
brain
sciences

Article

What Do Cognitive Networks Do? Simulations of Spoken Word
Recognition Using the Cognitive Network Science Approach

Michael S. Vitevitch * and Gavin J. D. Mullin

����������
�������

Citation: Vitevitch, M.S.; Mullin,

G.J.D. What Do Cognitive Networks

Do? Simulations of Spoken Word

Recognition Using the Cognitive

Network Science Approach. Brain Sci.

2021, 11, 1628. https://doi.org/

10.3390/brainsci11121628

Academic Editors: Richard Wright

and Benjamin V. Tucker

Received: 15 November 2021

Accepted: 9 December 2021

Published: 10 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Psychology, University of Kansas, Lawrence, KS 66045, USA; gavin.mullin@ku.edu
* Correspondence: mvitevit@ku.edu

Abstract: Cognitive network science is an emerging approach that uses the mathematical tools of
network science to map the relationships among representations stored in memory to examine how
that structure might influence processing. In the present study, we used computer simulations to
compare the ability of a well-known model of spoken word recognition, TRACE, to the ability of a
cognitive network model with a spreading activation-like process to account for the findings from
several previously published behavioral studies of language processing. In all four simulations,
the TRACE model failed to retrieve a sufficient number of words to assess if it could replicate the
behavioral findings. The cognitive network model successfully replicated the behavioral findings
in Simulations 1 and 2. However, in Simulation 3a, the cognitive network did not replicate the
behavioral findings, perhaps because an additional mechanism was not implemented in the model.
However, in Simulation 3b, when the decay parameter in spreadr was manipulated to model this
mechanism the cognitive network model successfully replicated the behavioral findings. The results
suggest that models of cognition need to take into account the multi-scale structure that exists among
representations in memory, and how that structure can influence processing.

Keywords: phonology; network science; one-phoneme metric; phonological neighbors; spoken word
recognition; computer simulation; TRACE; cognitive network

1. Introduction

Various metaphors have been used to increase our understanding of the mind, with
the computer perhaps being the most well-known and fundamental metaphor in Cognitive
Psychology [1]. Another metaphor that has been used repeatedly by Cognitive Psycholo-
gists to examine representations and processing of various kinds is a “network” of some
sort. An early use of the network metaphor in Cognitive Psychology is exemplified in
the spreading activation theory of semantic memory proposed by [2]. They suggested
that information stored in semantic memory—such as perceptual features (e.g., colors)
and common nouns (e.g., fire engine)—could be represented as nodes, and relationships
among nodes could be represented by labeled connections between nodes (e.g., “IS-A” and
“HAS” links to indicate that a fire engine IS-A type of vehicle and HAS the color red). The
spreading of activation across the semantic network proposed by Collins and Loftus has
been used to understand numerous memory and language phenomena.

Another use of the network metaphor in Cognitive Psychology is the “artificial neural
network” approach exemplified in (localist) connectionist models and in parallel distributed
processing (PDP) models. Both types of artificial neural network saw a rise in popularity
in the late 1980s and early 1990s [3,4].

In localist connectionist models, nodes represent specific pieces of information, such as
a phoneme, a syllable, or a word, and connections link together those pieces of information,
often in a hierarchical manner. For example, nodes representing the phonemes /k/,
/æ/, and /t/ would be connected to nodes representing words such as at, cat, tack, etc.
Those word nodes, in turn, might be connected to another layer of nodes that contain
semantic information.
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In contrast, in the PDP approach, “ . . . active representations in the mind are thought
to correspond to the patterns of activation generated over a set of units” [4] (pg. 1038;
emphasis added). In this approach, knowledge in memory “ . . . does not exist as a
set of dormant data structures in a separate store but is encoded directly in the network
architecture, in the values of the connection weights that allow the system to generate useful
internal representations and outputs” [4] (pg. 1039). In other words, representations are
not symbols stored in a separate memory store (as in the localist connectionist approach),
but instead are ephemeral and emerge from the processing that occurs over the many
distributed processing units in this type of artificial neural network. The artificial neural
network approach was (and remains) a significant driver of research on memory, speech
production [5,6], and spoken word recognition [7–9].

A more recent use of the network metaphor in Psychology can be found in what is
becoming known as Cognitive Network Science [10,11]. The Cognitive Network Science
approach applies the quantitative tools of network science [12]—used to understand a wide
range of complex systems—to address questions about human cognition. In this approach,
networks are used to map the relationships that exist among representations stored in
memory. In this case, the term network is not referring to an artificial neural network as
described above. In the Cognitive Network Science approach, the network consists of nodes
that represent entities in a system, and edges that connect nodes that are related in some
way. Cognitive Networks have been used to represent words in the mental lexicon that
are semantically related [13], but this approach differs from the earlier semantic network
in [2], because the links in cognitive networks are not labeled in the same way as they are
in [2] (e.g., “IS-A” and “HAS” links to indicate that a fire engine IS-A type of vehicle and
HAS the color red). Rather, the connections between nodes in cognitive networks typically
represent a single type of relationship, such as the words being semantic associates of each
other [13]. Cognitive networks such as this can also be used to represent other types of
information and relationships among words, such as words that are phonologically related,
as in Figure 1 [14].
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Figure 1. An example of a phonological network where nodes represent words in the mental lexicon,
and edges connect words that are phonologically similar to each other (based on the addition,
deletion, or substitution of a phoneme in one word to form another word). Phonological similarity
can be defined in other ways as well. This network represents the 2-hop neighborhood of the word
speech; a 2-hop network contains the neighbors of a word, and the neighbors of the neighbors.
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Important to the Cognitive Network Science approach is the fact that the way in which
these representations are organized or structured in memory influences how effectively
and efficiently processes operate in the system [15,16]. That is, two networks with the same
number of nodes and the same number of connections that are just connected in different
ways in the two networks will have drastically different outcomes for a simple search
algorithm [17]. This central tenet of the Cognitive Network Science approach contrasts
with the semantic network of [2] and the artificial neural network approaches, which do
not make this assumption, nor measure the structure of their respective types of “networks”
in the manner described below.

The structure of a cognitive network can be measured at multiple scales: micro, macro,
and meso. The micro-scale refers to measures of individual nodes in the network. Macro-
scale measures assess the whole network. At the meso-scale, measures are made of subsets
of nodes in the network. Because the structure of a network can influence processing, it
is important to measure a cognitive network at all three scales, and to examine how the
structure at each scale might influence cognitive processing.

The results of a number of behavioral experiments using conventional psycholinguistic
tasks in laboratory settings have shown that certain network structures at various scales of
the phonological network influence the production, recognition, and learning of spoken
words in English. For example, the experiments in [18] considered a micro-scale measure,
the (local) clustering coefficient, and how it influenced spoken word recognition (see
also [19–22]). At the macro-scale, experiments by [23] examined how the location of words
in the giant component (i.e., the largest group of connected nodes in a network) or in
“lexical islands” (i.e., smaller groups of words that are connected to each other, but not
to words in the giant component) of the phonological network influenced spoken word
recognition. Finally, at the meso-scale, [24] found that a set of words in key positions,
whose removal would disconnect the network, tended to be recognized more quickly than
foil words that were similar to the keywords in a variety of lexical characteristics.

Given that the structure of the network influences processing, behavioral studies
as well as a computer simulation with an artificial neural network—namely the TRACE
model [7]—further demonstrated the importance of considering how nodes in a network
are organized [18]. TRACE has been described as “ . . . arguably the most successful model
of spoken word recognition (SWR) to date” [25] (pg. 19). Indeed, as of 13-NOV-2021, the
paper by [7] was cited over 3650 times (as per Google Scholar).

TRACE is a localist artificial neural network that contains processing units organized
into three layers: (1) units representing acoustic–phonetic-like features, (2) units represent-
ing phonemes, and (3) units representing words. The units in each layer are excited or
inhibited based on how well they match the speech input that is presented to the model.
For more details about the TRACE model, we refer the reader to the original work [7], and
to the more recent implementation of TRACE, dubbed jTRACE [25], which is used in the
simulations reported below.

Twenty-eight monosyllabic words with three phonemes with higher clustering coeffi-
cients and 28 monosyllabic words with three phonemes with lower clustering coefficients
were selected by [18] from the initial_lexicon that was used in the original simulations of
TRACE. Using the default parameters, the model ran for 180 time-cycles [18]. At the end of
the 180 time-cycles, the difference in the maximum activation levels for words with higher
(mean = 0.55, SD = 0.010) compared to lower clustering coefficient (mean = 0.55, SD = 0.004),
was not statistically significant (F (1,54) = 2.012, p = 0.16; as reported in [18]).

When the maximum activation levels were reached was also examined [18], and the
difference in the number of time-cycles required to reach maximum activation also was not
statistically significant (F (1,54) = 1.294, p = 0.26). As reported in [18], words with high clus-
tering coefficient reached maximum activation on average in the 105th cycle (SD = 16.28),
and words with a low clustering coefficient reached maximum activation on average in the
99th cycle (SD = 17.98). In combination with the behavioral data that they obtained, [18]
viewed the inability of TRACE to simulate the results of their behavioral experiments as an
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indication that the structure of the phonological lexicon is in fact important to consider in
models of spoken word recognition. Specifically, as suggested by the Cognitive Network
Science approach, the structure of the phonological lexicon influences lexical processing.

Despite the success of the cognitive network approach in accounting for certain
aspects of spoken word recognition (and other language-related and memory processes)
this approach has been criticized because “ . . . these networks do not ‘do’ anything; they
have no function” [26] (pg. 16). One could argue that what cognitive networks “do” is
capture in their structure certain regularities and relationships among entities in the world.
By adding a simple process such as a random walk or the diffusion of activation across
the network, one can examine how the structure of the network at multiple scales might
influence cognitive processing.

The three behavioral experiments described above, which demonstrated that human
performance in language-related tasks is influenced by structural characteristics at various
scales in the phonological network, were simulated in the leading model of spoken word
recognition—TRACE [7] (more recently implemented in Java as jTRACE by [25])—and
on a cognitive network model based on the phonological network of [14]. If the structure
at various scales of the phonological network influences processing, as claimed in the
Cognitive Network Science approach, then we expect the phonological network model
to qualitatively replicate the results of the three behavioral experiments described above.
Further, given that the way in which words are connected to each other (i.e., how the
lexicon is structured) is not considered in TRACE, we expect TRACE to fail to qualitatively
replicate the results of the three behavioral experiments described above, as it did in [18].

In the Cognitive Network Science approach, edges are used to capture some sort of
relationship between nodes resulting in a network that maps the structural organization of
information in memory. Processing in these structural models can be modeled by either
a random walk [27] or the diffusion of activation—akin to spreading activation—across
the network [28]. An R package called spreadr has recently been created that can diffuse
activation across a network provided by the user over a range of timesteps, initial activation
levels, etc. [29]. We used spreadr in the simulations that follow to diffuse activation across
the network from [14], allowing us to examine if a cognitive network can account for the
results from the three behavioral experiments that previously examined the influence of
the structure of the phonological network at various scales on human language processing.

2. Simulation 1: Clustering Coefficient

The first study to demonstrate that one of the network structures observed in [14]
influenced the performance of humans in a conventional psycholinguistic task was reported
in [18]. In that study it was observed that the micro-scale measure known as the (local)
clustering coefficient influenced the accurate identification of words presented in noise in a
perceptual identification task. Informally and in the context of a phonological network, the
local clustering coefficient refers to the extent to which phonological neighbors of a given
word are also neighbors of each other (see [18] and others for a more formal definition of
clustering coefficient). As seen in Figure 2, the words badge and log in the middle of the
two networks represent the target words, with the same number of phonological neighbors
encircling each target word. The word badge has a higher clustering coefficient than the
word log, because the phonological neighbors of badge tend to be neighbors of each other to
a greater extent than the phonological neighbors of log.
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Figure 2. Although both words have the same number of phonological neighbors, the left panel
represents a word with a higher clustering coefficient (badge), whereas the right panel represents a
word with a lower clustering coefficient (log). That is, there is a difference in the extent to which the
neighbors of each word are also neighbors of each other.

In Experiment 1 of [18] it was found that participants correctly identified words, such
as log, with lower clustering coefficients more often (72%) than words such as badge, with
a higher clustering coefficient (58%). Better performance for words with a low clustering
coefficient was also obtained in Experiment 2 using the auditory lexical decision task,
another conventional and widely used task in psycholinguistics (see also [19–21]).

To account for the results in [18], it was suggested that activation would initially
spread from the target word to the phonologically related words, and from those words
to other words that were phonologically related, and so on. In the case of words with
a lower clustering coefficient, the activation would tend to disperse to the rest of the
network, allowing the target word to “stand out” from the background of partially activated
phonological neighbors, resulting in rapid and accurate retrieval from the lexicon. In the
case of words with a higher clustering coefficient, the spreading activation would recirculate
among the highly interconnected phonological neighbors, resulting in the target word being
“buried” in the background of partially activated phonological neighbors, and therefore
slow and less accurate retrieval from the lexicon. In other words, the micro-structure of the
phonological lexicon influenced lexical processing.

Although the mechanism proposed in [18] to account for their results was based on
computational work performed in other domains of network science, the model they put
forward at the time was a verbal model, which have well-known shortcomings compared
to computer simulations [30]. Subsequent computer simulations [28,29], however, showed
that activation diffusing across 2-hop networks (such as the network displayed in Figure 1)
of a different set of stimulus words successfully simulated the behavioral results originally
observed in [18], substantiating the original verbal model and demonstrating further that
the structure of the phonological lexicon influences lexical processing.

The initial_lexicon often used in the TRACE model has 211 words that contain sounds
from a restricted set of phonemes, and that have a frequency of occurrence of 20 or more
per million in [31]. One could arguably call initial_lexicon a “toy” lexicon rather than a
lexicon representative of a typical speaker. Note that simulations on jTRACE have used
a larger lexicon (biglex) of 907 words [32]. Although slightly larger, this lexicon is also
not representative of the lexicon of a typical speaker. Rather than using the “toy” lexicon
in TRACE or a subnetwork to model the lexicon as in previous simulations examining
the influence of clustering coefficient on processing [18], in the present simulations both
TRACE and the network model had as their lexicon the 19,340 words that were examined
in an initial network analysis of the phonological lexicon [14]. Using the same lexicon not
only makes comparison between the two different models equivalent, but the use of a large
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lexicon also tests if the two approaches can successfully scale up to a lexicon that is more
realistic in size and composition to a human lexicon. Granted, estimates of the number of
words known by the average person vary widely, but the number of words in the lexicon
used in the present simulations is several orders of magnitude larger than the size of the
lexicons used in previous computer simulations, arguably making for a more realistic and
computationally challenging test of the two types of models.

2.1. Materials and Methods

This study was not preregistered. The stimuli used in all of the simulations are listed in
Appendix A. The data from the simulations are available upon request from the first author.

jTRACE: The lexicon in the present simulation and the simulations that follow con-
sisted of the 19,340 words in the lexicon examined in [14]. We modified the phonemes
and phonetic features in the model to accommodate all of the phonemes that were found
in the words in the larger lexicon. Aside from the new lexicon, phonemes, and phonetic
features, the default parameters and settings were used for all of the simulations reported
here (except Simulation 3b).

Appendix A shows the 76 stimulus words from Experiment 1 of [18] that were pre-
sented to jTRACE, which was allowed to process each word for 100 timesteps (N.B., the
default setting in jTRACE is 99 timesteps). Although 180 timesteps were used in [18]
maximum activation was achieved at approximately 100 timesteps, so we used this smaller
number of timesteps in the present simulations to reduce computational burden, thereby
accelerating data collection. After 100 timesteps had elapsed we examined the 10 most-
activated competitors to obtain the activation level for each of the stimulus words. Al-
though the word with the highest activation value is typically considered to be the word
that has been retrieved, we documented the activation level of the stimulus word, even if it
was not the most active word in the competitor set. If the stimulus word was not among
the 10 most activated competitors, then an activation value of 0 was assigned.

spreadR: The lexicon in the present simulation and the simulations that follow consisted
of the 19,340 words in the lexicon examined in [14]. This is the same lexicon used in the
jTRACE simulations as well. As reported in [33], the network formed from the lexicon
contained 19,340 nodes with 31,267 connections placed between nodes if the words differed
by the addition, deletion, or substitution of a single phoneme. The giant component of the
resulting network contained 6508 (34%) nodes; 10,265 (53%) of the nodes were isolates (i.e.,
lexical hermits with degree = 0), and the remaining 2567 (13%) of the nodes were found in
smaller components (i.e., lexical islands).

The 76 stimulus words from Experiment 1 in [18] were presented to spreadr [29]
with the following settings for the various parameters in the model. An initial activation
value of 20 units was used for each stimulus word in the present simulation. Although
activation = 100 units in the simulations reported in [28], this value is arbitrary. A smaller
value was selected in the present simulations to reduce computational burden, thereby
accelerating data collection.

Decay (d) refers to the proportion of activation lost at each time step. This parameter
ranges from 0 to 1, and was set to 0 in the simulations reported here (except Simulation 3b)
to be consistent with the parameter settings used in [28].

Retention (r) refers to the proportion of activation retained in a given node when it
diffused activation to other nodes connected to it. This value ranges from 0 to 1, and was set
to 0.5 in the simulations reported here. In [28] values ranged from 0.1 to 0.9 in increments
of 0.1. Because the various retention values in [28] produced comparable results across
retention values, we selected in the present simulations a single, mid-range value (0.5) for
the retention parameter in order to reduce the computational burden, thereby accelerating
data collection.

The suppress (s) parameter in spreadr will force nodes with activation values lower
than the selected value to activation = 0. It was suggested that when this parameter is
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used a very small value (e.g., s < 0.001) should be used [29]. In the present simulations
suppress = 0 in order to be consistent with the parameter settings used in [28].

Time (t) refers to the number of time steps that activation diffuses or spreads across
the network. In [28] t = 10; however, in the present simulations t = 5. A smaller value
was selected in the present case because as shown in Figure 3 of [29], activation values
reach asymptote at approximately 5 timesteps, making additional timesteps uninformative.
Further, as shown in the hop-plot depicted in Figure 2 in [34] approximately 50% of the
network has been reached by traversing on average 5 connections (i.e., hops) in every
direction from a given node, suggesting that the network has been sufficiently saturated.
We selected in the present simulations a smaller value (t = 5) for the time parameter in
order to reduce the computational burden, thereby accelerating data collection. At the end
of 5 timesteps we documented the activation level of each of the stimulus words.

2.2. Results

Given the variety of dependent measures used in the various behavioral experiments
that we attempted to simulate in the present study, and the different activation levels in
TRACE and the cognitive network model, we attempted in the simulations reported here
to replicate only qualitatively the findings from each of the behavioral experiments. For
both jTRACE and spreadr, larger activation values correspond to better performance in the
behavioral tasks (e.g., faster reaction times, more accurate responses, etc.).

In Experiment 1 in [18], words with a lower clustering coefficient were identified more
accurately than words with a higher clustering coefficient when presented in noise in a
perceptual identification task. In the cognitive network model implemented on spreadr,
we found that words with a lower clustering coefficient had higher activation levels
(mean = 1.28 units; sd = 0.26) indicating they were identified more accurately than words
with a higher clustering coefficient (mean = 1.13 units; sd = 0.09). An independent samples
t-test shows that this difference is statistically significant (t (74) = 3.29, p = 0.0015).

For jTRACE, activation levels could only be obtained for 2 of the 38 words with
higher clustering coefficient (bath and wire), and no activation levels could be obtained
for the 38 words with lower clustering coefficient. For the two words from the higher
clustering coefficient condition, both words were the most active items in the candidate
set, indicating that they had been correctly retrieved from the lexicon. For the remaining
74 words, the stimulus word was not among the 10 most-active candidates that emerged
after 100 timesteps, and was therefore assigned an activation value of zero.

2.3. Discussion

The results of the simulation of Experiment 1 in [18] show that the cognitive network
model implemented in spreadr was able to qualitatively replicate the results obtained
in [18]. Specifically, words with lower clustering coefficient were identified more accurately
(as indicated by higher activation levels in spreadr) than words with higher clustering
coefficient. This result not only replicates the behavioral study reported in [18], but also
replicates the simulations performed by [28,29] on 2-hop networks using slightly different
parameter settings. Given that the cognitive network model successfully replicated the
results in [18], one could argue that the structure among the words in the lexicon is
important, and may indeed influence processing (lexical retrieval in this case).

Replicating results in a simulation with different parameter settings is one way of
qualitatively assessing the global performance of a model [35], making the present simu-
lation with spreadr more than a simple replication of previous simulations or behavioral
studies. Rather, even though the cognitive network model appears simple on the surface,
the present results using different parameter settings in spreadr help us better understand
the complex behaviors of the model.

One of the major differences between the previous and the present simulation is
the significantly larger size of the lexicon/phonological network used in the present
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simulations. Replicating previous results with a large lexicon suggests that the principles
found in the cognitive network approach scale up to a more realistically sized vocabulary.

In contrast, using a more realistically sized lexicon with jTRACE in the present sim-
ulation led to performance that was significantly worse than the previous simulation
of jTRACE reported in [18] using the toy lexicon often used in TRACE simulations (i.e.,
initial_lexicon). In the previous simulation of jTRACE in [18], the model was able to suc-
cessfully retrieve from the toy lexicon all 56 stimulus words that varied in clustering
coefficient (as measured in the network created from the words in initial_lexicon). However,
TRACE was not able to differentially retrieve the stimulus words based on their clustering
coefficient, thus failing to simulate the behavioral results reported in [18].

In the present simulation, in which jTRACE had a more realistic (i.e., not just high-
frequency words) and realistically sized lexicon and was given the task of retrieving the
76 stimulus words used in Experiment 1 in [18], jTRACE was only able to retrieve 2 of
the 76 stimulus words, making it difficult to assess whether the model could replicate the
results reported in [18]. Is the failure of jTRACE indicative that models of spoken word
recognition that “ignore” the structure among words in the lexicon do so at their own peril?
Is the performance of TRACE in this case indicative that the representations and processes
implemented in the model are problematic, incorrect, or simply do not scale-up to a more
realistically sized lexicon?

Perhaps the poor performance of TRACE is just a computational/engineering limita-
tion? Indeed, a new model of spoken word recognition called TISK has been proposed that
uses computationally more efficient time invariant string kernels to represent incoming
speech input [36]. String kernels are commonly used in machine learning applications to
represent sequences of symbols. As noted in [36] (page 4): “To our knowledge, however,
there have been no published investigations of string kernels in the domain of spoken
word recognition.” Although a model such as TISK may indeed be more computationally
efficient than TRACE, it is not clear what such engineering approaches say about human
performance or cognitive processing (see also [37,38]).

3. Simulation 2: Giant Component/Islands

To examine how the organization of representations in memory at the macro-scale
influence cognitive processing we simulated the findings in [23], where words in lexical
islands were retrieved more quickly in a naming and a lexical decision task than words
located in the giant component. The giant component refers to the largest group of
connected nodes in a network. Lexical islands refer to smaller groups of words that are
connected to each other, but not to words in the giant component. (“Lexical islands” are
referred to simply as “components” in the field of network science.)

3.1. Materials and Methods

The same methods and parameter settings used in Simulation 1 for jTRACE and
spreadr were used in the present simulation. In the present simulation the 96 words used in
Experiments 1 and 2 in [23] were presented to jTRACE and spreadr (see Appendix A for the
words). Forty-eight of the words were found in the giant component, and the remaining
words were found in other components/lexical islands in the phonological network.

3.2. Results

It was reported in [23] that words located in lexical islands were retrieved more
quickly in a naming and a lexical decision task than words located in the giant component
of the phonological network. For the cognitive network model implemented in spreadr, we
found that words located in lexical islands had higher activation levels (mean = 5.98 units;
sd = 2.09) indicating that they were retrieved more quickly than words located in the giant
component (mean = 3.89 units; sd = 1.56). An independent samples t-test shows that this
difference is statistically significant (t (94) = 5.56, p = 0.0001).
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For jTRACE, activation levels could only be obtained for 2 of the 48 words located
in the lexical islands (beckon and lizard), and no activation levels could be obtained for
the 48 words located in the giant component. For the two words located in the lexical
islands, one word was the most active item in the candidate set (indicating that it had
been correctly retrieved from the lexicon), and the other word was simply among the
10 most-active candidates, but was not the most active candidate. For the remaining
94 words, the stimulus word was not among the 10 most-active candidates that emerged
after 100 timesteps, and was therefore assigned an activation value of zero.

3.3. Discussion

The results of the present simulation show that the cognitive network model was able
to qualitatively replicate the results obtained in Experiments 1 and 2 in [23]. Specifically,
words located in lexical islands were retrieved more quickly in a naming and a lexical
decision task (as indicated by higher activation levels in spreadr) than words located in the
giant component of the phonological network (see also [39]). As in Simulation 1, TRACE
did not recognize most of the stimulus words, making it difficult to assess if TRACE can
replicate the results of [23].

Given the success of the cognitive network model, the present result may again
suggest that the structure of the lexicon has an important influence on processing. Indeed,
the structure of the phonological network is responsible for the higher activation levels
obtained for the words in the present simulation compared to the activation levels obtained
for the words in Simulation 1. Recall that lexical islands are groups of words that are
connected to each other, but not connected to the giant component. In the giant component
there are many more words for activation to spread to [34], resulting in less activation
remaining in the target words in the giant component. In the lexical islands, however,
which are smaller than the giant component, the activation will spread among the words
in the island, but because there is nowhere else to spread to, activation will remain trapped
in the island, resulting in relatively higher activation levels for the words in the present
simulation compared to the activation levels obtained in Simulation 1.

4. Simulation 3a: Key Players

To examine structure at the meso-scale of the phonological network we simulated
the results of [24], who examined how a set of words in “key” positions in the network
might influence lexical processing. When asked to identify a node in a “key” position in
the network in Figure 3, many people select node 1, because it is connected to many other
nodes in the network. In network science terms, node 1 has high degree centrality. In
contrast, the Keyplayer algorithm developed by [40] would identify node 8 as being in
a “key” position in this network, because when node 8 is removed from the network the
network becomes disconnected, forming two smaller components.

It was reported in [24] that a set of words in key positions (such as node 8 in Figure 3),
whose removal would disconnect the network, tended to be responded to in the lexical
decision task used in Experiment 3 more quickly than foil words. Foil words were similar
to the set of keywords in word frequency, neighborhood density, word length, and a
variety of other lexical characteristics; they just were not located in those key positions in
the network.

Because of their strategic position in the network, it was suggested that words in those
key positions would be indirectly and partially activated more often than words not in
key positions when nearby words were retrieved [24]. Over time that indirect and partial
activation from nearby words might, for example, lower the activation threshold or raise
the resting activation level of keywords more than foils, making the keywords easier to
retrieve than comparable words that were not in those key positions.
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Figure 3. Node 8 is a key player in this network because the removal of that node results in the
disconnection of the network (i.e., instead of there being the single component depicted above, two
smaller components are formed).

4.1. Materials and Methods

The same methods and parameter settings used in the previous simulations for
jTRACE and spreadr were used in the present simulation. In the present simulation, the
50 words used in the three experiments reported in [24] (see Appendix A) were presented
to jTRACE and spreadr. Twenty-five of the words were in key positions, and the remaining
words were referred to as foil words. As reported in [24], the foil words were comparable
to the key words in word length, subjective familiarity, word frequency, neighborhood
density, neighborhood frequency, phonotactic probability, the duration of the stimulus
sound files, clustering coefficient, and closeness centrality. All of the words were found in
the giant component of the phonological network.

4.2. Results

It was reported in [24] that a set of words in key positions (such as node 8 in Figure 3),
whose removal would disconnect the network, tended to be responded to more quickly
and accurately than foil words. For the cognitive network model (implemented on spreadr)
we found that key words had activation levels (mean = 2.65 units; sd = 0.82) that were
statistically indistinguishable from the foil words (mean = 2.63 units; sd = 1.46; t (48) = 0.05,
p = 0.9544).

For jTRACE, activation levels could only be obtained for 2 of the 25 key words
(amend and auricle), and for 4 of the 25 foil words (album, aloft, attest, and party). For
the two key words both stimulus words were the most active item in the candidate set
(indicating that they had been correctly retrieved from the lexicon). For the four foil words,
two were the most active item in the candidate set, and two were simply among the
10 most-active candidates (but were not the most active candidate). For the remaining
44 words, the stimulus word was not among the 10 most-active candidates that emerged
after 100 timesteps, and was therefore assigned an activation value of zero.

4.3. Discussion

As in the previous simulations, TRACE did not recognize most of the stimulus words,
making it difficult to assess if TRACE can replicate the results of [24]. We note, however,
that TRACE performed better in this simulation than in the other simulations, successfully
retrieving six words compared to two words in Simulation 1 and two words in Simulation 2.

Although it was found in [24] that words in key positions were responded to more
quickly than foil words, the cognitive network model with the same parameters as used
in the previous simulations was not able to simulate that finding. Recall that a verbal
model was proposed in [24] that suggested that words in key positions would be indirectly
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and partially activated more often than words not in key positions when nearby words
were retrieved. Over time that indirect and partial activation might, for example, lower
the activation threshold or raise the resting activation level of key words, making them
easier to retrieve than comparable words that were not in those key positions. Several
examples in the literature that demonstrated that partial activation of competitors can
affect subsequent processing were discussed in [24], but the observed effects were not
computationally modeled.

Our attempt in the present simulation to model the effects observed in [24] overlooked
the crucial mechanism of partial and indirect activation modifying subsequent ease of
lexical access. Because spreadr simply performs a single retrieval event and does not have a
mechanism in it to allow for previous retrievals to affect subsequent retrievals, it should
not be surprising that the cognitive network model implemented with the current set of
parameters in spreadr was not able to reproduce the results observed in [24] with human
listeners. Further, given all of the lexical variables that were comparable in the key and foil
words, it should not be surprising that spreadr retrieved both sets of words with comparable
(and statistically indistinguishable) ease. In the next simulation, we manipulated one of
the other parameters in spreadr to try to mimic the changes that occur to keywords over
time that were proposed in [24].

5. Simulation 3b: Key Players Manipulating Decay in spreadr

Recall that it was suggested in [24] that words in key positions in the phonological
network would be indirectly and partially activated more often than words not in key
positions when nearby words were retrieved. Over time indirect and partial activation
from nearby words might, for example, lower the activation threshold or raise the resting
activation level of keywords more than foils, making the keywords easier to retrieve than
comparable words that were not in those key positions.

Another alternative not discussed in [24] is that previous or partial activation of a
node might also influence subsequent activations of that node not by directly “strength-
ening” the node (i.e., lowering the threshold, or raising the resting activation level), but
by “strengthening” the connections to the node. Indeed, such a mechanism is described
in Node Structure Theory (NST), a model of language processing proposed in [41]. In
NST the connections between nodes become stronger or more efficient with use, enabling
the rate and amount of priming transmitted across the connections to increase over time.
(Note that “priming” in NST is akin to spreading activation in other types of models.) It is
this mechanism that allows NST to account for the well-known effects of the frequency of
occurrence of a word in language processing.

To alter the efficiency of the connections in the phonological network, thereby affect-
ing the rate and amount of activation that diffuses through the network, we decided to
manipulate the decay (d) parameter in spreadr. The d parameter determines the proportion
of activation that is lost at each time step. More efficient (or stronger) connections should
lose a small amount of activation at each time step, whereas less efficient (or weaker) con-
nections should lose a larger amount of activation at each time step. This parameter ranges
from 0 to 1, and was set to 0 in the previous simulations to be consistent with the parameter
settings used in [28]. In the present simulation we manipulated d in an attempt to vary the
efficiency of the connections for the foil and key words, similar to the mechanism in NST
put forward in [41]. Based on the argument in [24] that keywords become “stronger” than
foils over time, we set in the present simulation d = 0.1 for the keywords and d = 0.3 for the
foils, but the rest of the parameters remained as they were in the previous simulations.

Given that we changed a parameter in spreadr, we decided to try a different parameter
setting for TRACE as well. The performance of TRACE across the three previous simu-
lations was best in Simulation 3a, with six words being successfully retrieved from the
lexicon. That level of performance will provide us with a reasonable baseline to allow us
to determine if different parameters in TRACE would increase or decrease the number of
words it successfully retrieved from the lexicon (and perhaps even allow us to evaluate
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whether TRACE can account for the behavioral finding being simulated). As noted in
endnote 2 in [25] (page 30), there is some risk involved in changing parameters in TRACE:

As Frauenfelder once put it in a conference presentation [42], the large number of
parameters in TRACE are in “delicate equilibrium.” Caution must be exercised when
changing any parameters, since a small change in one parameter may result in large
changes in the model’s behavior, and one cannot be sure that the model will successfully
perform simulations conducted with other parameter settings.

Heeding this warning, we therefore decided to change just one parameter in jTRACE;
namely, we turned off lexical feedback. This parameter was also turned off in the simula-
tions reported in [18] to test if a different model of spoken word recognition—Shortlist [8],
which eschews feedback—could account for the behavioral results that they found (and
which were replicated in Simulation 1 reported here). Like the TRACE simulation reported
in [18], the Shortlist simulation successfully retrieved all of the words from the toy lexicon
that was used, but did not have differential activation values for the words that varied in
clustering coefficient.

We recognize that there is debate about the utility of lexical feedback in TRACE. For
example, it was reported in [43] that reducing feedback from 0.030 to 0.025 improved
performance with a larger lexicon of 977 words (referred to as Biglex), and that turning
off lexical feedback sped recognition time for about half of the small set of words (n = 21)
they examined. In contrast, it was reported in [32] that when a larger set of words (n = 900)
was examined (without noise), 27% of the words were recognized more quickly without
feedback, 57% were recognized more quickly with feedback, and 16% had equivalent
retrieval times with and without feedback. It was also observed in [32] that feedback
increased accuracy when increasing levels of noise were added to the input. Given that we
are not adding noise to the input in the present simulation, and given the partial success of
turning off lexical feedback reported in [18], we decided to examine if turning off lexical
feedback might improve performance when TRACE has the much larger lexicon being
used in the present simulations.

5.1. Materials and Methods

The same methods and parameter settings used in the previous simulations for
jTRACE and spreadr were used in the present simulation, with the exception of decay
(d) being manipulated in spreadr, and lexical feedback was now turned off in jTRACE. The
50 words used in the three experiments reported by [24] (see Appendix A) and in Simula-
tion 3a were presented to jTRACE and spreadr in the present simulation. Twenty-five of
the words were in key positions (and had the decay parameter, d, set to 0.1 in spreadr), and
the remaining words were referred to as foil words (and had the decay parameter, d, set to
0.3 in spreadr) to mimic the change in processing efficiency that occurs over time proposed
by [24].

5.2. Results

It was found in [24] that a set of words in key positions (such as node 8 in Figure 3),
whose removal would disconnect the network, tended to be responded to more quickly
and accurately than foil words. For the cognitive network model implemented in spreadr,
we found that key words (with the decay parameter d = 0.1) had higher activation levels
(mean = 1.57 units; sd = 0.49) indicating that they were retrieved more quickly than the foil
words (with the decay parameter d = 0.3; mean = 0.44 units; sd = 0.25). An independent
samples t-test shows that this difference is statistically significant (t (48) = 10.29, p < 0.0001).

For jTRACE with no lexical feedback, activation levels could be obtained for 3 of the
25 key words (amend, auricle (the same words retrieved in Simulation 3a), with the addition
of pallet), and for 4 of the 25 foil words (album, aloft, attest, and party; the same words
retrieved in Simulation 3a). For both the foil and key words, all of the words were the
most active item in the candidate set. Instead of assigning zero activation to the remaining
items, in this simulation we simply compared the mean activation values for the three
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key words (mean = 0.6585; sd = 0.006) to the mean activation values for the four foil words
(mean = 0.6700; sd = 0.009) that jTRACE successfully retrieved. The difference in activation
levels was not statistically significant (t (5) = 1.76, p = 0.14). Further, the direction of the
difference was the opposite of what was predicted based on the behavioral results reported
in [24].

5.3. Discussion

It was found in [24] that participants responded to words in key positions more quickly
than foil words. They accounted for that result by suggesting that words in key positions
would be indirectly and partially activated more often than words not in key positions
when nearby words were retrieved. Over time that indirect and partial activation might,
for example, lower the activation threshold of key words, raise the resting activation level
of key words or, as suggested in NST [41], might strengthen or increase the efficiency of the
connections between nodes for keywords, making keywords easier to retrieve than words
that are not in those key positions.

To mimic the differences in connection efficiency as suggested in NST [41] we manip-
ulated in this simulation the decay (d) parameter in spreadr. With the manipulation of d in
the present simulation (compared to Simulation 3a) we now observed that words in key
positions with more efficient/stronger connections were responded to more quickly than
foil words with less efficient/weaker connections (as indicated by higher activation levels
for keywords compared to foils). The result of Simulation 3b qualitatively replicates the
behavioral result observed in [24].

We also manipulated a parameter in jTRACE in an attempt to improve the perfor-
mance of the model. In this case, we turned off lexical feedback, which did improve
performance. In the present simulation seven words were retrieved, compared to six words
in Simulation 3a. Further, all of the words that were retrieved in the present simulation
were actually the most active item in the candidate set (compared to only four of the six
words being the most active item in the candidate set in Simulation 3a). Although there
is some debate about whether feedback improves performance in TRACE (cf., [32,43]), in
the present case turning off lexical feedback did improve the overall performance of the
model with a larger set of phonetic features and phonemes, and a much larger lexicon.
Although the overall performance of TRACE was improved by the manipulation of this
parameter, the difference in the activation values of the words that were retrieved was not
statistically different, and trended in the opposite direction to what was predicted based
on the behavioral results reported in [24].

6. Conclusions

In the present study we simulated in TRACE [7,25] and a phonological network [14]
using the R package spreadr [29] the results of three psycholinguistic experiments that
examined how the structure of a phonological network at the micro-, macro- and meso-
scale might influence lexical retrieval. At the micro-scale (Simulation 1), measuring the
characteristics of individual nodes, we simulated the results in [18] examining the measure
known as the (local) clustering coefficient, which measures the extent to which neighbors
of a word are also neighbors of each other. At the macro-scale (Simulation 2), measuring
the characteristics of the entire network, we simulated the results of [23] who looked at
whether a word being located in the giant component or in a lexical island influenced
lexical retrieval. At the meso-scale (Simulations 3a,b), which considers groups or subsets
of nodes rather than individual nodes or the whole network, we simulated the results
of [24] who looked at how key players in the network might influence lexical processing.
Key players refer to a set of nodes whose removal from the network results in maximal
disconnection of the network.

In Simulations 1 and 2 the cognitive network model qualitatively replicated the results
observed in the psycholinguistic experiments, but TRACE was not able to successfully
retrieve a sufficient number of words to assess the ability of this model to simulate the
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behavioral results. In Simulation 3a the cognitive network model was not able to success-
fully replicate the results observed in the psycholinguistic experiment. In this simulation,
TRACE was able to successfully retrieve a larger number of words compared to the previ-
ous simulations, but still not enough words to assess statistically the ability of this model
to simulate the behavioral results.

The failure of the cognitive network model in Simulation 3a led us to reconsider the
mechanism proposed in a verbal model in [24]: previous activation and retrievals of nearby
words can influence subsequent retrievals of the target word. Although verbal models are
useful in the initial stages of a theory, many have written about the value of using formal,
computational models to more precisely examine the representational and processing
aspects of cognition [30]. Therefore, in Simulation 3b we manipulated another parameter
in spreadr, namely the decay (d) parameter to mimic the changes that occur over time to the
key words. When the keywords and foils had different values for the d parameter to model
differences in the strength/efficiency of the connections to those words, we now observed
a qualitative replication of [24] in the cognitive network model.

Given that we manipulated a parameter in spreadr in Simulation 3b, we decided to also
manipulate a parameter in jTRACE to see if performance could be improved enough to
assess the ability of the model to qualitatively replicate the results of [24]. In Simulation 3b,
we turned off feedback from the word level to the phoneme level as had been carried
out in [18] and in [43] (cf., [32]). Here we found that overall performance did improve
enough to statistically analyze the activation values of the key and foil words. However,
the difference in the activation values was not statistically different.

The poor performance of TRACE in the present set of simulations is troubling, espe-
cially given that [7] (p. 22) reported that the behavior of TRACE was qualitatively robust
over a wide range of parameter values (with minor changes in the magnitude or timing
of various effects when using different parameter settings). We grant that the default
parameters in TRACE established with the original, very small lexicon and a limited set of
phonetic features and phonemes may be optimal only under those conditions. We further
grant that in the present situation with different and larger sets of phonetic features and
phonemes, and a much larger lexicon, that the default parameters may be suboptimal.
However, even shutting off lexical feedback as we did in Simulation 3b did little to change
the performance of the model.

Others have discussed the importance of testing model performance across a range
of parameter settings [35], and of assessing the scope of a model [44]. Here we simply
note that the cognitive network model in Simulation 1 of the present study performed
accurately with different parameter settings than used previously [28,29], suggesting that
the performance of cognitive network models may not be as sensitive to a unique set of
parameter settings as other types of models.

We believe there is much to learn about cognition by using formal, computational
models [45] as long as realistic contexts rather than idealized or over-simplified settings are
used in those models [46]. Recall that in the TRACE simulation reported in [18] the model
successfully retrieved from the toy lexicon all of the stimulus words that varied in clustering
coefficient (as determined by measuring the clustering coefficient of the 211 words in the
initial_lexicon), but no difference as a function of clustering coefficient was observed. In the
present simulations where TRACE and spreadr were given a more realistically sized lexicon
of 19,340 words, TRACE retrieved such a small fraction of the stimulus words that statistical
analyses could not be performed in most cases. In contrast, the cognitive network model
was able to scale-up from smaller subnetworks (i.e., the 2-hop networks used in [28,29]) to
a lexicon that was several orders of magnitude larger, demonstrating the robustness of the
cognitive network approach in simplified and in more complex/realistic settings.

In addition to highlighting the importance of using formal, computational models to
increase our understanding of cognition, the results of the present study suggest that future
models of cognitive processing should consider how representations are organized in
memory, and how that structure influences processing. The psycholinguistic experiments
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simulated in the present study demonstrated that the structure of a phonological network
at multiple scales (micro, meso, and macro) influences various language processes. We
believe the influence of structure on processing also applies to other areas of Cognitive
Psychology [21]. Indeed, experiments from cognitive science, neuroscience, and linguistics
demonstrate that humans are able to learn about the meso- and macro-scale of network
representations in memory, and that those structures influence processing in a variety of
cognitive tasks [47].

The present results suggest that what cognitive networks “do” is capture the regulari-
ties and relationships that exist among representations in memory. With the “smarts” of
the system captured in the structure of the network (i.e., how the nodes are connected to
each other), a much simpler processing algorithm—such as a random walk, the diffusion
of activation across the network [27], or a mixture of random and directed walks [48]—may
be sufficient to reproduce the behavior exhibited by humans in various tasks [49].

Cognitive networks may not be the only way to model the regularities and relation-
ships that exist among representations in memory, and how that structure influences
processing. Indeed, just as there are limits to what a network can model in other domains,
there may be some limits to what cognitive networks can model [50]. Similarly, the richness
and variety of cognition may be too complex to be captured by simple processes such as a
random walk or diffusion of activation across the network.

In addition, the present simulations used a cognitive network that captured a “snap
shot” of only the phonological lexicon of the “average” language user at one point in time.
Advances in network science and in the application of networks to psychology are rapidly
being made to address some of these limitations inherent in the present simulations. Work
reported in [51] demonstrated that networks that grow over time can be used to provide
insight into how typically developing and “late talking” children learn the meanings of new
words. A similar approach has been used in [52] to capture changes/declines in semantic
information in older adults. These studies also demonstrate that cognitive networks may
hold much promise for increasing our understanding of various speech, language, and
hearing disorders as well [39].

Cognitive networks need not be limited—such as the phonological network examined
in [14]—to one type of representation or information. Work on multilevel networks,
which enable researchers to look at, for example, a network of words with phonological
relationships overlayed on a network of words with semantic relationships have increased
our understanding of word-learning in children [53], and of acquired language disorders
in adults [54].

Further, increasingly sophisticated network analyses are providing tools to track
changes in behavior over time in an individual, rather than the average behavior of a
group [55]. Such analysis techniques have significant implications for individualized- or
personalized-treatment in a number of domains (e.g., psychopathology, speech-language-
hearing disorders, etc.).

Although the TRACE I and TRACE II models accounted for a wide range of phenom-
ena in speech perception and spoken word recognition [7], we find it troubling that the
most successful model of spoken word recognition did not scale up to a more realistic lexi-
con. Further, as described above, we believe that the cognitive network approach has much
potential to account for an increasing number of phenomena in speech perception and
spoken word recognition, as well as other areas of Cognition. Furthermore, the cognitive
network approach may not only account for the same phenomena in speech perception
and spoken word recognition that the TRACE models can [56], but may also account for
phenomena that TRACE and other contemporary models of spoken word recognition
cannot account for, such as the influence that the structure of the lexicon at various scales
has on processing.
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Appendix A

Table A1. Stimulus words from Chan and Vitevitch (2009) that were used in Simulation 1.

High Clustering Coefficient Low Clustering Coefficient

bash beach
bath bead
bib beat
bull bush
bug boot
dot dog
dig dead
dish deck
dug debt
feel fat
full fell
foul fate
gang gas
gain goat
gum gull
call cough
case couch
lag lock
leaf log
leap lose
lease ledge
leave lick
look lip
lose live
lull lime
love luck
math miss
mall merge
meal mood

mouse mile
perk pass
pearl purse
ring rhyme
ripe rise
seal sauce
size save

weak word
wire wide
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Table A2. Stimulus words from Siew and Vitevitch (2016) that were used in Simulation 2.

Giant Component Lexical Islands

brittle banish
cartridge beckon

ceiling central
century coffin
chapter concede

colleague concern
collect confine
comic consign

coroner cunning
cumber deafen
danger domain
defend felon
device furnish
drench gallop
dribble happen
driven lizard
facet locus
filing manage
grunt margin

hamper marriage
hardly memory

knowledge mission
languor nervous
limber nominee
magnet notice
mention partition
minute peasant

mountain permission
mustard petition
panther plaza
parable portion
parcel position
receive radio
remind regain
remit remain
repeat report
reverse retail
rollick retain

salvage revolve
scant service

scepter siphon
spiral soften
squid solemn

straighten taken
stutter treasure

supposed trophy
temple village

temporal warrant



Brain Sci. 2021, 11, 1628 18 of 20

Table A3. Stimulus words from Vitevitch and Goldstein (2014) that were used in Simulation 3a,b.

Keywords Foils

Amend Album
Auricle Aloft
Bring Attest
Colic Brief
Defy Cockney
Filing Downy
Fish Espy

Inurn Firm
Leva Feudal
Ling Lave
Lion Lighten

Milling Manna
Misty Mystic
Opine Osprey
Over Party

Packet Pasty
Pallet Pilot
Pocket Poster
Polite Rent
Scrawl Rupee
Spring Squirt
Tenet Stilt
Tense Test
Void Torrid
Wrist Vest
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