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Abstract: For incurable diseases, such as multiple sclerosis (MS), the prevention of progression and 
the preservation of quality of life play a crucial role over the entire therapy period. In MS, patients 
tend to become ill at a younger age and are so variable in terms of their disease course that there is 
no standard therapy. Therefore, it is necessary to enable a therapy that is as personalized as possible 
and to respond promptly to any changes, whether with noticeable symptoms or symptomless. Here, 
measurable parameters of biological processes can be used, which provide good information with 
regard to prognostic and diagnostic aspects, disease activity and response to therapy, so-called bi-
omarkers Increasing digitalization and the availability of easy-to-use devices and technology also 
enable healthcare professionals to use a new class of digital biomarkers—digital health technolo-
gies—to explain, influence and/or predict health-related outcomes. The technology and devices 
from which these digital biomarkers stem are quite broad, and range from wearables that collect 
patients’ activity during digitalized functional tests (e.g., the Multiple Sclerosis Performance Test, 
dual-tasking performance and speech) to digitalized diagnostic procedures (e.g., optical coherence 
tomography) and software-supported magnetic resonance imaging evaluation. These technologies 
offer a timesaving way to collect valuable data on a regular basis over a long period of time, not 
only once or twice a year during patients’ routine visit at the clinic. Therefore, they lead to real-life 
data acquisition, closer patient monitoring and thus a patient dataset useful for precision medicine. 
Despite the great benefit of such increasing digitalization, for now, the path to implementing digital 
biomarkers is widely unknown or inconsistent. Challenges around validation, infrastructure, evi-
dence generation, consistent data collection and analysis still persist. In this narrative review, we 
explore existing and future opportunities to capture clinical digital biomarkers in the care of people 
with MS, which may lead to a digital twin of the patient. To do this, we searched published papers 
for existing opportunities to capture clinical digital biomarkers for different functional systems in 
the context of MS, and also gathered perspectives on digital biomarkers under development or al-
ready existing as a research approach. 
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1. Introduction 
Multiple sclerosis (MS) is a complex and chronic neurological disease of the central 

nervous system (CNS) that is characterized by a pathophysiological combination of neu-
roinflammation and neurodegeneration. As the inflammatory and neurodegenerative 
process can involve a variety of different neuroanatomical locations in the CNS, many 
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functional neurological systems can be affected, ranging from visual, motor, cerebellar 
and sensory problems to complex cognitive symptoms. Since MS already occurs early in 
adulthood, accompanied by only a mildly reduced life expectancy, the highly heteroge-
neous disease, lasting over several decades, offers numerous inter-individually and intra-
individually differences as well as different disease phenotypes evident in different dis-
ease stages [1]. Each of these individual differences and disease phenotypes must be ad-
dressed when it comes to treating MS as well as MS-related symptoms (e.g., spasticity, 
pain and gait problems). Additionally, as MS and its symptoms can change over time, it 
is crucial to detect these changes early in their development by using regular neurologic 
evaluation, questionnaires, functional tests, magnetic resonance imaging (MRI), labora-
tory checks and other assessments. Therefore, during this lifelong, chronic disease, a large 
amount of medical data accumulates, with important information pertaining to medical 
conditions and symptoms as well as diagnostic and therapeutic measures. In particular, 
the assessment of responders and non-responders to immunomodulatory therapies re-
quires the long-term monitoring of different MS-related parameters, such as, for example, 
imaging, clinical assessments and biomarkers. If one adds the characterization of all dif-
ferent MS symptoms (e.g., depression and fatigue), the necessity for the complex and com-
prehensive collection of additional data becomes clear [1,2]. Since the collection of these 
data requires a lot of time, personnel and funds, using digital technology devices can fa-
cilitate this process and lead to the collection of so-called digital biomarkers. In this nar-
rative review, we provide an overview of emerging digital biomarkers in the field of MS, 
their integration into regular monitoring and interesting approaches already in the testing 
phase, highlighting the need and benefits for the care of people with MS (pwMS). Search-
ing for relevant literature in PubMed, specifying “digital biomarkers AND multiple scle-
rosis”, showed to be inefficient. Therefore, we decided to search for different functional 
systems with better results, although results in connection with multiple sclerosis are lim-
ited. Much more research has been done with digital biomarkers in other diseases, e.g., 
Alzheimer’s disease or depression [3–5]. Some of these digital biomarkers are now being 
investigated for their potential use in MS. 

2. Digital Biomarkers 
2.1. Definition of Digital Biomarkers 

According to the National Institutes of Health (NIH, USA), biomarkers are objec-
tively measured indicators of physiologic processes, pathologic processes or pharmaco-
logic responses to a therapeutic intervention [6,7]. In MS, they can be subdivided into di-
agnostic (help to differentiate between different diseases, e.g., anti-aquaporin-4 antibod-
ies, oligoclonal bands, etc.), prognostic (enable physicians to estimate how a disease might 
develop once it has been diagnosed, e.g., neurofilaments, oligoclonal bands, etc.), predic-
tive (predict the treatment response and thus help to decide which patient is most likely 
to benefit from a certain treatment), disease activity (measure the inflammatory/neuro-
degenerative components of the disease, e.g., MRI, clinical parameters, etc.) and treatment 
response (responders versus non-responders of a certain treatment) biomarkers [6]. Espe-
cially with the focus on personalized medicine in pwMS, treatment response biomarkers 
can enable neurologists to differentiate patients regarding efficacy (e.g., neurofilament 
light chains, neutralizing antibodies against interferon-ß or natalizumab) or potential side 
effects (e.g., anti-varicella zoster virus antibodies, anti-John Cunningham virus antibod-
ies) of a certain treatment [6]. The collection of such data is crucial to adapt the treatment 
of each patient individually to his/her results. However, it is also time-consuming if these 
data have to be gathered by physicians or other healthcare staff. With the increasing dig-
italization of healthcare, medicine now gains access to a new type of biomarker. So-called 
digital biomarkers enable the translation of up-to-date new data sources into informative, 
actionable knowledge. They can be used by healthcare professionals (HCPs) by imple-
menting digital devices in their assessment (e.g., MRI, optical coherence tomography 
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(OCT) and tablet-based neurostatus); they also enable data collection directly from the 
patient. They can collect such data directly as part of disease management on a regular 
basis, and thus ensure good monitoring and a prompt reaction to the progression of MS 
and the worsening of symptoms. Digital biomarkers mean objective, quantifiable physio-
logical and behavioral data that are measured and collected by digital devices. The data 
collected by, e.g., portables, wearables, implantables or digestibles are typically used to 
generate, influence and/or predict health-related outcomes, and thus represent deep dig-
ital phenotyping, collecting clinically meaningful and objective digital data [8]. As digital 
technologies are usually less expensive than the process of collecting these data face to 
face, and as some of these data can be collected even without patients being actively in-
volved (passive monitoring, e.g., by the use of wearables) data can also be collected more 
frequently and longitudinally. Health-related outcomes can vary, from explaining health 
and disease states, predicting drug responses or influencing health behaviors. In addition 
to this rather strict definition of digital biomarkers, digitalization in medicine also in-
cludes patient-reported measures (e.g., survey data), genetic information and other data 
that now can be collected by digital infrastructure. These data can complement the men-
tioned digital biomarkers, creating a digital multidimensional dataset. 

Due to the technological transformation of healthcare, new technologies are lever-
aged to generate, track and collect new data. With the wealth of novel data, the responsi-
bility is on the system to turn them into promising information that helps clinicians, re-
searchers, patients and entrepreneurs to better understand states of disease and health [9]. 

2.2. Challenges of Digital Biomarkers 
The path to implementing digital biomarkers in the clinic is complex, because the 

benefits that can be achieved by the use of digital biomarkers come with significant chal-
lenges (Table 1). 

Table 1. Challenges in implementing digital biomarkers in the clinic. 

Benefits Challenges 
Continuous real-time data Privacy 
Better real-world evidence Adherence/retention 

Greater power High variability 
Novel, sensitive endpoints Validation required 

Faster decisions Complex analysis 
Big data Data storage 

Digital biomarkers will, at least, face the same regulatory requirements as traditional 
biomarkers, and need to be tested for feasibility and reliability. The knowledge on how to 
establish and validate digital biomarkers is still limited. It can be challenging to identify 
relevant data and analyze them, and especially difficult in terms of how to use accurate 
baselines to relate this data for evaluation [10]. On the other hand, collecting continuous 
real-time data out of the patient’s everyday life closes the data gap between visits, and 
thus can reveal changes in the disease course as soon as they occur. A continuous dataflow 
from patients to their treating physician could generate a big dataset that shows real-
world evidence, therefore being more meaningful and enabling faster decision making. 
This is only possible with patients who are carefully educated about the need for such 
sensitive data and demonstrate appropriate adherence. To avoid patients getting obsessed 
with even minor, non-significant changes, as to decrease the potential of over-reactions 
and increased anxiety, networking between physician and patient is crucial to evaluate 
and discuss the significance of these biomarkers. Besides necessary reflections on data 
security and the possibility to store these data over a long period of time, a huge dataset 
arises through the use of digital devices, which requires complex analyses. 
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Digital biomarkers have great potential for medical domains that are not well-under-
stood, especially if digital biomarkers lead the way to phenotypic signatures. Challenges 
around infrastructure, evidence generation, consistent data collection and workflow re-
main. 

To be seen less as a challenge than as an aspect to be considered is the distribution 
and availability of digital devices for data collection. Not every patient can afford to buy 
wearables or a smartphone to collect their data during their everyday life. In addition, 
some patients will have difficulties with their usage, due to age-related reasons or impair-
ments that prevent the handling of digital devices. 

2.3. Classification of Digital Biomarkers 
Digital biomarkers are basically collected by digital tools. A way to classify these 

measures focuses on what has been measured, and the added clinical value derived from 
that data. At this, measurements can be familiar, such as the measurement of blood pres-
sure, or innovative, such as the continuous measurement of blood pressure. A known 
clinical value is one that is well-understood and has previously been validated., e.g., blood 
pressure can be used as an indicator of cardiovascular risk. Alternatively, the known 
measurement can additionally be used to detect a new finding, linking blood pressure to, 
e.g., major depression. These different digital biomarker categories will influence the level 
of evidence required for regulatory approval, validation and clinical implementation [7,9]. 

2.4. Clinical Digital Biomarkers in Multiple Sclerosis 
Due to the increasing digitalization of health, a growing amount of patient data can 

be collected digitally in the care of pwMS (Figure 1). This not only refers to digital assess-
ment results during clinical visits, but also daily patient-driven data collection, e.g., via 
the usage of smart devices, such as motion sensors, that arouse great interest in character-
izing lifelong MS disease in a more granular way. 

 

Figure 1 shows the five steps in digital clinical assessment from where we are now to 
where the future of digital clinical assessments could be. The typical clinical examination 
is still for the most part paper-based (except MRI, which is already digital), with, at best, 
subsequent digital storage of scanned documents in the hospital information system (step 
one). Digital clinical evaluations of, e.g., gait, patients’ perception regarding symptoms 
(patient-reported outcomes) or the digital version of the Multiple Sclerosis Functional 
Composite (MSPT; Section 3.4) are not available for every neurologic practice or hospital 
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for use in clinical routine, but are available mostly as part of clinical trials (step two). Dig-
ital biomarkers cannot only be collected actively. Additionally, passive monitoring and 
data collection are possible using, e.g., voice analysis during calls with patients (step 
three). As step two relates to digital data collection at given points in time during patients’ 
visits, step three is already the transition towards data collection outside the clinical set-
ting (e.g., passive collection of mobility via smartphones). Symptoms can vary over time, 
and disease progression may therefore be detected too late. For this reason, real-life mon-
itoring is crucial (step four). Future devices could be smart applications, such as mirrors 
that automatically recognize body temperature and mood (step five). 

Increasing evidence supports a forward-thinking chance of treatment decisions due 
to inter-individual highly variable clinical presentation, the extent of disease progression 
and a growing amount of defining biomarkers and surrogate endpoints, which personal-
ize each disease presentation and favor our objective of a tailored treatment approach 
[1,11–13]. 

In the subsequent chapters, we will focus on digital biomarkers collected to investi-
gate the involved functional systems or subdomains that are affected by different topo-
graphic lesions that occur during the course of MS. As MS is such a multidimensional 
disease, affecting different functional systems, collecting digital biomarkers capturing 
changes in those systems can offer insights into a comprehensively personalized disease. 

3. Clinical Digital Biomarker by Functional Systems 
3.1. Vision 

Vision is one of the most affected functional systems in pwMS and often manifests 
itself in form of optic neuritis. Clinical signs can range from changes in color vision, re-
duced visual acuity or even complete loss of vision [14]. As atrophy of the retinal nerve 
fiber layer and ganglion cell layer was detected in 79% of pwMS and was 17 times higher 
in comparison to other neurological diseases, the measurement of the retinal nerve fiber 
layer can be used as a digital biomarker [15]. Using OCT, peripapillary retinal nerve fiber 
layer (pRNFL) thickness and macular volume can be measured to search for retinal atrophy 
[16]. Therefore, Martinez-Lapiscina et al. (2016) used models designed to determine the 
association of OCT-based metrics with the degree of disability, and included continuous 
variables such as pRNFL thickness as well as macular volume to quantify the effect (in-
crease or decrease) on the risk of disability worsening associated with each unit of change 
(1 μm for pRNFL thickness and 1 mm3 for macular volume). Th results suggested that 
regular monitoring of the peripapillary retinal fiber layer could be a useful digital bi-
omarker to monitor the worsening of disability in MS, especially as it correlated with clin-
ical and paraclinical parameters of vision, disability and MRI [16,17]. 

Another digital biomarker that can be used to monitor vision impairment is contrast 
vision. Testing visual acuity at low contrast ratios is significant, because in pwMS the 
threshold at which a letter can still be distinguished from the background is significantly 
higher than in healthy persons [18]. Sloan low-contrast letter acuity (LCLA) has been 
shown to correlate with MRI parameters and with OCT-detected retinal nerve fiber layer 
thickness [19]. The benefit of such contrast vision screenings is that they can also be used 
on mobile devices such as tablets or mobile phones, and can be easily done at home by 
patients themselves on a regular basis. How such a test can be put into practice is de-
scribed in Section 4.1 in more detail. 

Furthermore, virtual reality (VR)-based visual field testing may offer options for in-
clinic and self-testing at home in the future. To date, VR vision testing is not ready to be 
counted as a digital biomarker because a “standard of care” test is missing. However, after 
completing VR training, MS patients presented promising improvements in cognitive and 
motor function [20]. 

3.2. Brainstem 
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Regarding brainstem functions for neurologists treating MS, oculomotor function 
and dysarthria are particularly suitable to be used as digital biomarkers. 

Oculomotor function evaluation: Among the clinical signs of brainstem involve-
ment, oculomotor disturbances are a common symptom, and often present early in the 
course of MS (such as in relapsing–remitting MS (RRMS)) [21]. The most frequently ob-
served eye movement disorders are saccadic dysmetria (91%), internuclear ophthalmople-
gia (68%), vestibulo-ocular reflex abnormalities and gaze-evoked nystagmus (36%) 
[22,23]. 

The development of eye-tracking technologies became more popular because these 
technologies offer the chance to obtain in-depth information about how people explore 
the world, indirectly provide insights into higher-order cognitive processes, e.g., prefer-
ence, and investigate attentional deficits. Additionally, these technologies enable oculo-
motor insights from a medical point of view (e.g., kinematic of eye movement, frequency 
and metrics of saccades in addition to response latency) [24,25]. 

One option to analyze eye motor function is to measure the saccadic initiation time 
(SI time), which describes the time until an appropriate saccade appears, beginning with a 
central visual cue [26,27]. Because of its close connection with ocular nerve impairment, sac-
cadic tests are popular and most frequently used to assess oculomotor function in MS [28,29]. 
To measure SI time, participants fixate a central cross, and after replacing the cross 
through an arrow they make saccadic eye movements towards periphery stars in the cor-
ner of a screen [27]. Nygaard et al. (2015) found that the SI time of RRMS patients was 
significantly longer compared to age- and gender-matched controls. The presence or ab-
sence of white matter or brainstem lesions between patients had no influence on the SI 
time. However, eye motor disturbances might be an early indicator for a disseminated MS 
[27]. Another study by Finke et al. (2012) found a significantly larger decrease in saccade 
peak velocity and amplitude in pwMS suffering from fatigue in comparison to non-fa-
tigued pwMS as well as to healthy controls when performing a saccade fatigue task that 
lasted 10 minutes [30]. 

Further, the pursuit ocular movement (POM) frequency has been analyzed in pa-
tients with RRMS and secondary progressive MS (SPMS) by using a vision-based non-
intrusive eye tracker [23]. In the study of De Santi et al. (2011), the POM frequency was 
significantly lower in pwMS compared with age- and gender-matched healthy controls. 
Interestingly, no relation between POM and the Expanded Disability Status Scale (EDSS) 
and no difference between RRMS and SPMS patients could be found [23]. 

Numerous studies have indicated that besides measuring oculomotor characteristics, 
eye-tracking tools reflect multifaceted cognitive information, contributing to the predic-
tion of cognitive impairment and having the potential to assess disease progression even 
in the absence of aware clinical symptoms [28,31]. This opens the possibility to use these 
tracking tools to further develop diagnostic tools, and to use the results as digital bi-
omarkers to evaluate disease progression and prognosis more precisely. By now, eye-
tracking tools have been used to detect pathologic visuo-spatial viewing behavior in MS 
[32]. New approaches present short assessments to capture abnormalities of the oculomo-
tor system, such as SONDA (Standardized Oculomotor and Neurological Disorder Assess-
ment) which takes less than five minutes for the whole assessment and is also used in Par-
kinson’s disease [33]. Quick and standardized assessments allow regular monitoring over 
time without overburdening patients, especially those suffering from fatigue. 

Speech analysis: Speech and voice are frequently impaired in MS, with a prevalence 
of approximately 40–50% [34,35], within which dysarthria is the most frequent communi-
cation deficit [35]. Its presentation usually tends to be mild, so unintelligible speech is very 
rare [36,37]. The major dysarthric features are deficient loudness control, slowness, mono-
pitch, increase in pauses, strained voice, imprecise consonants and decreased respirator 
capacity [13]. 

However, it is important to consider that impairment of speech may have negative 
effects on social participation and employment status, resulting in an overall reduced 
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quality of life [13]. So far, the basic characteristics of pwMS with dysarthria related to 
prosody and articulation remain mostly unresearched [38]. Accordingly, regular screen-
ing for changes in speech may contribute to the gain of important new biomarkers of dis-
ease progression, wherefore further developments in technology make the quantitative 
acoustic assessment of speech possible [13,38]. Digital vocal biomarkers offer the possibil-
ity of a standardized measurement and monitoring of speech. As speech might also be 
influenced by fatigue, depression and impairment in verbal cognition [38–40], the evalu-
ation of speech also enables us to screen for these aspects and expands the spectrum of 
measurable parameters. 

Studies showed a statistically significant correlation between dysphonic symptoms 
and MS, and the odds for having MS were 2.2 times higher if dysphonic symptoms were 
present with high jitter and shimmer values as well as high soft phonation index (an indi-
cator of vocal fold adduction; high values correlate with incomplete adduction of the vocal 
fold [41]) values [42,43]. The objective acoustic analysis of speech seems to be more sensi-
tive for discrimination between affected patients and healthy controls (90% accuracy) than 
experienced raters (35% accuracy) are, and thus could be used as a biomarker for diagno-
sis and the monitoring of disease progression [13,35,44,45]. 

Speech analysis applications using artificial intelligence to evaluate acoustic speech 
and language measures via a tablet are thought to provide vocal biomarkers for diagnosis, 
risk prediction and regular monitoring not only in MS but also in Parkinson’s or Alz-
heimer’s disease, and are in general highly predictive for cerebellar dysfunctions [46,47]. 
The benefit of a standardized software-based evaluation of speech tasks is the avoidance 
of intra- and inter-individual deviations in perceptions [47], so that monitoring could also 
be possible outside of routine visits. Digital vocal biomarkers and their use in clinical prac-
tice are still facing challenges when it comes to different accents, ages, task complexities 
and individual cognitive abilities [47,48]. Signs of fatigue and depression are already de-
tectable in healthy individuals or patients without neurological disease [39,49]. As fatigue, 
depression and cognitive impairment are common in MS, they could be detected by 
speech analyses [46]. Test batteries can be designed in such a way that they capture exec-
utive functions and processing speed (e.g., phonematic and semantic word fluency [50]), 
memory (e.g., the Wechsler Memory Scale and California Verbal Learning Test [51,52]), 
affect and fatigue (e.g., storytelling [53]), language (picture description [54]) and motoric 
function (Pa-ta-ka task [38,42]). To date, performing such speech and language tests might 
be limited to trials, but can be imagined to be used in the future during clinical visits of 
pwMS or even at home by the use of specific apps or recordings during telemedicine vis-
its. 

3.3. Upper Extremity Motor Function 
At least 56% of pwMS have upper extremity impairment; 71% of those report limita-

tions in hand and arm use that dramatically affect daily living activities [55–57]. Upper 
extremity impairment is mostly conditioned by weakness and/or impaired coordina-
tion/ataxia [58], and is likely to limit future ability to perform activities of daily living and 
further reduce quality of life. 

Existing dysfunction increases with disease progression, especially in patients with 
progressive MS compared to patients with RRMS [56,59]. Due to their highly differenti-
ated movement variability, a comprehensive assessment of the upper limb can be chal-
lenging, and thus assessments must address multiple subsystems, such as eye–hand co-
ordination and intra-limb and inter-limb coordination, as increasing dysfunction is seen 
in patients after stroke or with other diseases affecting the coordination of the limbs 
[57,60–62]. 

One of the most popular functional outcome measures to examine upper extremity 
function is the Nine-Hole Peg Test (9HPT). The 9HPT has known deficiencies—it only 
assesses fine manual dexterity; other important upper extremity functions, such as proxi-
mal upper extremity movements, complex bimanual tasks or the manipulation of larger 
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objects, are not captured [63]. Accordingly, there is an ongoing search for new, multidi-
mensional, sensitive upper extremity performance tests that provide new biomarkers that 
may predict disease progression. Here, the widespread use and manual handling of 
smartphones make them a promising assessment device, especially with regard to their 
ever-increasing abilities. With smartphones containing sensors, such as a gyrometer, ac-
celerometer, inclinometer, orientation and light sensors, the opportunities to develop new 
ways to measure neurological functions seem almost infinite [64]. 

Tanigawa et al. studied finger tapping via a smartphone-based app as an alternative 
outcome measure of upper extremity function in MS by an analogy to tapping as a useful 
outcome measure, e.g., in primary lateral sclerosis [65]. Finger taps correlated clearly with 
9HPT results. Furthermore, a correlation between tap results and other raised measures 
of physical disability could be shown [64]. 

Several smartphone-based apps capturing different functional systems via digital 
tests and questionnaires have emerged, including the Floodlight app and Konectom (see 
Section 4.1). These apps contain tests for the upper extremities and use assessments to 
capture more than just fine motor skills. The pinching of balloons or tomatoes that emerge 
on different positions on the screen or the tracing of a figure with the index finger of both 
hands as quickly and accurately as possible measures, e.g., eye–hand coordination, fine 
motor function and the pressure of the fingers on the screen as well. Creagh et al. analyzed 
pwMS and healthy controls tracing a predefined shape on a smartphone, demonstrating 
an authentic prediction of 9HPT results [66]. 

The use of such apps on patients’ smartphones enables a regular and continuous pro-
gression monitoring of upper limb function even outside of the clinic by patients’ them-
selves, without supervision [64]. However, in order to fulfill the function of a monitoring 
tool and to influence therapy decisions, it must also be ensured that the test results are 
transmitted to the treating physician. 

Additionally, depth camera systems together with machine learning algorithms were 
examined to objectively quantify changes in movement-related symptoms to discriminate 
between healthy, not healthy and disease progression, which still needs to be researched 
further [67]. 

Another possibility with which to measure impairments in upper limb function are 
questionnaires (patient-reported outcome measure, PROM) that address different aspects 
of daily usage of hands and arms in different situations, such as tying shoes, buttoning up 
shirts or opening bottles. A regular questioning of the patient regarding his or her impair-
ments provides important indications of upper limb dysfunction and potential further 
examination. To date, no standardized upper limb PROM has been established. 

3.4. Lower Extremity Motor Function/Gait 
Lower extremity impairment and the resulting gait deficits are the most frequent and 

visible consequences of MS, caused by a variety of pathophysiologic conditions such as 
pyramidal, cerebellar or sensory dysfunction [68]. Approximately 85% of pwMS report 
impaired walking, with an often profound impact on daily life [69,70]. Compared to 
healthy controls, abnormal gait characteristics of pwMS are characterized by decreased 
walking speed, shorter step and stride length, prolonged double limb support time and 
increased step variability [70,71]—even without clinical evidence of gait disturbance early 
in the course of the disease [72]. Several factors are thought to contribute to gait impair-
ment in pwMS, of which sensory changes and the resulting imbalance, weakness of the 
lower limbs or spasticity and cerebellar ataxia might have the biggest impact [73]. De-
pending on one’s assessment goals, different tools can be used for the evaluation of gait 
impairment in pwMS, ranging from standardized clinical measures, timed measures, pa-
tient-reported outcomes, observational gait analysis, instrumented walkways or three-di-
mensional gait analysis, which all require different expertise of the examiner, time and 
equipment [73]. Each of them show advantages and disadvantages (Table 2). 
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Table 2. Advantages and disadvantages of various gait assessment methods (AmI = ambulation index; EDSS = Expanded 
Disability Status Scale; T25FW = Timed 25-Foot Walk test; 6MWT = 6-Minute Walk Test; MSWS-12 = 12-item Multiple 
Sclerosis Walking Scale; and EMIQ = Early Mobility Impairment Questionnaire) [73–75]. 

 Outcome Measures Advantages Disadvantages 

Standardized clinical 
measures. 

- Disability score (EDSS). 
- Time and degree of assistance 
required to walk 25 feet. 

- Take into account the use 
of assistive devices. 
- EDSS: directly related to 
neurologic examination; used in 
clinical trials. 
- AmI: simple and quick. 

- Require a skilled 
examiner. 
- Do not identify mecha-
nisms underlying gait dys-
function. 
- EDSS and AmI have 
limited precision and respon-
siveness. 
- No normative data. 

Timed measures (e.g., 
T25FW, 6MWT). 

Quantified aspect of gait, such as 
speed and endurance. 

- Simple. 
- Readily quantified. 
- Require limited training. 
- Published norms 
available. 

Do not identify mechanisms 
underlying gait dysfunction. 

Patient-based measures (e.g., 
MSWS-12; EMIQ). 

Patient’s perspective of their walking 
disability. 

- Document the patient’s 
perspective. 
- Require little time to com-
plete. 

Do not identify mechanisms 
underlying gait dysfunction. 

Observational gait analysis 
(e.g., during T25FT or other 
walking conditions). 

Gait pattern in terms of kinematic and 
spatiotemporal parameters. 

- Identify mechanisms un-
derlying gait dysfunction. 
- Requires limited time and 
equipment. 

- Limited validity, relia-
bility and precision. 
- Requires skilled 
examiner. 

Sensor floor plates: 
(a) Instrumented 
walkways; 
(b) Force platform; 
(c) Balance boards. 

(a) Spatial and temporal variables. 
(b) Ground reaction force pattern.  

- Kinematics. 
(c) Ground reaction force pattern. 

(a) Simple. 
- Clinical feasibility. 
- Objectivity. 
- Quantification. 
- Good sensitivity. 

(b) Objectivity. 
- Quantification. 
- Good sensitivity. 

(c) Objectivity. 
- Quantification. 
- Portability. 

(a) Require equipment. 
- Do not identify mecha-
nisms underlying gait 
dysfunction. 
- Restricted to clinic or 
laboratory environ-
ments. 
- Restricted to few steps 
at a time. 

(b) Restricted to 
laboratory environments. 
(c) Clinical, research and 
home. 

Three-dimensional gait anal-
ysis (reflecting markers 
places on a person and re-
cording movement with in-
frared cameras). 

Detailed quantitative measures of kin-
ematic, kinetic and spatiotemporal pa-
rameters. 

- Identify mechanisms un-
derlying gait dysfunction. 
- Provide precise kinematic, 
kinetic, and spatiotemporal 
data. 

Require expensive equip-
ment and skilled examiner. 

Video-based: 
(a) Marker-based motion 
capture; 
(b) Marker-free motion 
capture. 

(a) and (b):  
- Spatial and temporal variables. 
- Kinematics. 
- Joint range of motion. 

(a) Comprehensive analysis 
of the widest range of gait 
variables. 

- Power consumption is not 
an issue. 
- Little interference from 
external environmental 
factors. 

(b) Objectivity. 
- Quantification. 
- High sensitivity. 
- Comprehensiveness. 

(a) Expensive. 
- Must be used in a la-
boratory environment. 
- Markers and restricted 
space can hinder move-
ment. 

(b) Can be expensive. 
- Generally, cannot be 
used outside the clinic 
or laboratory 
environment. 
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- Better suited to clinical 
environments than marker-
based systems. 

- Measures a restricted 
number of steps. 

Wearable sensors: 
(a) Inertial sensors 
(research-oriented/consumer-
driven); 
(b) Pressure sensors. 

(a) Spatiotemporal measures: 
- Joint range of motion. 
- Kinematics. 
- Balance. 

(b) Spatial and temporal variables. 

(a) Clinical feasibility. 
- Objectivity. 
- Quantification. 
- Good sensitivity. 
- Face validity. 

(b) Clinical feasibility. 
- Objectivity. 
- Quantification. 
- Good sensitivity. 
- Can be used outside the 
clinic and laboratory. 

(a) Sensors can impede 
movement. 

- Battery power. 
- Susceptible to 
environmental 
interference. 
- May need technical 
operators. 

(b) Sensors can impede 
movement. 

- Battery power. 

In the following, these assessments are presented for the different settings of re-
search, in-clinic monitoring assessment or functional tests to be performed at home, 
whereby the application of these tools is not always limited to one area. Wearables and 
smartphone apps, e.g., enable their use in several areas. As in 50% of pwMS with lower 
gait dysfunction also show upper limb impairment [76] this needs to be examined and 
addressed as well when therapy is considered. 

3.4.1. Lower Extremity Function in MS Research 
Research offers the possibility to use more advanced technologies for movement 

analysis than in common standardized clinical assessments providing a higher sensitivity 
for subtle impairments [75]. Therefore, not only a complex infrastructure is needed but 
also trained medical staff to accompany pwMS and to conduct the tests as well as to ana-
lyze the data. A selection of potential assessment technologies in MS and a selection of 
their associated outcomes is shown below (Table 3) [74]. 

Table 3. Potential gait assessment technologies in MS 

Assessment 
Technology 

Method Outcomes * Device ǂ (Manufacturer) 

Video-based (a) Marker-based 
(b) Marker-free 

(a) Joint range of motion (a) Vicon (Civon Motion Systems 
Ltd.); Miqus Hybrid (Qualisys AB) 
(b) Miqus Hybrid (Qaulisys AB) 

Sensor floor 
plates 

(a) Instrumented walk-
way 
(b) Force platform 
(c) Balance boards 

(a) Spatiotemporal measures 
(b) Ground reaction force pattern 
(c) Ground reaction force pattern 

(a) GAITRite (CIR Systems) 
(b) ProKin (Tecnobody); 3D 
Force Plate (Kistler Instruments AG 
(c) Wii Balance Board (Nintendo) 

Wearable sen-
sors 

(a) Research-oriented ± 
(b) Consumer-driven ƍ 

(a) Spatiotemporal measures, joint 
range of motion 

(a) Mobility lab (APDM), XActi-
Graph GT9X Link (ActiGraph); GE-
NEActiv Original (Activinsights) 
(b) Fitbit Charge 5  (fitbit), 
vívosport® (Garmin), Xiaomi Mi 
Band 6 (Xiaomi) 

* Selection of key outcomes; ǂ examples; ± devices developed primarily for research purposes: no direct patient feedback, 
no modifying of movement behavior through, e.g., motivation, raw data output; ƍ devices developed primarily for con-
sumer requirements: direct feedback of movement behavior on device display, no direct access to raw data ( adapted from 
Trentzsch et al., 2020 [74]). 
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Video-based assessment technology captures so-called kinematics (motion sequences 
and range of motion) regarding time, place, speed and acceleration [77], either marker-
based or marker-free. Marker-free systems show to be more user-friendly; however, 
marker-based systems are on the one hand more time consuming and involve extensive 
technological and human resources, but on the other hand offer higher accuracy and re-
producibility [74,75]. 

Sensor floor plates allow for the measuring of spatiotemporal parameters (instru-
mented walkways such as GAITRite®), as well as information about ground reaction force 
(force platforms or balance boards). As such systems are mainly focused on muscle force, 
joint load and moment during initial contact and toe-off to evaluate gait impairment [78], 
other aspects of mobility are missed, such as swaying, rotation and balancing of the body, 
data which are needed to obtain a more precise movement pattern of pwMS. Therefore, 
all of these devices can be expanded by wearables. 

Wearable sensors can also be used at home by patients themselves to measure their 
gait restrictions. One wearable for research use is the Mobility Lab system (APMD, Port-
land, OR, USA) which consists of Opal sensors that are fixed on specific body parts (e.g., 
wrist, sternum, lower lumbar spine and feet) [79]. Three-dimensional linear acceleration, 
angular velocity and magnetic field (for directional orientation) are captured by the use 
of onboard accelerometers, gyroscopes and magnetometers, and Mobility Lab software 
analyzes these data for gait parameters such as stride length, velocity, cadence, stand and 
swing time, etc. [79]. In addition, so-called consumer-driven wearables (e.g., GPS watches) 
are of interest as they can provide data collected in research, a clinical setting or at home. 

Video-based and sensor floor plates assessments are only possible to perform in an 
in-clinic setting, whereas wearable sensors can also be used by pwMS themselves in their daily 
living over a longer period of time, thus providing an additional quantitative large dataset 
which better represents the mobility of pwMS. Spain et al. could also show that body-worn 
motion sensors could discriminate pwMS from healthy controls with a higher sensitivity than 
tests conducted using stopwatches, as wearables can also detect sway and axial rotation while 
the latter only captures speed, which might not show any impairment yet [80]. 

3.4.2. Lower Extremity Function in the Clinic 
The most frequently used clinical assessment tool and outcome measure in MS, the 

Expanded Disability Status Scale (EDSS), considers general ambulation by rating gait im-
pairment upon endpoints, e.g., requirements of rest, dependency on help or loss of walk-
ing ability/wheelchair [81]. Thereby, subtle functional impairment cannot be taken ade-
quately into account, leading to an insensitive scoring concerning disease progression, 
especially in the early stages of the disease [68,82]. However, as subtle gait impairment 
and balance dysfunction are seen as precursors of mobility loss in MS [75], the need for 
suitable outcome measures, capable to detect even subtle gait impairments and to monitor 
disease progression during a clinical assessment and also out of the artificial clinical set-
ting under real-life conditions of pwMS becomes clear [72]. Nevertheless, it is also neces-
sary to monitor the worsening of gait and balance dysfunction throughout the whole dis-
ease course. Interventions (pharmacologic and/or non-pharmacologic) need to be started 
and/or optimized as soon as possible to prevent further or faster progression of disability. 
One test alone is not able to describe impairment in the many facets of walking of pwMS. 
A combination of standardized functional tests that capture walking speed, walking en-
durance and balance as well as the quality of walking, or standardized patient reported 
outcomes regarding mobility restrictions will lead to a broad and sensitive dataset to eval-
uate mobility, at best on a regular basis. Various digital tools can be used for this purpose. 
Many of the gait assessments available in the research are not possible, as not everyone 
can be transferred into a routine clinical setting due to a lack of infrastructure, time, space 
or well-trained staff [74]. For those who can afford to integrate a broad evaluation of mo-
bility into their clinic, all of the above-mentioned assessments can be performed. It is rec-
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ommended to implement a protocol to follow and, thus, enable a standardized measure-
ment for pwMS. At the Multiple Sclerosis Center Dresden, we developed the Dresden 
Protocol for Multidimensional Walking Assessment (DMWA) [74] to capture mobility in 
all of our pwMS at least once a year. Thus, with this long-term monitoring, early walking 
impairments as well as development over time or even the response to certain gait-influ-
encing drugs can also be recorded, and the current standard of clinical practice be im-
proved [74]. Gait analysis can also be supplemented in the clinical setting with other (dig-
ital) functional tests that include, e.g., cognition, speech, vision, or PROMs. Therefore, we 
added the Multiple Sclerosis Performance Test (MSPT) to the clinical routine of pwMS. 

The MSPT is a tablet-based (iPad Air® 2, Apple, Cupertino, CA, USA) digital assess-
ment tool (app) designed to be used in a routine clinical setting without or with only mini-
mal supervision [83]. Based on and extending the Multiple Sclerosis Functional Composite, 
the MSPT uses a digital adaption of the Symbol Digit Modalities Test (SDMT), the Sloan 
low-contrast visual acuity test, the 9HPT and the Timed-25 Foot Walk (T25FW) tests as well 
as a questionnaire regarding quality of life in neurologic diseases [58,84–87]. The MSPT in-
cludes all tasks to evaluate cognitive function (Processing Speed Test (PST), a digital adap-
tion of the SDMT), contrast sensitivity, upper extremity function (9HPT) and walking 
speed/lower extremity function (T25FW) [83]. The aim is to assess the often-impacted neu-
rologic functions of pwMS regularly and standardize them to create a longitudinal digital 
medical record, contributing to a better disease understanding and progression monitor-
ing, which may contribute to more optimized patient care and management [83]. The 
MSPT is basically meant to be performed by pwMS without supervision, which allows 
data collection without consuming time and staff at the clinic. Data are available right 
after completion and can also be used for monitoring; therefore, a baseline MSPT should 
be performed at the time of diagnosis or treatment start/change to refer changes to. The 
benefit of using the MSPT is the availability of standardized functional testing and the 
possibility of having a great amount of pwMS performing the MSPT without the require-
ment of additional staff. Learning effects, such as for the paper-based SDMT [88], are ex-
cluded by randomly assigning numbers to symbols for every assessment [89]. Studies 
showed excellent test–retest reliability for the manual dexterity test (digital version of the 
9HPT) and the walking speed test (T25FW), a significant (but only modest) correlation of 
the contrast seeing test with the standard Sloan low-contrast vision acuity [90] and an 
excellent test–retest reliability for the PST, with a high correlation with the SDMT and 
with cerebral T2 load (in contrast to the SDMT) [89]. 

The implementation of the tests in a digital format is user friendly as each test is ex-
plained by a video. The tablet is brought in an upright position. At first, information about 
current disease modifying therapy (DMT), relapses and Patient Determined Disease Steps 
is made before filling out the NeuroQoL [91–93]. The PST shows a random assignment of 
numbers to symbols and ten symbols at a time for which patients have to choose the cor-
rect number by tapping on one of the numbers shown at the bottom of the screen. For 
contrast vision, a certain distance and illumination are needed before the test can be 
started. At first, letters are shown at 100% and then at 2.5% contrast, whereas patients 
have to choose the letter they see out of a collection of letters at the bottom of the screen. 
In cases where a letter cannot be clearly identified patients can guess or tap “unclear”. To 
perform the 9HPT, the MSPT needs to be lying flat on the table and the stand with the 
pegboard is folded down. Nine pegs are put in the row at the bottom and after activating 
the countdown patients are asked to take one peg at a time from the row and insert it into 
one of the holes of the pegboard. After all pegs have been inserted, they need to be re-
moved, again, one at a time, and put back into the row. Time automatically stops when 
the last peg is put in the row at the bottom of the pegboard. Before performing the T25FW 
patients need to specify if they will use any gait support or if they wear any lower leg 
orthosis. If patients are rather unsteady on their feet, a nurse supports the patient to avoid 
any falls. At the end, an overview of the results can be seen on a dashboard, and the lon-
gitudinal course can be seen by tapping each test. 
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Despite the fact that the MSPT was designed for pwMS to be performed without sup-
port or supervision, we recommend pwMS to be supported if needed, and the provision 
of feedback to their results increases adherence to and understanding of monitoring. 

3.4.3. Lower Extremity Function at Home 
The collection of real-time data on a longitudinal basis becomes more and more im-

portant when monitoring chronic diseases in particular, such as MS, as they do not only 
state a condition at one point in time and thus allow for progress and follow-up control. 
In particular, accelerometers are used, and depending on their position on the body, allow 
for the partial documentation of the relevant mobility; however, not all physical activities 
are captured equally as well [94]. With the help of wearables, it is possible to focus on 
different aspects such as gait, upper or lower limb function, behavior or other body move-
ment patterns; when used regularly, they provide information about mobility from out-
side a clinical setting and may correlate with disease-specific predictors, outcomes or in-
terventions [95]. Various accelerometers can now be used, such as the already widely used 
fitness trackers (e.g., Fitbit, Garmin, Xiaomi, ActiGraph and others), which have been 
shown to be useful in an everyday setting and can even be used to collect data over several 
days [74,82,96]. By tracking the physical activity of pwMS continuously over one year, 
Block et al. (2019) could show an association between a reduction in average daily step 
count and the worsening of standard clinic-based and patient-reported metrics [97]. They 
also showed that patients with a lower baseline average daily step count were found to 
be at a higher risk of disability worsening one year later [97]. Other wearables, such as the 
skin-mounted inertial sensor BioStampRC (MC10, Inc., Cambridge, MA, USA), could sup-
port physicians in identifying gait pathology and in evaluating disability progression of 
gait in pwMS [98]. As wearables become more and more affordable and broadly accepted, 
they might work as an ambulatory, real-life and continuous gait monitoring system 
[98,99], allowing for increased sensitivity in regard to monitoring disease progression and 
the efficacy of immunomodulation [98]. 

Captured variables can include step count, active minutes, activity count, activity 
bouts and energy expenditure [97]. Compared to non-wearable laboratory/research sys-
tems, wearable sensors capture a smaller number of gait variables [75]. 

Smartphone-based apps that use functioning tests or record movement parameters are 
another way of tracking patients’ mobility and activity. They will be discussed in Section 4.1. 

3.5. Coordination/Balance 
Deficits in balance are, even in early disease stages, common [72,100–102]. Overall, 

50–80% of pwMS state balance problems over the course of the disease [103,104]. Balance 
can be defined as a skill of the nervous system, using several systems such as passive 
biomechanical elements, all available sensory systems and muscles as well as a multitude 
of different parts of the brain, instead of simply reacting reflex-like to perturbations [105]. 
As the heterogeneous demyelinating lesions in MS could also affect somatosensory or 
vestibular paths, visual input was shown to be necessary to maintain postural control in 
pwMS [106]. Postural control is defined as the act of maintaining, achieving or restoring 
a state of balance during any postures or activities [107], which a person tries to achieve 
by reactive, predictive or a combination of both behaviors [108]. Postural control is closely 
associated with falls in pwMS [106], which emphasizes the need for longitudinal evalua-
tion during the course of the disease. As for today, postural perturbations are subjectively 
rated by neurologists as part of the cerebellar functional score of the EDSS [109]. To avoid 
subjective judgment of postural control in MS and to allow for follow-up evaluation of 
changes, objective, digital and quantifiable measurements are needed. In a clinical or re-
search assessment, proprioceptive deficits can be evaluated, e.g., by using the Romberg 
test. To objectify its results, it may be connected with the use of body sensors (e.g., Mobil-
ity Lab system) that allow software-based calculation of deviations from the norm [110]. 
Static posturography is another method of assessing balance in which patients are asked 
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to stand on a force platform with their feet closed and their eyes closed or open for 20 to 
60 s to measure spontaneous body sway, which can be extended by more difficult stand 
trials (e.g., tandem stand or standing on one leg) [111]. Balance parameters that can be 
captured include average sway and speed as well as delineated area [106]. Inojosa et al. (2020) 
showed in their study that static posturography could detect balance impairment even if pa-
tients had no disability according to their neurological examination [106]. Special apps for 
smartphones also provide tests with which to perform the Romberg test for balance evaluation 
and other gait assessments to be performed at home by pwMS themselves (see Section 4.1). 
Additionally, the use of portable balance boards (e.g., Nintendo Wii) are under investigation 
to be used as an inexpensive alternative to force platforms for balance assessment in pwMS 
[112]. An interesting aspect here is whether balance training could have a positive impact 
on postural control in pwMS. In their review on balance improvement, Gunn et al. re-
ported a positive influence of exercise interventions on balance in pwMS [113]. Other 
studies focusing on general motor rehabilitation in pwMS pointed at the issue that motor 
learning consists of three stages (cognitive, associative and autonomous phase), where the 
first stage depends on the person’s cognitive abilities [114], and the fact that cognitive im-
pairment is very common in pwMS thus connects cognitive and mobility dysfunction 
[115]. 

3.6. Cognition 
Approximately 40–60% of pwMS report cognitive dysfunction, and it is not uncom-

mon that the symptom onset is immediately after first disease manifestation or even be-
fore [116]. Impairment in cognition can occur at all stages of the disease and in all MS 
phenotypes [117]. Frequently impaired domains are working memory, verbal fluency, in-
formation processing speed, verbal and visual memory, executive functions [84,118] and, 
according to new findings, “the theory of mind domain” (the ability to conclude on the 
basis of nonverbal and verbal hints about other people’s emotions) [119]. As cognitive 
impairment is a strong predictor of health-related quality of life (QoL) [120] and QoL in 
turn has a huge impact on adherence [121], together with the negative impact of cognitive 
dysfunction on employment [122] and many other aspects of life [123], a thorough and 
regular evaluation is necessary [118]. So far, cognitive monitoring is often a not-well-es-
tablished part of standard care in MS. This is partly due to time and staff that are needed 
to allow for a routinely, longitudinal follow-up of pwMS. Therefore, digitalization of cog-
nitive assessments where patients are able to perform these by themselves without super-
vision can enable long-term cognitive monitoring. Provided in a smartphone-based format, 
this monitoring could be done also at home, e.g., with the Floodlight app (Roche, Basel, 
Switzerland) to perform the SDMT or the MS Sherpa app (Orimaki personalized healthcare, 
Nijmegen, The Netherlands) to evaluate the cognitive signal processing speed (see also Sec-
tion 4.1). 

Implementing digital cognitive assessments in the monitoring of MS is challenging, 
given the fact that many pwMS show not only cognitive deficits but also physical impair-
ments that are required for this kind of testing and need to be addressed when transform-
ing paper-based tests into a digital form, as they can change what exactly is measured 
[124]. For clinical use, a number of simplified tests of cognition have been developed in 
MS, including test batteries such as the Brief Repeatable International Cognitive Assess-
ment for MS [125], the Brief Repeatable Battery of Neuropsychological Tests [126] and the 
Minimal Assessment of Cognitive Function in MS [127,128]. The transformation of such 
tests into a digital form (computerized neuropsychological assessment device (CNAD)) is 
considered very controversial by some experts, stating that this transformation results in 
a new and different test: it has a different patient interface and is also available to exam-
iners with no expertise in neuropsychological assessments or knowledge of psychometric 
principles, and thus no accurate interpretation of test results is achieved as other factors 
influencing performance are not considered, no observational interpretation of the exam-
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inee is possible, etc. [129]. Other review papers could show, e.g., for the PST, the Comput-
erized Speed Cognitive Test and Computerized SDMT (C-SDMT), compared with the 
SDMT, a high test–retest reliability and validity, and for other tests acceptable psychomet-
rics [130]. Before applying CNADs to clinical routine or trials, adequate test–retest relia-
bility and sensitivity should be demonstrated [130]. 

Amato et al. (2001) already showed that if a follow-up was long enough, cognitive 
dysfunction was likely to emerge in a great proportion of pwMS, re-emphasizing the need 
for regular, standardized monitoring [123]. It has been shown that assessing cognitive 
function early in the course of the disease did not only identify cognitive impairment in 
individuals but could also predict future impairments, limitations and MS disease pro-
gression [131]. Thus, recommendations can be made to start cognitive assessments right 
from the start and re-assess cognitive functions in pwMS, thus enabling early treatment 
interventions. 

As interactions between motor and cognitive functions are known in MS, linking 
them together (termed dual-tasking) can be used to evaluate the interference of perform-
ing a cognitive task during gait assessment [73,74,132–134]. 

Dual-Tasking 
Coordinating two or more tasks simultaneously is an everyday requirement, and is 

increasingly recognized in the treatment and supervision of pwMS as having a major im-
pact on employment status [135]. This makes it even more important to recognize early 
and subtle cognitive (executive) dysfunctions [136]. Up to now, dual-tasks are performed 
during walking or balancing and, e.g., showed a slowing of gait depending on MS disease 
severity [136–144]. Dual-task tests that are already able to detect subtle and early executive 
dysfunctions are still lacking in MS. A study investigated the use of a standard psychologi-
cal refractory period (PRP) paradigm [145,146] in pwMS where two tasks (first stimulus—
high or low tone; second stimulus—letter A or B) have to be performed which are presented 
in close succession and to which pwMS have to respond as quickly as possible (Figure 2) 
[136]. 

 
Figure 2. Illustration of the psychological refractory period paradigm as a dual-task assessment in 
MS. Stimulus 1 (tone) is always presented first, followed by stimulus 2 (letter) in a defined stimulus-
onset asynchrony (SOA). PwMS are advised to respond first to stimulus 1 and as quickly as possible 
to stimulus 2 by pressing defined keys. RT: reaction time [147]. 

This dual-task test is still under further development, but the first results were prom-
ising. They showed that with this applied PRP paradigm, multitasking deficits, even in 
patients at an early stage of their MS disease course, could be detected [136]. Of course, 
such tests also face challenges, such as time required to perform the test, staff support and 
the test device. A follow-up study recently investigated the same dual-task test in an out-
patient setting using a tablet [147]. Böttrich et al. could show that the accuracy parameter 
in tablet-based PRP implementations can be used in neuropsychological assessments to 
examine dual-tasking abilities in pwMS [147]. Such data are promising for the use of such 
devices for the diagnosis and monitoring of the MS disease course on a regular basis. 
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4. Collection of Digital Biomarkers 
The longitudinal and multidimensional acquisition of digital biomarkers is already 

possible, and includes the use of smartphone-based apps as well as computer- or tablet-
based functional tests and questionnaires. 

4.1. Smartphones and Smartphone Applications 
Smartphones are omnipresent everyday objects, and are usually provided with inno-

vative high-quality nine-axis inertial motion sensors that are able to track motion and po-
sition in three-dimensional space [148]. These sensors enable basic measurements, such as 
acceleration or the calculation of data, to conclude how a person walks or to capture their 
daily step count; the sensing of geographic position, voice analyses and touchscreen pres-
sure can often be measured, detecting falls, monitoring heart rate or daily activity param-
eters are further examples of what make smartphones today a more and more health-
related product [148]. These features can be used when implementing digital assessment 
into MS patient care. Various applications (apps) use these sensors and extend them by 
different, other tests that evaluate the functional systems usually affected by MS (e.g., cog-
nition, vision, mobility and fine motor function of the upper limbs). Part of this data col-
lection is done actively, with pwMS performing specific assessments; passive data collec-
tion is also possible. Therefore, the pre-installed smartphone developer’s own app (e.g., 
Health for iOS, Google Fit for Android, etc.) can be used in MS as well for monitoring, 
e.g., gait. When implementing such apps in research or clinical practice, the precision and 
accuracy of these sensors need to be considered [96]. To actively collect data from pwMS 
they need to be prompted either to perform a test or to fill out a questionnaire. Currently, 
several apps are available that offer a set of various functional tests. Apps such as Flood-
light (Roche, Switzerland), Konectom(TM) (Biogen, Cambridge, MA, USA), MSCopilot® (Ad 
Scientiam, Paris, France) or MS Sherpa (Orikami, Nijmegen, The Netherlands), some of 
which are still in evaluation and only used in research, collect data regarding mobility (2- 
or 6-min-walk, U-turns, standing still: distance, speed, balance, etc.), cognition (matching 
symbols: cognitive processing speed), hand motor function (squeezing objects, drawing 
lines: coordination, pressure, speed and accuracy of hand and finger movement) and 
mood (questionnaires), or leaving options for patients to make notes [149–152]. The ben-
efit of such apps lies in the collection of data from daily life, the possibility to perform 
functional tests independent of clinical visits, enabling patients to use them for self-eval-
uation or in cases where they feel as though they are experiencing a worsening of symp-
toms and, of course, for pwMS and treating neurologists in order to include these data in 
therapy decisions as well. A regular functional system that monitors and thus detects pro-
gression early can lead to early treatment decisions or treatment changes. 

The implementation of such apps could overcome the challenge of often infrequent 
and rare clinic visits and capture all, sometimes daily, even subtle symptom changes. 
Thus, a more accurate monitoring of the individual disease course and associated opti-
mized therapeutic decisions becomes achievable [66,148,150]. Furthermore, daily patient 
self-made tasks via a smartphone may contribute to more disease responsibility and in-
formed discussions in clinical visits about subsequent therapeutic steps. PwMS acquire a 
more active, responsible part of progression monitoring, which might contribute to in-
creased compliance. Adherence to the use of such apps is crucial to allow for longitudinal 
monitoring, especially in chronic diseases as MS, and will be a challenge. 

Other smartphone apps that belong to the group of digital health applications (DI-
GAs) focus more on special symptoms and can already be prescribed in Germany. These 
apps aim, e.g., to help and support pwMS regarding fatigue (e.g., elevida by GAIA AG, 
Germany) and offer talks, exercises and informative material to enable help for self-help, 
independent of MS management. More DIGAs are already available for patients suffering 
from anxiety, depression, diabetes, stroke, etc. [153]. 

4.2. Digital Questionnaires in MS 
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Besides responsible MS management from the side of clinical staff, the patient’s point 
of view, including quality of life together with subjective treatment and disease effects, is 
increasingly weighted and raised via PROMs. PROMs combine any information “of a pa-
tient’s health condition that comes directly from the patient, without interpretation of the 
patient’s response by a clinician or anyone else” [154], allowing the specification of whether 
patients’ feelings/thoughts are congruent with those of clinicians [1,155,156]. With the aim 
of patient-centered therapeutic management, PROMs are collected directly from patients 
and contain items that subjectively rate functioning/activity limitations, symptoms, qual-
ity of life and health-related quality of life [157,158]. Existing PROMs focus on patients’ 
subjective evaluation of dealing with fatigue (e.g., Fatigue Assessment Scale), depression 
(e.g., Hospital Anxiety and Depression Scale), quality of life (e.g., NeuroQoL), mobility 
(e.g., 12-Item Multiple Sclerosis Walking Scale) and many more. To date, few PROMs of 
sufficient psychometric quality are available, necessitating the development of standard-
ized, high-quality MS-specific PROMs to collect robust, consistent and reliable real-world 
data [156,159]. Additionally, electronically answered questionnaires via app-based tech-
nologies such as tablets/smartphones, or via the Internet, enable more frequent PROM 
collection even in-between clinical visits, allowing a closer patient-centered view. Com-
bined with a transmission of patients’ answers into an electronic health record system, it 
could function as an automated monitoring/notification system in the case of concerning 
symptoms [1,160]. To avoid long and burdensome questionnaires it would be desirable 
that PROMs become adaptive to each individual person with MS. The use of computer-
ized adaptive testing is based on an item response theory to decrease administration time, 
still maintain accuracy, diminish the floor and ceiling effect and also improve the ability 
to detect the minimal clinically significant difference among patients [161–163]. This 
would lead to a higher patient adherence to perform PROMs on a regular basis, as well as 
more precise and individualized outcomes. 

4.3. Digital Data Collection in MS 
As there is already the possibility of data collection in many ways and areas, these 

data are of no use if they cannot be centrally stored, analyzed and made available to 
healthcare professionals and even patients. Especially when we think of the collection of 
big data to pave the way to a personalized treatment and consider MS as a lifelong disease 
that needs thorough and regular monitoring, quality care should enable a digitally sup-
ported quick response to any kind of disease worsening. Therefore, the Multiple Sclerosis 
Documentation System (MSDS) project group started to develop the MSDS software with 
the support of the Hertie Foundation in 1999, followed by the integrative patient manage-
ment system MSDS3D, adapting to growing data collection and documentation needs 
[164]. The integration of a survey system for questionnaires, which not only can be made 
available on tablets while pwMS come to their visits but can also be sent by email with 
regular reminders, and thus immediately be documented in patients’ medical records and 
visible for HCPs, became another feature of MSDS in recent years [165]. Documentation 
of medication plans, comedication and comorbidities, EDSS and relapses as well as pre-
defined procedures for pwMS on a certain DMT, or even without any therapy, also sup-
port the monitoring and follow-up of meeting quality standards, and provide hints for 
improving medical care in the future. As pwMS are not only treated by neurologists alone, 
but by a variety of other HCPs, such as neuroradiologists, general practitioners, derma-
tologists, nursing services, psychiatrists, pain management therapists, etc., the integration 
of interfaces for using telemedicine services, digital communication and sharing medical 
data with patients, practitioners and caregivers play an increasingly crucial role in MS 
care [165]. These big data create a holistic picture of an individual patient and lead to 
specific therapy decisions. Additionally, from an economic point of view to avoid dupli-
cate examinations and to enable high-quality treatment, all these data need to be ex-
changed between the parties involved. In the future, this need must be further met to 
provide holistic, high-quality and personalized care to pwMS. 
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4.4. Magnet Resonance Imaging 
MRI scans are a standard investigation in MS and are essential both for diagnosis and 

as a monitoring tool, and are already documented digitally. MRI, in general, cannot only 
assist in the diagnostic process but is also crucial in regular monitoring to provide infor-
mation about the treatment response as well as the efficacy and safety of DMTs [166]. 
Software systems that assist neuroradiologists in evaluating MRIs are already used in clin-
ical trials and investigated regarding their ability to support neuroradiologists and en-
hance the evaluation of imaging. They can scan defined MRI sequences for the quantifi-
cation of new or enlarging lesions, lesion volume and brain atrophy. Different companies 
are working on such software systems, which are partly already used in regular care [165]. 
Here, an inter-scanner reproducibility is of great importance [167]. Efforts have been made 
to provide consensus guidelines on the use of MRI in pwMS [168]. This is beyond this 
review on clinical, digital biomarkers in MS. 

4.5. The Future of Digital Biomarkers 
Much research is in progress regarding digital biomarkers in MS and other diseases, 

and studies are already evaluating the use of various devices for their collection (Konect-
MS and Floodlight), those already available as DIGAs (elevida) or those about to be one 
(MS Sherpa, Emendia MS). Chronic diseases such as MS or Alzheimer’s disease are com-
plex and can show a diversity of symptoms. These symptoms can also emerge in other 
diseases, e.g., depression (speech and cognition). Therefore, there will not be “the ideal” 
digital biomarker with which a disease can be detected and monitored. Rather, it will be 
the case that different applications will be used, which can easily be installed on 
smartphones (MS Sherpa, Floodlight, Konectom, elevida, etc.) or integrated into telemed-
icine (e.g., speech analysis). 

5. Data Analysis 
The use of digital biomarkers creates different demands on data analysis than the 

traditional processing of data in everyday clinical practice and even than those on a more 
elaborate level in clinical trials. To fulfill the predictive purpose of a biomarker, real-time 
data transmission and analysis is the goal. This requires independence of location and 
data collection situation, i.e., data processing that can take place in clinical practice, but is 
not limited to the neurologist’s premises, and the visits that take place at longer intervals. 
To accomplish this, data from a wide variety of sources must be digitally aggregated via 
standardized secure interfaces (see Section 4.3)—a task far beyond the capabilities of in-
dividual apps. 

Isolated analyses can also be performed locally, offline, on individual end devices 
(e.g., the calculation of individual PROM scores) and, assuming timely transmission to the 
treating neurologist, fulfill targeted warning functions. Here, the general requirement for 
(automated) information processing systems is that they can reliably distinguish useful 
information (real medical needs) from noise, such as by applying established cut-off val-
ues. These are usually predefined values, which are usually applied population-wide, and 
the exceeding of which is associated with the presence of an indication. However, the full 
potential of digital biomarkers as part of a precision medicine approach can only be ac-
cessed by integrating a wide variety of data sources into an electronic repository. This is 
based on the insight that single biomarkers can hardly be used to control a disease as 
complex as MS, the disease activity of which is, to a large extent, pre-symptomatic, and 
that rigid, generalized thresholds often do not best reflect the individual situation. 

The aim of an integrative evaluation of digital biomarkers in combination with other 
(clinical) data sources is the creation of a valid statistical model which evaluates prognos-
tic tasks, such as selection and change recommendation regarding a DMT, as well as ret-
rospective processing of information on progression assessment, therapy efficacy and 
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safety aspects, and makes them applicable to individual cases. On the one hand, this re-
sults in the necessity of the highest possible data density with regard to the data diversity 
and the temporal distribution of the surveys. On the other hand, the requirements for the 
analysis also make it clear that this cannot be achieved with traditional statistical meth-
ods/models. The now-established solution for such concerns is found in the field of ma-
chine learning. Here, complex data structures are evaluated in a data-driven manner, and 
information of various types is processed jointly. The desired application situation in real-
time and prognostic performance of the model can be extended by self-optimizing meth-
ods of deep learning. Schwab et al. chose an application situation for MS for this purpose, 
in which they aimed to achieve (retrospective) classification between pwMS and healthy 
controls by evaluating digital biomarkers from smartphone data using deep learning 
[169]. While this was not yet done as part of an established multiprofessional digital in-
frastructure for MS, they were able to successfully incorporate multi-layered data on mo-
bility, upper limb functionality, cognition and affect. 

However, the further the performance of such an analysis system goes, the more its 
ability to make recommendations and prognostic deductions comes into focus. This be-
gins with immediate predictions of the general state of impairment from a current cross-
sectional measurement of a patient [170], and increases through the consideration of indi-
vidual longitudinal courses to the prediction of individual symptom areas and the com-
peting effectiveness of therapies. At the same time, this increases the regulatory require-
ments for digital analysis systems for clinical practice, which in Germany, for example, 
are regulated by the Medical Devices Act. The end product of integrated digital data anal-
ysis is, in the best case, an approved product, which can be used by different HCPs as well 
as by the individual patient for recording as well as for evaluation, which remains self-
updating on the best scientific level and derives understandable as well as useful param-
eters and overviews for all parties involved. 

6. Digital Twins 
Digital biomarkers are an important component of so-called digital twins. A digital 

twin in healthcare is a virtual copy of a patient that exactly matches that patient’s charac-
teristics and attributes, thus mirroring that patient. Using machine learning algorithms, 
the digital twin can be trained to predict disease progression and simulate treatments 
without risk to the patient. This involves using population data collected from previous 
patients and study cohorts to build and validate statistical and mechanistic models and to 
create a population-based digital twin, as well as analyzing data from the individual pa-
tient using the existing models and, in turn, integrating them into the patient’s digital 
twin. The comparison and interaction between the digital twins provide valuable insights 
(e.g., phenotyping, risk assessment and the prediction of disease evolution) that are clini-
cally interpreted and combined with traditional data to support clinical decision-making. 
In the process, the digital twin is constantly fed with new data so that it adapts and con-
tinuously improves [171]. To create the digital twin of a patient, a large and multidimen-
sional amount of data is needed. A digital twin for MS (DTMS), due to the complexity and 
long-term nature of the disease, requires a particularly large and multidimensional 
amount of high-quality, high-frequency and structured data to propose a tailored therapy 
for the patient. These data are, in detail, physiological condition data of the patient (struc-
tured clinical data, paraclinical and multimicrobial data as well as patient-reported data) 
and procedures applied to the patient (diagnostic workup, treatment and monitoring, in-
tegrated in personalized clinical pathways). Many clinical and paraclinical data, including 
lab and imaging data, can be captured with digital biomarkers that can be transformed 
into interpretable outcome measures using algorithms. Digital twins also offer the possi-
bility of visualizing a wide variety of parameters using a dashboard and mapping person-
alized clinical pathways. With the development of a DTMS, clinical treatment decisions, 
physician–patient communication and thus the quality of treatment can be improved. 
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Even though there are still many challenges to be overcome on the way to the DTMS (ef-
fectiveness and safety, data protection, data security, data quality data management, cre-
ation of meaningful algorithms and ethical as well as individual concerns) and a DTMS 
need to be validated and tested before being used in practice, it is a valuable tool with 
which to make precision medicine and patient-centered care in MS part of everyday clin-
ical practice [172]. 

7. Conclusions/Summary 
The heterogeneous, multisymptomatic MS disease offers numerous possibilities for 

the acquisition of digital biomarkers. As the possibilities to collect digital data are contin-
uously growing, such data can also be used for prognostic and diagnostic aspects as well 
as for the evaluation of disease activity and response to therapy. These digital biomarkers 
can be collected by devices available to everyone (e.g., wearables such as fitness trackers) 
or special devices created for specific examinations (e.g., vision, upper and lower limb 
function, MRI, cognition, PROMs, etc.). Therefore, they need to be validated, standard-
ized, analyzed and made available to HCP to be used in pwMS care. 

To our knowledge, older MS patients are becoming more and more familiar with 
using new technologies such as apps on smartphones or tablets [164]. Additionally, the 
in-clinic collection of digital biomarkers by a physician or escorting staff benefits all pa-
tients, regardless of their age. 

As MS is a lifelong disease, pwMS should be integrated into their treatment. Here, 
smartphone applications can be used to document mood or specific problems (e.g., head-
ache, fatigue, depression, etc.) or to check functional systems on a regular basis (such as 
vision, cognition, motor function of the extremities, etc.). The use of digital biomarkers 
may also be of interest to developing countries, where medical/neurological care is not 
widely available. For example, data could be collected from patients and transmitted to 
physicians as soon as Internet access is available, or a voice analysis could be performed 
via a telephone call. However, the establishment and validation procedures of digital bi-
omarkers do not yet follow generally accepted standards. Developments according to the 
requirements of the Medical Devices Act are necessary, but are as complex as the devel-
opment of classical biomarkers. Once the collection of standardized, validated digital bi-
omarkers in all aspects of life (in-clinic and in daily life) is possible, the way is clear to 
develop digital twins and personalized treatment. 
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