instrument and has been previously
used in many fields, including education research. For example, Lee et al. [8] used the
SAM to compare different video production styles. Consequently, we used the SAM to
capture the self-reported arousal and valence of participants. After the learners viewed the
video, a web page featuring the SAM appeared on the screen.

In addition, Keltner and Ekman [33] outlined the link between facial expressions and
six basic emotions (happiness, sadness, surprise, fear, disgust, and anger). Based on that
work, several studies were able to successfully use automatic facial expressions analysis
software to recognize emotions of participants in an e-learning environment [34–36]. In this
study, Noldus FaceReader (Noldus Information Technology, Wageningen, Netherlands)
was used as automatic facial emotion recognition software. It records the subject’s facial
expressions and measures the intensity of Ekman’s six basic emotions and the neutral
expression of the participants. To be specific, the Active Appearance Model captures
the facial expressions, while an artificial neural network classifies them and computes a
standardized valence and arousal value. The value reported ranges from −1 to 1 with
30 inferences per second. The higher the value, the more the person is pleased or aroused.
FaceReader has been validated and used in studies similar to ours [14,37].

Physiological reactivity in the form of EDA can be measured by looking at the skin’s
electrical conductance levels (SCL) and changes in these levels due to sympathetic activity.
For that purpose, two electrodes pass a small amount of electricity through the skin and
SCL is measured in microsiemens or µS. EDA (arousal) is high when people are curious
or anxious, and low then they are bored/relaxed [14]. Electrodermal activity is widely
and reliably used to measure arousal due to stimuli [16]. In particular, Charland et al. [38]
and Harley et al. [14] used EDA to assess students’ arousal states during learning exer-
cises. We used Biopac’s technology (Biopac, Goleta, CA, USA) to record EDA data. To
capture electrodermal activity, a wireless amplifier Biopac MP (Biopac, Goleta, CA, USA)
and two electrodes placed on the palm of the non-dominant hand were used as appara-
tus [39]. Biopac MP has been successfully employed in a variety of studies to measure
arousal [39,40].

4.3.2. Cognitive Engagement

Based on the frequency and amplitude of the signal, and the spatial location of its
origin, EEG can be used to infer cognitive states of the subjects. In particular, it allows us to
assess attention [28,41]. Chen et al. [4] used an EEG headset to measure sustained attention.
He was able to detect low attention spans in students who were watching video lectures.

Pope, Bogart and Bartolome [42] developed a cognitive engagement index (vigilance
index) based on the EEG signal’s spectral decomposition. This engagement index has
been widely used in different contexts [38]. They mainly argue that higher beta activity
is related to increased vigilance, whereas increased alpha and theta activity is linked to
lower vigilance. Subjects in a state of high vigilance (high beta activity) respond better to
stimuli [41].

We computed our cognitive engagement ratio according to a modified version of the
cognitive engagement index as proposed by Mikulka et al. [43] using Mensia NeuroRT
(Mensia Technologies, Paris, France), advanced signal processing software. Building upon
previous work [42], a cognitive engagement index was designed to range from 2 to 20.
Our EEG data collection was performed with BrainVision ActiChamp 32 (Brain Vision,
Morrisville, NY, USA), which is a non-invasive technique that uses electrodes placed on
the scalp surface to record EEG signals [9]. We used the international 10/20 system for
electrode placement as proposed by the American Encephalographic Society [44].
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4.3.3. Learning Performance

To measure learning performance (achievement), subjects completed a multiple-choice
questionnaire (25 questions), before (pre-test) and after (post-test) viewing either version of
the learning video. Similar to previous research, there was no time limit to complete the
questionnaire, and no feedback was given to avoid affecting the post-test [4,16,21]. Pre-test
and post-test questions are the same, as in Chen et al. [9]. Recall and transfer questions
were included, as used in Wang et al. [12]. Each question was answered either correctly and
counted as 1, or incorrectly and counted as 0. For each student, the percentage of correctly
answered questions was calculated for the overall questionnaire and for each difficulty
rating. Learning was calculated by subtracting pre- and post-test results.

To create the difficulty classification, the complexity of questions was rated by six
experts using a 4-point Likert scale (1 = easy, 2 = medium, 3 = medium-difficult, 4 = difficult),
as suggested by Cronan et al. [45] and similar to previous research [12]. Questions that
were answered incorrectly by ≥50% of the experts were removed as ambiguous.

The median difficulty of all questions based on an expert rating was 2. Easy questions
measure low complexity knowledge, whereas difficult questions measure high complexity
knowledge. According to Bloom’s revised taxonomy, students who can answer actually
difficult questions have acquired a deeper understanding of the material [45]. They can
analyze a new problem using acquired knowledge and apply that knowledge to solve
the problem.

4.4. Experimental Setup and Protocol

The experiment was conducted in a usability laboratory. Participants were seated
in an experimental room with a computer to perform the task. In an adjacent room, the
researchers monitored the experiment via a one-way mirror and computers to record the
participants’ neurophysiological responses.

There were no breaks during the experiment, and each session lasted on average
1 h and 30 min, including the setup and calibration of the equipment. Upon arrival,
subjects had to first read and sign the Consent Agreement and their conformity to our
selection criteria was verified. Next, they were informed that they would be taking part in
a study which evaluates different lecture video designs, and they were given a summary of
the experiment.

Once the equipment was set up, and the EEG baseline was established, and all of the
devices began their recordings, which continued until all of the tasks in the experiment
were completed. The data was synchronized using markers which delineated each part of
the experiment in all of the equipment (e.g., beginning/end of the video). All tasks were
performed on a 22-inch flat screen in front of the participants. Subjects were first asked
to relax and close their eyes for 90 s to provide a baseline for the EEG signal. Then, for
one minute, participants saw and counted randomly colored squares which appeared on
the screen for 6 s each. In the next step, they completed a multiple-choice questionnaire
(25 questions) to assess their pre-test knowledge of the video content. After completing the
assessment, subjects started to watch one of the two videos.

No note-taking or pausing was allowed during viewing to ensure comparability of
the neurophysiological data over time between the two conditions and subjects. Once the
video ended, a SAM questionnaire was administered. As a post-test, the same questions as
in the pre-test were asked, to assess the learner’s performance after viewing the video.

4.5. Data Processing

Once acquired, all of the data—i.e., EDA data from Biopac, FaceReader’s valence
and arousal, cognitive engagement ratio from Mensia NeuroRT, SAM results, and pre-
and post-test answers—was exported into csv files and imported to SAS (SAS Institute
Inc., Cary, NC, USA). Data was then prepared, synchronized, and analyzed in SAS using
statistical models appropriate for each research question/data type.
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For implicit granular-over-time data, we first computed a one second moving average
for valence and arousal similar to previous research [14,37]. Given the experiment’s
14 min recording, we obtained 840 one-second epochs (60 s × 14 min) for each participant.
Measures that had distributions that departed greatly from a normal distribution were
transformed using log or square root transformations [46]. A one second average of
the cognitive engagement index was calculated using Mensia NeuroRT. Then, we used
repeated-measures multiple linear regression with random effects (subject) to test if there
is a significant difference between conditions (over time/on average) in terms of arousal,
valence, or attention, similar to Sanders [47] and Charland et al. [41]. We argued that
neurophysiological data can be modeled using time series because fluctuations depend
on past values. Thus, we used “proc mixed” with autoregressive covariance structure (see
SAS/STAT(R) 9.2 User’s Guide, Second Edition). Furthermore, we included random effects
for the origin/intercept to account for variability between individuals. The method used
was maximum likelihood. Additionally, we used the Mann–Whitney U Test because of
the small sample to compare the SAM’s valence/arousal between the two conditions [10].
Moreover, we computed the subjects’ performance for the pre- and post-test questionnaires
and calculated how much they had learned. To verify if there were significant differences
in learning between conditions, we performed a signed rank test.

Finally, we used multiple linear regression (“proc reg”) to model the relationship
between the performance as dependent variable and a given implicit neurophysiological
measure as independent variable. The overall implicit measures are averages calculated
over the video session (i.e., the average of each of the 840 one-second data points recorded
for each participant). We also included quadratic relationships and condition as a control
variable in the model. The relationship between the SAM’s valence/arousal and perfor-
mance was analyzed using Spearman correlation coefficients due to the small sample size.

5. Results and Discussion

We compared lecture capture and infographic video formats by considering engage-
ment over time (RQ1) and student performance (RQ2). An analysis of the link between
student engagement and learning outcomes was also performed (RQ3). For RQ1, we
hypothesized that emotional (H1A) and cognitive (H1B) engagement are higher for the
infographic video. The latter should also allow for better learning outcomes (RQ2-H2).
Finally, for RQ3, we proposed that the higher the emotional (H3A) and cognitive (H3B)
engagement, the better the student performance. This relationship is, however, quadratic
in the case of cognitive engagement.

5.1. Comparison of Emotional Engagement between the Conditions (H1A)

The results summarized in Table 3 suggest that, on average, there was no significant
difference in valence between the conditions (β = −0.19, Sig. = 0.15 > 0.05) according to
facial expression analysis. However, there was a significant difference in the evolution of
valence over time (β = 7.30 × 10−6, Sig.≤ 0.0001 < 0.05). Although valence of students who
viewed the infographic video decreased over time, it increased over time for those who
viewed the lecture capture.
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Table 3. Engagement results for lecture condition compared to infographic condition.

Facial Expressions SAM EDA EEG

Valence
(Mean)

Valence
(Over
Time)

Arousal
(Mean)

Arousal
(Over Time) Valence Arousal Arousal

(Mean)

Arousal
(Over
Time)

Arousal
(STD)

Arousal
(STD Over

Time)

Attention
(Mean)

Attention
(Over
Time)

β Estimate −0.19 7.30 × 10−6 −0.02 −5 × 10−6 0.24 −60 × 10−6 −0.004 2.4 × 10−6 −0.06 −44 × 10−6

t Value −1.45 4.97 −1.12 −10.73 8.22 −9.48 −0.55 2.43 −0.23 −2.11
Sig. 0.15 <0.0001 0.26 <0.0001 0.24 0.53 <0.0001 <0.0001 0.58 0.02 0.81 0.03

Note: Infographic condition is used as reference.
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Explicit valence as reported with the SAM seems to confirm the above finding, as there
was no significant difference (on average) in self-reported valence between the conditions
(Sig. = 0.24 > 0.05). In general, subjects in both conditions were, however, pleased with the
videos: infographic video (mean 6.17, STD 1.47) and lecture capture (mean 6.86, STD 1.66).

Furthermore, there was no significant difference in arousal between the conditions
(β = −0.02, Sig. = 0.26 > 0.05) according to facial expression analysis. On average, the subjects
in both infographic and lecture conditions had similar arousals. However, there was a signif-
icant difference in the evolution of arousal over time (β = −5 × 10−6, Sig. ≤ 0.0001 < 0.05).
Although arousal of students who viewed the lecture capture decreased over time, it
increased over time for those who viewed the infographic video.

Self-reported arousal seems to confirm the above finding, as there was no significant
difference (on average) between the conditions (Sig. = 0.53 > 0.05). In general, subjects in
both conditions were somewhat excited while watching the infographic video (mean 5.42,
STD 1.62) and the lecture capture (mean 4.79, STD 2.39).

Regarding arousal operationalized through mean EDA, there was a significant differ-
ence between the two conditions (β = 0.24, Sig. ≤ 0.0001 < 0.05). Subjects in the infographic
condition had, on average, lower arousal than subjects in the lecture condition. However,
over time, the infographic video was able to incite significantly more arousal than the
lecture capture (β = −60 × 10−6, Sig. ≤ 0.0001 < 0.05). At some point, around 7 min, the
former managed to invoke more arousal than the latter.

It is relevant to note that arousal in both conditions decreased over time. This was not
observed in the case of implicit arousal deduced from facial expressions. Furthermore, the
latter and explicit arousal did not exhibit a significant difference between conditions on
average. Nevertheless, both implicit measures (facial emotions and mean EDA) show that
lecture capture induced less arousal over time than infographic video.

Regarding deviation in implicit arousal according to EDA recordings, our results sug-
gest that there was no significant difference between the conditions on average (β = −0.004,
Sig. = 0.58 > 0.05). Subjects who watched the infographic video had, on average, a similar
arousal variability to those who watched the lecture capture. However, over time, the
infographic video was able to incite significantly more arousal deviation than the lecture
capture (β = 2.4 × 10−6, Sig. = 0.02 < 0.05). In addition, after 3 min, the former managed
to produce more arousal variability than the latter. This result was supported by implicit
arousal operationalized using facial expressions and mean EDA. It is interesting to note
that variability of EDA in both conditions decreased. We can assume that students get
tired over time and their EDA variability stabilizes as their arousal response to external
stimuli diminishes.

The results do not support H1A: Emotional engagement will be higher for the info-
graphic video. The infographic video could maintain the arousal of subjects over time
significantly better than can lecture capture. However, the lecture capture video format
seemed to engage subjects more emotionally at the beginning of the viewing period and
students were happier to watch it over time. Specifically, we argue that subjects seemed
to be more aroused (higher mean EDA) when seeing the professor at the beginning of the
video and responded positively (higher valence) over time to the social presence provided
by the lecturer.

From the theoretical standpoint, the CTML framework suggests that the lecturer in
the video will have a positive effect on students’ emotional engagement by providing
social cues. Regarding the media richness theory, the lecture capture shows the professors’
body movements, which could provide additional cues, increase personal meaning (fourth
criteria), and affect arousal and valence positively. In empirical studies, it has been shown
that social perception is related to arousal [8] and that viewing the lecturer increases student
learning, satisfaction, and (affective) engagement [11,12]. In particular, when comparing
lectures that include PowerPoint slides and/or no professor visuals, Kizilcec et al. [11]
report that students prefer lectures in which the professor is shown. In our study, we saw
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a spike in mean EDA at the beginning for the lecture condition because the human face
provides an “intimate and personal” [3] (p. 5) feel compared to PowerPoint slides.

Nevertheless, the infographic video is better at maintaining arousal. It provides
more visual and vocal cues. In coherence with the media richness theory and related
studies [9], this leads over time to higher emotional engagement, in our case arousal,
compared to lecture capture, which is not enriched. At the same time, the social cues of the
professor create an additional strain on the students over time as suggested by previous
research [4,12]. Thus, emotional activation decreases faster in the lecture condition.

5.2. Comparison of Cognitive Engagement between the Conditions (H1B)

Our results suggest that on average, there was no significant difference in attention
between the conditions (β = −0.06, Sig. = 0.81 > 0.05). On average, the subjects in both
infographic and lecture conditions had similar attention levels. However, there was a signif-
icant difference in the evolution of attention over time (β = −44 × 10−6, Sig. = 0.03 < 0.05).
While the attention of subjects in infographic condition increased, it decreased for those in
lecture condition. In other words, although attention in both conditions began similarly
(significant intercept), over time the infographic video engaged the students much more.
Furthermore, after 2 min the latter managed to evoke more attention than the lecture
capture. Therefore, the results do support H1B: Cognitive engagement will be higher for
the infographic video.

Previous research supports the hypothesis that richer media will provide a more
immersive experience to learners than less rich media, in our case, lecture capture [9]. In
addition, based on cinemetrics analysis, Da Silva et al. [5] recommend that online learning
videos should be dynamic and have short shot sequences to attract a student’s attention.
The infographic video has interesting visual effects, animated graphics, text, and audio.
Thus, we argue that the higher media richness of the infographic video allows for better
cognitive engagement over time, compared to not-enriched lecture capture.

Furthermore, the two channels hypothesis of the CTML suggests that students will
perform better if the multimedia learning material provides both visual and auditory
stimulus [5]. For instance, an instructor’s face in addition to his speech contributes supple-
mentary social cues which can evoke more attention and emotion.

However, as in the case of the lecture capture, such benefits can be offset with a
greater cognitive load, burden the students, and negatively impact engagement and learn-
ing [4,9,12]. This could especially be the situation if the instructor’s image does not provide
additional information to that already being presented on the slides or through narra-
tion [21]. Similar to our results, the first outcome of Korving et al.’s [22] research suggests
that subjects pay less attention when the professor is visible, than when he is not. Conse-
quently, as the infographic video integrates visual and auditory stimuli more effectively, it
is better at preserving subject attention over time than the lecture capture.

5.3. Comparison of Learning Outcomes Between the Conditions (H2)

Before seeing the videos, students answered 53% of questions correctly overall. The
percentage was 51% in the infographic condition and 54% in the lecture condition. There
was no significant difference in the overall performance between the two conditions pre-test
(Sig. = 0.68 > 0.05). In addition, there was no difference between the two groups in mas-
tering the different types of questions (easy: Sig. = 0.79 > 0.05, medium: Sig. = 0.75 > 0.05
difficult: Sig. = 0.11 > 0.05). The post-test questionnaire revealed that students improved sig-
nificantly after watching the video. Students performed significantly better after watching
the videos, regardless of the condition and question type (Sig. = 0.04 < 0.05).

In post-test questionnaires, participants in the infographic condition performed 3%
better overall and their performance increased by 6% more. However, this overall difference
between conditions was not significant (Sig. = 0.20 > 0.05). Examination of the results of the
different question types separately shows that there was a significant difference in terms
of mastering difficult questions (Sig. = 0.04 < 0.05). The number of correctly answered
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difficult questions increased by 38% in the infographic condition and only by 18% in the
lecture condition. Four of six difficult questions were answered better by subjects in the
infographic condition. The results support H2: Learning performance will be higher for
infographic video. It is relevant to note that a significant difference for all question types
would have been problematic. Both videos exhibit the same content. Therefore, there
should not be a significant difference between the two conditions in terms of answering
easy questions. The opposite could have indicated a design issue with our videos.

The findings are supported by the media richness theory. Because the infographic
video is a richer medium than the lecture capture, it is better at reducing uncertainty
and equivocality. Thus, students are able to learn faster and better. Empirically, our
results are supported by earlier research asserting that richer media improves student
performance [4,9,10]. As is the case with the infographic video, Chen et al. [4] outline in
their study that some formats have an improved layout, with better presentation of verbal
and nonverbal elements than others, and therefore are more efficient at teaching students.
Likewise, Illioudi et al. [10] report that richer media specifically allows students to master
difficult topics.

According to the CTML, enhanced integration of video and audio allows improved
learning because information is processed by two separate channels [4]. In this regard,
several studies have indicated that a professor’s image adds social cues and meaning
(gesturing), and therefore increases learning [10,21]. When students see a professor, social
interaction schemas are activated, which aids cognitive processing. At the same time,
students can focus their visual attention on the lecturer and listen to audio simultaneously.
This leads to improved comprehension because information streams from two channels
can complement and enhance each other [12]. However, our results indicate that the
aforementioned does not necessarily translate into more learning with the lecture capture.
Conversely, Wang et al. [12] and Homer et al. [21] outline in their research that the instruc-
tor’s image does not necessarily provide much more information, and social cues can be
offset by the increased cognitive load they cause.

5.4. Relationship between Emotional Engagement and Learning (H3A)

The results, summarized in Table 4, support the hypothesis that there is a signifi-
cant relationship between a subject’s overall performance and valence, based on facial
expression analysis. The higher the valence, the higher the performance (adjusted R = 0.13,
β = 20.27, Sig. = 0.03 < 0.05). However, self-reported valence seems to contradict the above
finding, because there was no significant correlation between explicit valence and learning
outcomes (Sig. = 0.53 > 0.05). Furthermore, there was a significant relationship between a
subject’s overall performance and mean arousal (facial expression analysis), if we include
deviation of arousal into the model. The higher the mean and variability of arousal, the
higher the performance (adjusted R = 0.11, β = 123.62, Sig. = 0.03 < 0.05 (one-tailed) and
β = 110.22, Sig. = 0.04 < 0.05 (one-tailed)). This effect was true regardless of the condition,
as can be seen in Table 4.

According to EDA measurements, there was also a significant relationship between
mean arousal and learning outcome, when we include deviation of arousal into the
model. In particular, the higher the mean arousal, the higher the performance (β = 110.22,
Sig. = 0.04 < 0.05). As deviation of arousal increased, performance decreased (β = −16.19,
Sig. = 0.02 < 0.05). This effect was true regardless of the condition. It is important to note
that this significant relationship was only observable if we calculated mean EDA for the
first 5 min of the viewing time. There was no significant relationship between mean EDA
and performance if we took the average of the whole video session. This result can be
explained by the evolution of arousal over time (H1A). Over the duration of the video,
mean EDA decreased significantly for both conditions (β = −13 × 10−6, Sig. = 0.005 < 0.05).
As subjects became tired, mean EDA was lower at the end of the video viewing period for
both conditions, regardless of the performance of the students. This masks the relationship
between high mean EDA and high performance.
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Table 4. Regression results for the relationship between engagement measures and learning outcomes.

Facial Expressions SAM EDA EEG

Intercept Valance
(Mean) Intercept Arousal

(Mean)
Arousal
(STD) Valance

Arousal
(Infographic

Video)
Intercept EDA

(Mean)
EDA

(STD) Intercept Attention
(Mean)

Attention
(Squared)

β Estimate 77.17 20.27 13.92 123.62 110.22 69.37 9.30 −16.19 −680.62 889.34 −259.85
t Value 17.97 2.25 0.52 2.01 1.83 10.01 2.14 −2.38 −1.87 2.09 −2.11

Sig. <0.0001 0.03 0.61 0.06 0.08 0.53 0.03 <0.0001 0.04 0.02 0.08 0.04 0.04

Note: Condition is included in all regressions as a control variable and is not significant.
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Explicit arousal reported through the SAM partially confirms the above results. There
was no significant correlation between overall self-reported arousal and learning outcome.
However, if we analyze the conditions separately, arousal in the infographic condition had
a significant positive correlation (Sig. = 0.03 < 0.05) with performance.

In summary, our results suggest a significant positive relationship between emotional
engagement and performance, in support of H3A: The higher the emotional engagement,
the better the student performance. A decrease in negative emotions and a pleasant
emotional state (valence) allowed subjects to focus on the learning task and perform better.
This result is widely supported by current literature [8,9,14,21].

The effect of variability of arousal warrants further investigation because results are
inconsistent between EDA and facial expression analysis. Both measures could represent a
different element of arousal and therefore show contrasting effects on performance [37].
When Harley et al. [14] compared facial expression analysis results, questionnaire reports,
and EDA data in an e-learning study, they could not find a clear relationship between
the measures.

5.5. Relationship between Cognitive Engagement and Learning (H3B)

The results suggest a quadratic relationship between attention and performance
(Sig. = 0.04 < 0.05, adjusted R = 0.07). First, the higher the attention, the better the perfor-
mance. However, at some point, attention has a negative effect on performance; the average
attention varied between 4.29 and 7.18 and performance appeared to peak around 5.53. Too
much attention can cause a decrease in performance as the students’ attentional resources
get overloaded. This effect was found in both conditions. Previous research outlines that
attention is a pre-requisite for processing information and learning [22]. Furthermore, a
related study specifies that attention is correlated with learning outcomes. Moments during
the video lecture where students demonstrated low attention had a negative correlation
with post-test scores [9]. In addition, our results align with those of Chen et al. [4]. When
too much attention is required, student performance decreases. Chen et al. [4] compared a
classroom lecture, a voice-over presentation, and a picture-in-picture video lecture. The
voice-over presentation has the highest mean and deviation of attention. At the same time,
this type of video lecture has the lowest learning performance compared to the other two.
Chen et al. [4] argue that there is a split attention effect as students have to focus on the
teacher visuals, slides, and table of contents at the same time. That makes it more difficult
to pay attention and process information.

It is important to note that the significant relationship was only observable if we
calculated the mean attention for the initial two-thirds of the viewing time (500 s). There was
no significant relationship between attention and performance if we took the average of the
whole video session. This can be explained by the evolution of attention (H1A). Over time
attention significantly decreased in both conditions (β = −38 × 10−6, Sig. = 0.01 < 0.05).
As subjects became tired, mean attention was lower at the end of the viewing period,
regardless of the performance of the students. This masks the relationship between high
attention and high performance. The same circumstances have been observed for arousal
measured by EDA, as discussed in Hetland et al.’s [37] article.

Finally, as per regression analysis, engagement does not mediate the relationship
between condition (video format) and students’ achievement. This outcome is expected.
According to our results, engagement influenced overall performance (H3A/B). At the
same time, if we compare the conditions, a student’s performance was only different in
regard to difficult questions (H2). There was no effect of the condition on students’ overall
performance. Consequently, there can be no relationship between condition and overall
performance that is mediated by engagement.

5.6. Limitations

As with any experiment, this research has limitations. Participants were only passively
attending a single video. In a typical course setting, learners would be watching a sequence
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of online videos over a specific duration over time. Our experiment setup could not
capture the effect of time, and other research methods will be needed to further investigate
the longitudinal impact of video format. In addition, we only analyzed two different
video production styles. There are obviously many video formats that could be compared
using a similar methodology, including hybrid options using audio-visual aids in the
lecture capture.

Furthermore, we did not manipulate the quality of the rich media condition. Although
we followed edX guidelines to develop the infographic condition, we acknowledge that var-
ious levels of richness quality might have a moderating effect on the learner’s engagement,
and future research is needed to explore this effect.

Additionally, the length of our videos was 14 min. It would be pertinent to explore if
our results hold over shorter or longer duration of videos, and examine how performance
and engagement vary throughout an entire online course.

Finally, although our sample size is common for neurophysiological study, and our
research provides a unique and rich perspective on the learner’s emotional and cognitive
response, our findings should be replicated with a larger sample and a longitudinal research
design to determine the extent to which this effect is observed over time.

6. Conclusions

Researchers in the field suggest the most suitable video format should be selected
based on how it affects the performance and engagement of students [4]. To advance the
current literature and assist with this choice, our objective was to compare two currently
used video lecture formats: infographic video and lecture capture. The measures of
comparison were student performance and engagement. In addition, we analyzed the
relationship between engagement and learning outcomes.

As can be seen in Table 5, our hypothesis (H1A) on emotional engagement was not
supported. On average, arousal (EDA) was higher for lecture capture and over time
students seemed to be happier (valence) with that format. However, the infographic video
was better at keeping students aroused over time.

Table 5. Summary of research questions, hypotheses, and results.

Research Questions Hypotheses Results

RQ1: Which video production style
engages the students more emotionally

and cognitively?

H1A: Emotional engagement will be higher for the
infographic video Not supported

H1B: Cognitive engagement will be higher for the
infographic video Supported

RQ2: Is there a difference in learning
between conditions?

H2: Learning performance will be higher for the
infographic video Supported

RQ3: What is the relationship between
engagement and learning outcomes?

H3A: The higher the emotional engagement, the better the
student performance Supported

H3B: There is a quadratic relationship between cognitive
engagement and performance Supported

Regarding cognitive engagement, our hypothesis (H1B) was supported. The info-
graphic video retained students’ attention significantly better over time. In addition,
students significantly improved in terms of correctly answered difficult questions in the
infographic condition (H2). Finally, there was a noticeable relationship between learn-
ing outcomes and engagement (H3A/B). In general, the results suggest that the higher
the engagement, the higher the performance. Too much attention, however, decreases
performance at some point when the students become overwhelmed with information.

Considering these results, it seems that students perform better in the infographic
condition because the format is better at keeping students aroused and attentive over time.
Even though subjects seem to be specifically aroused (EDA) at the beginning upon seeing
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the professor and are happier over time, the lecture capture is unable to maintain higher
levels of attention and arousal. Furthermore, happiness does not seem to be enough to
offset the decrease in arousal and attention over time and to encourage as much learning as
the infographic video. Consequently, a combination of the two formats (rich media content
with social cues) could yield better engagement and learning. Rich content would help
maintain arousal and attention over time, and timely social cues would bring in additional
excitement and increase happiness of students.

Future research could benefit from incorporating neuropsychological measures into
the study design to gain better insight into students’ engagement, and to capture automatic,
in addition to unconscious, reactions of subjects over time. Researchers could also perform
a more granular analysis of neurophysiological data and try to understand how specific
video design components affect engagement. Furthermore, although subjects in this
study were mostly young students and we had a relatively small sample size, the online
learning population is highly diverse and large. In the future, researchers could examine
how different subpopulations engage with learning content using a larger number of
subjects. Lastly, subjects were monitored during the whole experiment which could force
engagement, and no breaks or note-taking were allowed. In real life, students mostly follow
online courses at home, and subsequent studies could better mimic those conditions while
capturing neurophysiological data.
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