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Abstract: Pavlovian-to-instrumental transfer (PIT) refers to a phenomenon whereby a classically
conditioned stimulus (CS) impacts the motivational salience of instrumental behavior. We examined
behavioral response patterns and functional magnetic resonance imaging (fMRI) based effective
connectivity during an avoidance-based PIT task. Eleven participants (8 females; Mgg = 28.2,
SD =2.8, range = 25-32 years) completed the task. Effective connectivity between a priori brain regions
engaged during the task was determined using hemodynamic response function group iterative
multiple model estimation (HRF-GIMME). Participants exhibited behavior that was suggestive of
specific PIT, a CS previously associated with a reinforcing outcome increased instrumental responding
directed at the same outcome. We did not find evidence for general PIT; a CS did not significantly
increase instrumental responding towards a different but related outcome. Using HRF-GIMME,
we recovered effective connectivity maps among corticostriatal circuits engaged during the task.
Group-level paths revealed directional effects from left putamen to right insula and from right
putamen to right cingulate. Importantly, a direct effect of specific PIT stimuli on blood—-oxygen-
level-dependent (BOLD) activity in the left putamen was found. Results provide initial evidence of
effective connectivity in key brain regions in an avoidance-based PIT task network. This study adds
to the literature studying PIT effects in humans and employing GIMME models to understand how
psychological phenomena are supported in the brain.

Keywords: pavlovian-to-instrumental transfer; negative reinforcement; striatum; effective
connectivity

1. Introduction

Pavlovian-to-instrumental transfer (PIT) refers to a phenomenon whereby previously
learned cues can influence goal-directed behavior [1,2]. PIT is thought to be an important
factor in several health-related and cue-influenced behaviors, including food consumption
and substance use [3-6]. Indeed, previous studies have argued that PIT may be a major
factor why some individuals engage in drug-seeking behaviors (e.g., smoking) when
presented with conditioned drug-related cues (e.g., viewing an ashtray) [7]. PIT established
in the context of negative reinforcement has also been proposed as a model to better
understand the nature of relapse, in that individuals respond (seek drugs) to remove
aversive effects associated with abstinence [8,9].

In general, paradigms used to examine PIT are comprised of three phases. First,
participants undergo instrumental conditioning, during which time they learn to associate
specific behavioral responses (R) (e.g., button presses) with valued outcomes (O) (e.g., they
learn R1-O1 and R2-O2 associations). Second, participants undergo Pavlovian (classical)
conditioning where they learn, across repeated trials, to associate conditioned stimuli
(CS) with outcomes (O) (e.g., CS1-01, CS2-O2, CS3-0O3). During a final test or ‘transfer’
phase, individuals are presented with previously learned Pavlovian cues in addition to
similar but unconditioned stimuli (e.g., C54 and CS5, two unconditioned control stimuli),
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as they engage in the learned instrumental behavior. Notably, this final phase occurs during
extinction, when no incentives are given, so that instrumental behavior is not affected
by their delivery. In other words, participants had the choice to utilize R1 and R2 for
CS1-CS5 in the absence of any feedback (see Table 1 for contingencies of the PIT task).
During the test phase, in humans and animal models, behavior is biased in that more
frequent responding occurs on trials linked with previously learned cues (e.g., increased
R1 for CS1, increased R2 for CS2) [10]. Of note, PIT effects have been demonstrated in
experiments utilizing both positive and negative reinforcement. In the context of positive
reinforcement, individuals demonstrate increase instrumental responding for an appetitive
stimulus following Pavlovian learning trials [10]. In the context of negative reinforcement,
individuals also increase instrumental responding but in this case to remove or avoid an
aversive stimulus [2].

Table 1. Contingencies present in PIT task.

Instrumental Phase Pavlovian Phase Transfer Phase
R1-01 CS1-01 CS1: R1vs. R2
R2-02 CS2-02 CS2: R1 vs. R2

CS3-03 CS3: R1 vs. R2
CS4-04 CS4: R1 vs. R2
CS5-0O5 CS5: R1 vs. R2

Note. R = response, O = outcome, CS = conditioned stimulus.

Previous research has described two different forms of PIT-specific and general [10-12].
In specific PIT, a conditioned stimulus (CS1) that was previously associated with a reinforc-
ing outcome (O1) increases instrumental responding (R1) directed at the same outcome
(O1). For example, if an individual usually smokes a cigarette after a certain meal, then
consuming that meal in the future may lead to craving a cigarette. In general PIT, a CS in-
creases instrumental responding towards a different, but often related, reinforcing outcome,
even when the CS and the instrumental response never shared a reinforcing outcome. That
is, nonselective increases in instrumental responding are observed-R1 and R2 would be
increased for CS3. For example, smoking a cigarette after a meal could itself act as a cue
that induces craving for another drug, such as alcohol.

Previous research indicates that dorsal striatum is involved in instrumental learning
in specific and general PIT [13]. The dorsolateral striatum (e.g., putamen in humans) is
associated with CS-R habitual learning [14]; where lesions of the dorsolateral striatum
in rodents reduces both specific and general PIT. [15,16]. In contrast, the dorsomedial
striatum (e.g., caudate in humans) is associated with R-O goal-directed learning [14,17];
where lesions of the dorsomedial striatum in rodents reduces specific PIT only [16]. Results
from lesion studies in animals have been supported in human neuroimaging studies, which
link dorsal striatum activity with the degree of instrumental responding, and specific
and general PIT effects [8,18]. More specifically, research by Lewis and colleagues [8]
found significant positive correlations among left putamen blood—oxygen-level-dependent
(BOLD) responses during Pavlovian training and instrumental responding during the
transfer phase for specific and general PIT stimuli. These findings support the conclusion
that the putamen is a key region that mediates processes for instrumental learning during
both specific and general PIT.

The insular cortex and cingulate cortex have also been implicated in PIT, but may
be more specific to PIT during avoidance conditioning and learning [19]. For example,
researchers have used functional magnetic resonance imaging (fMRI) during an avoid-
ance conditioning task and found increased BOLD response in the insula and cingulate
compared with neutral trials [20,21]. An fMRI meta-analysis corroborated these results by
showing increased BOLD response in insula and cingulate during avoidance conditioning
tasks [19]. Additionally, a version of the PIT task that uses instructed negative reinforcers,
as opposed to the more studied primary and secondary reinforcers such as a foot shock or
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money, respectively, found increased activation during PIT transfer in bilateral insula and
right cingulate [8]. In regards to connectivity with the dorsal striatum, an in vivo proba-
bilistic tractography study mapped structural connectivity patterns between the insula and
the putamen [22]. Additionally, tracing studies in nonhuman primates have also found
corticostriatal projections from the cingulate to the putamen [23]. These findings suggests
that the insula and cingulate are involved in avoidance-based PIT, and is corroborated by
structural studies, which found projections to the putamen, forming an integrative network
for PIT learning.

The studies discussed above, in particular the fMRI studies of PIT, have been primarily
concerned with characterizing group-level localization maps using traditional general
linear modeling (GLM)—to identify “which” brain regions are involved. To our knowledge,
no studies to date have assessed effective connectivity patterns during PIT tasks in healthy
human adults—or “how” brain regions are involved. As a first step toward addressing
this issue, we applied hemodynamic response function group iterative multiple model
estimation (HRF-GIMME) [24,25], a novel model-based approach which uses information
at the group- and individual-level to construct effective connectivity maps, to further
investigate between region connectivity during PIT. Importantly, HRE-GIMME models
the direct and modulating effects of an event-related design fMRI task by incorporating
person-specific HRF functions to account for the known variability in the shape of the
HREF [26].

Although conclusions concerning group-level connectivity patterns are fundamental
to advancing understanding of the brain regions that are implicated in PIT, the hetero-
geneity that exists in the patterns and strengths of brain connectivity in any given sample
is equally critical and often overlooked [27,28]. Uninformed imposition of homogeneity
assumptions in evaluating fMRI connectivity patterns may lead to erroneous conclusions
that fail to characterize any of the individuals in the sample well [29,30]. One recent
approach, group iterative multiple model estimation (GIMME) [31], aims to address the
limitations of traditional functional connectivity analysis by using a dynamic network anal-
ysis approach that identifies group-level effective (i.e., directional) connectivity patterns
from person-specific networks. Through multiple iterative evaluations of individual- and
group-level effective connectivity maps, Gates and Molenaar (2012) demonstrated that
GIMME far exceeded the performance of other effectivity connectivity methods, including
Bayes net approaches, in recovering both the presence of a connection and the directionality
of the connection from the benchmark simulated data sets generated by Smith et al., for
comparison of fMRI network methods [32].

To perform iterative individual- and group-level model selection, GIMME utilizes at its
core the extended unified structural equation model (euSEM) [25], which captures not only
general effective connectivity patterns that are constant across conditions but also whether
and how the effectivity connectivity patterns vary as influenced or modulated by external
inputs, such as task conditions. The modulating effects on task-related inputs on effectivity
connectivity patterns are also termed the “bilinear effects” [33]. In the present article, we
utilized a new extension of GIMME, namely, GIMME with person-specific HRF (HRF-
GIMME), which convolves HRFs to accommodate individual differences in responsivity
to task-related inputs (e.g., delayed responses to task-related stimuli) [24,25,34,35]. HRF-
GIMME can help identify in a more targeted way the brain regions that show sustained
recruitment (i.e., showing continuity in dynamics over time) during PIT, the effective
connectivity patterns of these regions, and whether and how such patterns differ under
specific vs. general PIT, at both the group as well as individual levels.

Healthy adult participants performed an avoidance-based PIT task while simultane-
ously undergoing fMRI scanning. Time series data from select brain regions of interest (ROI)
identified in Lewis et al. [8] during the test/transfer phase were extracted and modeled
using HRF-GIMME. Our first aim was to replicate the behavioral findings as in previous
studies of avoidance-based PIT [8,36], by assessing whether participants were engaging
in the experiment correctly across the three stages of the task. During the instrumental
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learning phase, we aimed to validate that the participants learned the correct R-O pairings
of O1 and O2. During the Pavlovian phase, we aimed to validate that the participants
learned all five of the correct CS-O pairings. During the PIT phase, we aimed to replicate
the findings from previous literature to assess whether participants exhibited specific and
general PIT during extinction conditions when no outcomes were presented and were
only shown CS. Our second aim was to extend GLM results reported in Lewis et al. [8]
by demonstrating the use of HRE-GIMME in determining effective connectivity patterns
among corticostriatal ROIs that are associated with specific and general PIT in humans.
More specifically, we sought to characterize directional effective connectivity patterns from
bilateral putamen to bilateral insula and right cingulate cortex due to their roles in negative
reinforcement and PIT. Our third aim was to assess whether any direct or bilinear effects in
relation to task demands were associated with PIT effective connectivity. For direct effects,
we hypothesized that specific and general PIT stimuli would be associated with an increase
in BOLD activity in the left putamen. For bilinear effects, we hypothesized that specific
and general PIT would modulate the relationship among the left putamen and other se-
lected ROIs based on previous tractography and tracing studies that suggest structural
connectivity among these regions [22,23]. In other words, the strength of relations between
left putamen and other ROIs would be influenced by whether or not specific and general
PIT stimuli were being presented.

2. Materials and Methods
2.1. Participants

Upon receipt of approval by the local Institutional Review Board, 12 participants
were recruited at a large university in the Northeast United States as part of a larger
study assessing the interplay between goal-directed and habitual control. Consent for
participation was obtained on the first visit to the laboratory. The final analysis included
11 participants (8 female; Mg = 28.2, SD = 2.8, range = 25-32 years), as one participant was
excluded due to failure to meet instrumental learning criteria (see procedure description).
Of the 11 participants, 7 were White (64%), and 4 were Asian (36%). Inclusion criteria
included: good general health, no diagnosed learning disabilities (e.g., ADHD), no diag-
nosed psychological condition that could impact comfort in the fMRI (e.g., anxiety), not on
any medications known to influence body weight, taste, food intake, behavior, or blood
flow, not claustrophobic, and not currently on a diet for weight loss. Exclusion criteria
included: not within the age range (adults’ range 24-40 years), learning disability or other
neurological or psychological conditions, type 1 or type 2 diabetes, and food allergies.
Participants will also be excluded if they have any tattoos, permanent makeup, dental
ware, pacemakers, or metal implants that would impede safe completion of the MRI.

We note that while the current study’s sample size (e.g., 11 participants) is low pow-
ered for traditional univariate fMRI analysis, GIMME and HRF-GIMME capitalize heavily
on fitting network models at the individual level before finding prominent patterns at the
group level. Initial work in fitting network models to single-subject multivariate time-series
data found that dynamic factor models that estimate parameters from a block-Toeplitz
matrix (i.e., GIMME), was able to yield acceptable parameter estimates with observations
as low as 50 [37]. Thus, these approaches are powered by the length of each individual’s
fMRI time series more so than the number of participants. Reliable results have been
found using GIMME with simulated sample sizes as low as 10 participants and at least
100 data points [31]. For example, using simulated data from Smith et al. [32], the bench-
mark GIMME study found that for 10 participants, the presence precision (number of true
connections divided by the number of total connections) was 89%, and the presence recall
(number of true connections divided by the number of connection in simulation) was 99%.
For the current study, each subject contributed a time series of 540 observations, therefore
this analysis has reasonably high power to detect functional connectivity between ROIs at
the individual level.



Brain Sci. 2021, 11, 1472

50f19

2.2. Procedure

A computer game paradigm was used to examine both specific and general PIT
and was adapted from Lewis et al., [8]. At the beginning of the experiment, participants
were told that they would be playing a computer game where their goal was to defend a
fictional kingdom from attacking creatures (more details below). The PIT task has three
phases: instrumental learning, Pavlovian conditioning, and a transfer test phase (phases
are outlined in Table 1).

2.2.1. Instrumental Phase

During the instrumental phase, participants learned associations between two re-
sponses (R1 and R2), and the avoidance of two aversive outcomes (O1 and O2). Partic-
ipants were initially instructed that they would be attacked by two (of three possible)
creatures (e.g., goblin, troll, or ogre, counterbalanced across participants)—the aversive
outcomes—and that they could use two available button presses that each yielded a dif-
ferent type of imaginary shield. Participants had to learn through trial and error which
button press response would protect them from a specific type of attack (e.g., Button 1
yielded an imaginary shield that protected against goblin attacks). Participants completed
two instrumental condition sessions where one session involved learning only R1-O1 con-
tingencies, and the second session involved learning only R2-O2 contingencies. Sessions
lasted 180 s each. During the sessions, the aversive creature was scheduled to appear in
one second increments, unless the participant made the correct button press within this
one second time period. If the correct button was pressed, the onset of the aversive creature
was delayed by an additional three seconds. A fixation cross was presented on the screen
at other times (see Figure 1A). At the end of the second session, participants were asked
how effective each imaginary shield was at protecting against each aversive creature on
a 1-10 scale (e.g., did R1 prevent O1 or O2 from happening?). For each aversive creature,
the rating from the incorrect button press was subtracted from the rating of the correct
button press. Participants with scores of <0 for either aversive creature were to be excluded
from further analysis, because this would indicate that they did not learn the instrumental
contingencies (e.g., R1-O1 and R2-O2). All participants were able to learn both instrumental
contingencies. No imaging data were collected during this phase. Participants performed
this task in the mock MRI scanner to approximate the MRI space and as a means to reduce
the total amount of time each participant spent in the scanner, thus reducing participant
motion effects and fatigue.

A. Instrumental Phase B. Pavlovian Phase C. Transfer Phase

@ (1—4 sec) - (4 sec) + (2 —12 sec)

(1 sec)

*® (1 -4 sec) R4 (5-11sec) m;;;h:ﬁg‘ (2 -12sec)

Figure 1. Schematic of the PIT task. (A) Instrumental phase: An aversive outcome (1 sec) occurred
after each fixation cross. Participants were free to utilize R1 and R2. The correct response prolonged
the onset of the next aversive event by 3 s. Participants completed two blocks of instrumental
conditioning for each aversive outcome (O1 and O2). (B) Pavlovian Phase: participants viewed
five randomly ordered CS-O contingencies and were told to remember the contingencies presented.
(C) Transfer phase: Participants were shown CS1CS5 in random order after a fixation cross and before
a “recharging” period. Participants were instructed to not respond during the recharge period but
were free to respond at any other point during this phase.
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2.2.2. Pavlovian Phase

In the Pavlovian phase, participants learned five stimulus—outcome (CS-O; condi-
tioned stimulus—outcome) contingencies. Participants were told that a wizard would be
teaching them about colored flags (CS) that represent what type of aversive creature (O) will
be attacking. Participants were instructed to pay attention to what each flag represented
because at the end of the phase the wizard would give them a quiz to see if they learned all
5 CS-O contingencies. For each trial, one of five CS-O pairings were presented such that
each flag (CS1-CS5) was paired with either the previously trained aversive creatures (e.g.,
O1 and O2), a new aversive creature (O3), or one of two neutral outcomes (O4 and O5; O4
was a screen with a fixation cross, O5 was a screen that read “malfunction”). Each CS-O
pairing was shown 9 times each for a total of 45 trials per session. The colored flags for each
CS-O pairing were counterbalanced across participants. Colored flags appeared on the
screen for four seconds. Then, the paired outcomes were presented for one second. A jit-
tered inter-trial interval of either seven seconds, nine seconds, or eleven seconds separated
each trial (Figure 1B). Participants were instructed to not make any button presses during
this phase. At the end of the Pavlovian phase, participants were shown each colored flag
and was asked by the wizard to respond verbally with the correct CS-O pairing. This was
used as an exclusionary criterion in our data analysis, in order to ensure that participants
learned all five CS-O pairings. One participant was excluded for not reporting all correct
pairings. Thus, data from 11 participants were analyzed further.

2.2.3. Transfer Phase

During the transfer phase, participants were instructed that the wizard would send
out the five colored flags (CS1-CS5) that they had just learned, and that they could utilize
the available shields (e.g., button presses) as they saw fit. The transfer phase was conducted
under extinction conditions, no aversive creatures (i.e., no negative reinforcement) were
shown during this phase. During the transfer phase, participants were instructed to freely
respond with R1 and R2, or not at all, to the presentation of CS1-CS5. Each trial began
with a fixation cross, then a conditioned stimulus (one of the colored flags) was presented
on the screen for four seconds. Following the stimulus presentation, a jittered 2-12 s screen
that said “recharging magical shield” was shown (Figure 1C). Participants were instructed
not to respond when the “recharging magical shield” screen was displayed. However,
participants were free to respond, or to not respond, during the pre-stimulus fixation period
and when the stimuli were being presented. The pre-stimulus period was included in order
to assess baseline responding. Each stimulus (CS1-CS5) was shown 12 times in random
order for a total of 60 trials.

2.3. Behavioral Analysis

As in previous behavioral analyses using this task [8,36], we assessed specific and
general PIT by comparing instrumental responses (R1 and R2) across the five types of
stimuli (CS1-CS5) and compared with the pre-stimulus fixation period. Thus, a specific
PIT effect was defined as increase in participants’ responses toward the stimuli that were
initially trained (e.g., if presented with CS1, participants will respond with R1; if presented
with CS2, participants will respond with R2). A general PIT effect was defined as a
non-selective increase in responding for the stimuli that was not trained on during the
instrumental phase (e.g., if presented with CS3, participants will on average equally press
R1 and R2). All post-hoc tests within a family of comparisons were corrected for multiple
comparisons using the Bonferroni correction [38].

2.4. fMRI Acquisition

Images were acquired using a 3T Siemens MAGNETOM Prisma Fit Scanner with a
20-channel head coil at the Social, Life, and Engineering Sciences Imaging Center (SLEIC).
Structural images were collected using a T1-weighted magnetization-prepared rapid ac-
quisition gradient echo (MPRAGE) sequence to acquire 192 slices (0.9 x 0.9 x 0.9 mm
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voxels). Functional images were collected using a T2*-weighted gradient single-shot
blood-oxygen-level-dependent (BOLD) echo planar imaging (EPI) sequence to acquire
33 slices (3 x 3 x 4 mm voxels, TR =25, TE = 25 ms, flip angle = 70°, FoV = 240 x 240,
slice gap = 0 mm). Stimuli were generated using E-prime (Psychology Software Tools,
Pittsburgh, PA) and projected onto a screen positioned behind the magnet. Participants
viewed the screen via a mirror attached to the head coil. Functional images were acquired
during the Pavlovian phase and the transfer phase.

2.5. fMRI Preprocessing

Functional images were preprocessed using standard steps in AFNI [39]. First, images
were corrected for slice timing effects. Next, translational and rotational head motion esti-
mates were calculated and all images were aligned to the minimum outlier volume using
a cost function (Ipc + ZZ). Volumes for which translational movements exceeded 0.3 mm
relative to the previous volume, as well as TRs with outlier intensity fractions greater than
5%, were identified and later censored from deconvolution analysis. Functional and struc-
tural images were then nonlinearly warped into standard space (MNI152_2009_template;
Montreal Neurological Institute). Functional images were smoothed with a Gaussian filter
set at 4.0 mm full-width at half maximum. Each voxel’s time series were scaled to a mean
of 100 for evaluation as percent signal change. Deconvolution analysis followed, using
AFNTI’s 3dDeconvolve. Regressors of no interest included motion estimates (translational
and rotational) and their derivatives as well as a fourth-order polynomial function to
remove low frequency scanner drift during the runs. No task specific regressors were
included; rather, the residual time series after deconvolution from each participant were
carried forward for further analysis.

2.6. ROI Selection and Time Series Processing

Our aim was to assess functional relationships among brain regions known to be
involved in specific and general PIT. As such, we examined five regions of interest (ROIs),
including bilateral putamen, bilateral insula, and right cingulate based on previous neu-
roimaging work with the PIT task in a aversive context using negative reinforcement [8]
(Table 2). As these regions were reported in Talairach space by Lewis et al. [8], we used
online tools to convert to MNI space (http://sprout022.sprout.yale.edu/mni2tal /mni2tal.
html, accessed on 29 October 2021).

Table 2. Regions of interest used in this study. All coordinates are in MNI space.

Region of Interest Hemisphere X y z
Putamen L —23 7 4
Putamen R 18 10 0

Insula L —42 6 0
Insula R 37 4 3
Cingulate R 2 11 46

Note. L = left, R = right.

For each of the 5 ROIs, a 10 mm diameter sphere mask was generated in AFNI, centered
on the coordinates in Table 2. One mean time series per ROI, per subject was computed
by averaging the signals from each voxel in the residual time series map covered by the
sphere mask, using AFNI’s 3dmaskave tool. Time series from each ROI were concatenated
across participants to produce a single matrix with 5 columns (one per ROI) and 540 rows
(11 participants, each contributing 540 time points). This matrix was used as input for
analysis in HRF-GIMME (see below). In order to assess how connectivity patterns may
be affected in the presence of task stimuli, we extracted from E-prime a vector of stimulus
onset and duration times using AFNI’s timing_tool.py. We then combined the vector of
stimulus onset times for CS1 and CS2 to reflect specific PIT. Finally, we appended the
stimulus onset times for specific and general PIT to the time series data for each participant
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for analysis. Thus, each participant produced a single matrix with seven columns (five
for each RO, one for specific PIT, one for general PIT) and 540 rows (11 participants, each
contributing 540 time points).

2.7. HRF-GIMME

As in traditional GIMME, HREF-GIMME assumes, at its core, that individuals” fMRI
time series can be described using the euSEM model [25]. For continuity, the notation used
by Duffy and colleagues [24] was retained for the present model expressed as:

Yit = (Ai +Ag) Yir t (‘P: + ‘Pg) Yig1 T ('Yzl + ’Yg> Ui+ (Tzl + Tg) Uiy, +0p (1)

where y; , ndicates the ROI time series for an individual i at time ¢, u;; indicates a bivariate
binary time series marking the presentation of specific and general PIT stimuli convolved
with the HRF for an individual i at time ¢ [34]. All elements in Equation (1) are separated
by person (i) and group (g) superscripts to distinguish between effects that exist at the
individual and the group level, respectively. In particular, A indicates the contemporaneous
relationships among ROIs, ¢ indicates the lagged auto-regression and cross-regression
(effective connectivity) coefficients among the ROls, v indicates the effects of the input
series, T indicates the bilinear effects, namely, the extent to which the contemporaneous
associations among the ROIs vary by the bivariate binary input time series, and ¢ indicates
dynamic errors that are assumed to be a white noise process with zero means and diagonal
covariance matrix. Directionality or effective connectivity in GIMME is estimated by
assessing whether a given ROlIs time series can predict another ROIs time series (either
contemporaneously or lagged) after controlling for autoregressive effects. Controlling for
autoregressive effects is necessary for establish Granger causality, where an ROI predicts
activity in another ROI above and beyond the extent to which the ROI predicts itself over
time [40]. GIMME is freely available through the R platform [41] (https://CRAN.R-project.
org/package=gimme; version 0.7-3; R version 4.0.2, accessed on 29 October 2021).

For the purpose of this study, we focused on comparing group- and individual pat-
terns of contemporaneous connections, even though lagged effects were also included in
the model. Modeling lagged effects ensures unbiased estimations of contemporaneous
connections, as suggested by simulations that show that not accounting for lagged effects
can lead to spurious contemporaneous results [42]. However, successful detection of co-
herent group patterns of lagged connections is contingent on the time-intervals between
successive measurements, and other considerations [43]. Because the time resolution of
fMRI data is notably coarser than the millisecond scale of actual neural events [44], sys-
tematic patterns of group and individual difference in patterns are typically more saliently
reflected in the contemporaneous connections.

As distinct from traditional GIMME, HRF-GIMME models task-related effects in
Equation (1) using individual-specific HRFs. HRF-GIMME works under the assumption
that the shape of the HRF varies more between people than within people [26]. Thus,
HRF-GIMME derives person-specific HRF parameters that are estimated via a smoothed
finite impulse response [45]. The smoothed finite impulse response makes no assumption
about the shape of the HRF and has been found in past research to recover the true shape
of the HRF [46].

HRF-GIMME estimates functional connectivity maps via a data-driven forward se-
lection process of model building and then model pruning. First, individual connectivity
maps are estimated and used to derive a functional connectivity map that characterizes the
majority of the sample. This is performed using Lagrange multiplier tests (i.e., modification
indices) [47]. Lagrange multiplier tests indicate the extent to which a given path, if added to
the model, would significantly improve model fit. Group paths are retained if they improve
model fit for 75% of the sample. This search-and-add procedure continues until there are
no additional paths that improve model fit. Next, if any paths do not reach significance,
they are pruned from the group level network model. This search-and-add procedure is
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then repeated at the individual level. That is, for each individual in the sample, the final
group-level model is fit, then Lagrange multiplier tests are used to determine whether
adding additional paths to the individual model would improve model fit. Excellent fit,
as described by Gates and Molenaar [31], is obtained if two out of four commonly used
fit indices thresholds are met: comparative fit indices (CFI) >0.95; non-normed fit index
(NNFI) >0.95; root mean squared error of approximation (RMSEA) <0.05; standardized root
mean residual (SRMR) <0.05. In sum, GIMME offers the ability to extract a homogenous
network structure that characterizes most individuals (in our case, 75% of the sample) at
the group-level, but allows researchers to assess person-specific heterogeneity through the
individual network structures, which helps describe variability in psychological processes
that are present between individuals and across time [29].

HRF-GIMME is currently the only approach that estimates the effects of stimuli on
neural activity while also estimating contemporaneous and lagged relationships among
ROIs. We utilized HRF-GIMME to estimate effective connectivity maps for specific and
general PIT stimuli to assess whether differing patterns of connectivity emerged when
engaging in the task. More specifically, we expected effective connectivity patterns from
bilateral putamen to bilateral insula and right cingulate at the group level. This was tested
by evaluating the presence of significant cross-regression pathways among these ROIs in
the majority (>75%) of the participants under conditions with general and specific PIT.
Additionally, we expected both direct and bilinear effects of specific and general PIT on left
putamen, a key brain region implicated in PIT.

3. Results
3.1. Aim 1: Replication of Behavioral Findings

Assessing task performance occurred in three phases, where the goal was to assess
whether participants learned the correct R-O and CS-O pairings (instrumental conditioning
phase and Pavlovian conditioning phase), and to replicate the behavioral findings from
Lewis et al. [8] during the PIT phase; which found behavioral evidence for specific and
general PIT.

3.1.1. Instrumental Phase

To measure instrumental learning, we separated each 180-s block into six 30-s bins
in order to compare the total number of attacks from the first 30-s bin to the last 30-s bin
(Figure 2). This approach has been used in past literature to determine successful avoidance
learning [8,48-50]. The average number of attacks in the first 30-s bin was 6.82 attacks
(range = 0-14, SD = 4.95, SE = 1.06). The average number of attacks in the last 30-s bin was
2.55 attacks (range = 0-14, SD = 4.91, SE = 1.05). We found a significant decrease in the
amount of aversive outcome attacks from the first 30-s bin to the last 30-s bin (t19 = 5.55,
p < 0.05). Additionally, this decrease in experienced aversive outcomes happened regard-
less of the creature type (O1: t19 = 3.04, p < 0.05; O2: t1p = 3.83, p < 0.05) suggesting that
both R-O contingencies were learned during this phase. After the completion of the instru-
mental phase, all participants were verbally asked to report how effective each response
was at preventing each outcome on a scale of 1 (least effective) to 10 (most effective). All
participants were able to correctly pair each response to each outcome verbally. Verbal
ratings were as followed: R1-O1 (correct pairing), mean = 8.73, SD = 1.56; R1-O2 (incorrect
pairing), mean = 1.55, SD = 0.93; R2-O2 (correct pairing), mean = 9.09, SD = 1.30; R2-O1
(incorrect pairing), mean = 1.36, SD = 0.81.
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Figure 2. Number of attacks (30 s bins) during the instrumental phase. There was a significant
decrease in the number of attacks from the first 30 s bin to the last 30 s bin (p < 0.05), suggesting that
participants learned the correct R-O contingencies. Error bars represent standard error of the mean.

3.1.2. Pavlovian Phase

Following the Pavlovian phase, only one participant was unable to verbalize the
outcomes associated with CS1-CS5 by answering, for each cue, the question “What did this
signal represent?”, and therefore, was removed from further analysis. All other participants
correctly learned all five CS-O contingencies.

3.1.3. Transfer Phase

In line with previous studies [8,36], we measured specific and general PIT by compar-
ing instrumental responding across all five stimulus types and during stimulus presentation
compared to pre-stimulus presentation (Figure 3). Each CS was shown 12 times for a to-
tal of 60 trials. In order to compare instrumental responding among all five stimulus
types, we divided the amount of instrumental responding by 12, the number of times
each stimuli was shown, to reflect the average amount of responding per stimulus. The
range of responses per stimulus were 0-22.5 (mean = 2.10, SD = 2.75, SEM = 0.83). For a
full table of average responses per stimulus across the pre-stimulus and stimulus period
please see Supplementary Table S1. A three-way repeated-measures ANOVA probing the
effects of interval (pre-stimulus presentation and stimulus presentation), stimuli (CS1-CS5),
and response (R1 and R2), revealed a significant main effect of stimulus (Fy, 29,01 = 15.18;
p < 0.05; 172 ¢ = 0.13). Additionally, we observed a significant stimulus x response in-
teraction (Fy 67,1673 = 12.19; p < 0.05; 772 ¢ = 0.21), and a significant stimulus x interval
interaction (Fq.90,19.01 = 19.42, p < 0.05; 172 ¢ = 0.14). A three-way stimulus x interval x
response interaction was also observed (Fy g9, 18.86 = 15.43, p < 0.05; 172 ¢ = 0.22). For the full
results of the three-way ANOVA please see Supplementary Table S2.
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Figure 3. Number of responses per stimulus, by trial type, during the transfer phase. Specific transfer was observed; CS1

was associated with increased instrumental responding of R1 compared to R2 and compared to the pre-stimulus period.

CS2 was associated with increased instrumental responding of R2 compared to R1 and compared to the pre-stimulus period

(all p < 0.05). We did not observe a general transfer effect. CS3 did not increase R1 or R2 responding compared to the

pre-stimulus period (all p > 0.05). Error bars represent standard error of the mean.

The significant three-way interaction was further analyzed via multiple pairwise
comparisons to probe the effects of interval (pre-stimulus presentation and stimulus pre-
sentation) and response (R1 and R2) for each conditioned stimulus (CS1-CS5). For each
comparison, the Bonferroni adjustment was applied. Consistent with our hypothesis that
specific PIT stimuli (CS1 and CS2) would selectively increase instrumental responding of
R1 and R2 respectively compared to the pre-stimulus period, we expected and found a
significant increase in R1 instrumental responding for CS1 compared to the pre-stimulus
period (t;9 = —4.00, p < 0.05), and a significant increase in R2 responding for CS2 com-
pared to the pre-stimulus period (t19 = —3.81, p < 0.05). All other pairwise comparisons
were non-significant. Therefore, participant’s behavior was suggestive of specific PIT,
participants displayed a selective increase in responding when the CS and the R shared a
Pavlovian outcome. We did not observe a significant general PIT effect, participants did
not display a non-selective increase in responding when the CS and the R never shared a
Pavlovian outcome. Thus, we were able to partially replicate the behavioral findings from
Lewis and colleagues [8]. For full results of the multiple pairwise comparisons please see
Supplementary Table S3.

3.2. Aim 2: HRF-GIMME Results

Figure 4 shows the group-level effective connectivity map during PIT. The resulting
network fits the data well for all participants with average fit indices of: RMSEA = 0.07,
SRMR = 0.04, CFI = 0.96, and NNFI = 0.91 (for a list of fit statistics of all participants
please see Table 3). All models contain 11 group-level paths (thick black lines): five were
autoregressive paths within each ROI that was estimated in the null model (black circular
arrows), four are contemporaneous paths (solid black arrows), and one was a lagged
path (dashed black arrows). Consistent with our hypothesis that directional connectivity
patterns will emerge from bilateral putamen to bilateral insula and right cingulate cortex
due to their roles in negative reinforcement and PIT, we found a significant group-level
contemporaneous paths between left putamen and right insula, and a significant ipsilateral
path between right putamen and right cingulate. Additionally, HRF-GIMME recovered
significant contemporaneous paths between bilateral putamen and bilateral insula. HRF-
GIMME also recovered a lagged group-level path from left insula to right cingulate. These
group-level paths are estimated across all participant, with each participant having a
unique estimate.
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Figure 4. Group-level effective connectivity map recovered by HRF-GIMME. Solid lines represent
contemporaneous connections; dotted lines represent lagged connections, curved black arrows
represent autoregressive effects. Note that variables specific and general indicates the direct effects of
the task on the other ROIs. In other words, the degree to which a task influences variability in BOLD
activity at the corresponding ROI. n = number of participants in the sample that had a significant
path at the group-level, R = right, L = left.

Table 3. Fit statistics.

Participant RMSEA SRMR CFI NNFI
1 0.081 0.0491 0.9523 0.8886
2 0.0736 0.0344 0.9552 0.9051
3 0.0614 0.0453 0.9553 0.8984
4 0.0871 0.037 0.96 0.9112
5 0.0679 0.045 0.9699 0.9315
6 0.0705 0.0491 0.9668 0.9244
7 0.0765 0.0408 0.957 0.9045
8 0.0778 0.0377 0.9572 0.9049
9 0.0548 0.0229 0.9843 0.9676
10 0.0975 0.0454 0.9513 0.8984
11 0.0681 0.0411 0.9659 0.9261

Note. RMSEA = root mean squared error of approximation; SRMR = standardized root mean square residual; CFI
= comparative fit index; NNFI = non-normed fit index.

To highlight the heterogeneity in the sample during PIT, we present four connec-
tivity maps that were retained via HRF-GIMME in Figure 5 (please see Supplementary
Figures S1-511 for connectivity maps for all participants). Participant 1 had the highest
number of individual-level paths (Figure 5a). Participant 1 had an additional direct effect of
specific PIT on the BOLD response in the left insula. Participant 1 also displayed increased
corticostriatal connectivity patterns from the left putamen and the left insula. Participant 4
had the highest number of negatively weighted paths, and a relatively weak (but signifi-
cant) direct effect of specific PIT on left putamen (Figure 5b). For example, the 3 weight
for Participant 1’s direct connection of specific PIT on left putamen was 0.18 compared
to Participant 4's B weight of 0.09. Participant 5 was the only participant who had three
direct effects of PIT stimuli (Figure 5c). For specific PIT, Participant 5 had direct paths to
the left putamen at the group-level and right cingulate at the individual-level. Additionally,
Participant 5 had a direct general PIT path to the right insula. Finally, we choose to high-
light Participant 9 due to HRE-GIMME only estimating group-level paths and no unique
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individual-level paths (Figure 5d). Of note, Participant 9 only displayed positive paths
(full results from the HRF-GIMME analysis, including beta weight estimates for all paths
for all individuals can be found on our OSF page https://osf.io/ykcr7/, last accessed on 8
October 2021).

(o) (d)

Figure 5. Effective connectivity plots recovered by HRF-GIMME for four participants. Red lines indicate a positive
connection, blue lines indicate a negative connection, solid lines indicate contemporaneous connections, and dashed lines

indicate a lagged connection of the first order. The thickness of the lines indicates the magnitude of the connection, such

that thicker lines indicate a stronger magnitude of connectivity. Note that variables specific, and general indicates the

direct effects of the task on the other ROIs. In other words, the degree to which a task influences variability in BOLD

activity at the corresponding ROL. (a) Participant 1’s effective connectivity plot. (b) Participant 4's effective connectivity plot.

(c) Participant 5's effective connectivity plot. (d) Participant 9's effective connectivity plot.

3.3. Aim 3: Assessing Direct and Bilinear Effects from HRF-GIMME

In line with our hypothesis, a direct path was recovered at the group-level between
the specific PIT stimuli and left putamen. In other words, the direct effect of specific PIT
influences the participants” BOLD activity in the left putamen. Contrary to our hypothesis,
we did not observe a direct effect of general PIT on BOLD activity in the left putamen.
However, at the individual-level, one participant had a direct effect of specific PIT on
BOLD activity in the left insula and one participant had a direct effect of specific PIT on
BOLD activity in the right cingulate. Additionally, one participant had a direct effect of
the general PIT stimulus on BOLD activity in the right insula. Finally, contrary to our
hypothesis, we did not observe any bilinear effects of specific or general PIT between left
putamen and our chosen ROIs.
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4. Discussion

Our aims in the current study were threefold. First, we aimed to reproduce behavioral
effects related to specific and general PIT as reported in Lewis et al. [8] in an independent
sample of participants. Our results partially replicated prior work [8,36]. Participants
were able to learn the correct R-O contingencies that are indicative of instrumental learn-
ing. Additionally, participants were able to learn the correct S-O contingencies that are
indicative of Pavlovian learning. Importantly, we found evidence suggesting specific
PIT during the transfer phase; participants displayed a selective increase in instrumental
responding when the CS and the R shared a Pavlovian outcome (Figure 3). However,
we did not observe a significant general PIT effect in our sample. This null finding most
likely stems from our small sample size, and future work with a larger sample may be
able to replicate past results using this task. Other possibilities also warrant consideration
for the null effect during general PIT. For example, it could be the case that the general
motivational aspects of the aversive stimuli in this task (e.g., O1 and O2 responses are
congruent with O3 responses) might not be strong enough to induce general PIT effects. It
may be the case that the motivational salience of the instructed threat involves a higher
degree of commitment and imagination from participants (as opposed to primary or sec-
ondary threats) making it generally more challenging to observe general PIT effects across
individuals. Additionally, it should be noted that other research using avoidance-based PIT
tasks have not observed general transfer effects [51]; although this work was conducted
in participants with obsessive-compulsive traits and used differing avoidance stimuli. In
sum, more research with a larger sample size and perhaps further investigation into the
roles of motivational salience attributed to task reinforcers is needed to understand the
behavioral mechanisms that support both specific and general PIT effects.

Our second aim was to extend the group-level GLM results reported in Lewis et al., [8]
by determining, for the first time, effective connectivity patterns among select corticostriatal
ROIs associated with avoidance-based PIT task performance using HRE-GIMME [24,25].
More specifically, we sought to characterize directional effective connectivity among bilat-
eral putamen, bilateral insula, and right cingulate cortex; these regions were selected due
to their putative roles in negative reinforcement and PIT. Broadly, our findings support
previous studies indicating that corticostriatal circuits are engaged during PIT in healthy
humans [8,18,52,53]. Our results extend the literature by providing initial data related
to information flow in a PIT task network. That is, we identified group-level effective
connectivity paths that project from the left and right putamen to the right insula and right
cingulate, respectively. Note that the presence of group-level connections among these re-
gions suggests valid detection by HRF-GIMME at the 75% group cutoff. These group-level
connections may serve as initial clues as to the flow of information through corticostriatal
circuits during avoidance-based PIT in healthy human adults. We also provide initial
evidence that supports the notion that considerable heterogeneity exists across individuals
in effective connectivity patterns [27,28]. Utilizing HRF-GIMME allowed us to balance
discovering generalizable findings from group-level connection that likely exists for all
individuals as well as discovering individual-level differences in effective connectivity
maps. The traditional GLM approaches used in fMRI analysis aggregates information
across all individuals to arrive at a group-level connectivity map that may identify spurious
paths that do not describe any individual in the sample [29]. HRF-GIMME is a comple-
mentary approach to traditional fMRI analysis because it allows for individual variability
in connectivity patterns while not aggregating across individuals by averaging. GIMME
first estimates group-level patterns which represents generalizable connections that likely
exist for the sample. Then, for each individual, the model search builds on the estimated
group-level paths to find individual-specific connections. In the current study, we show the
value of HRF-GIMME in studying PIT by showing group-level corticostriatal paths, while
allowing individual-path estimates that highlight the heterogeneity in effective connectivity
patterns.
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The heterogeneity in effective connectivity patterns during PIT complements recent
findings using other neuroimaging methods such as diffusion tensor imaging (DTI). These
studies found strong connectivity between putamen and premotor cortex [54-56], however,
more recent work has found that individual differences in this connection did not predict
the strength of PIT [57]. Recent studies have suggested that DTI research should take into
account the influence of spatial systematic errors that may have been introduce due to
a non-uniform magnetic field gradient [58,59]. One method that could account for the
non-uniform magnetic field gradient is by utilizing the B-matrix spatial distribution in DTI
(BSD-DTI) technique [60,61]. Efforts in accounting for systematic errors from non-uniform
magnetic field gradients will help better characterize anatomical connectivity patterns
among PIT regions. In sum, future work should aim to assess if other connections can
explain variability in performance during PIT, especially in avoidance-based contexts,
by employing a multimodal approach, where researchers utilize techniques that assess
structural, functional, and effective connectivity. This future direction can help researchers
to better elucidate psychological phenomena such as PIT and also better characterize the
large amounts of heterogeneity seen in these processes.

Our third aim was to assess whether any direct or bilinear effects in relation to
task demands were associated with PIT effective connectivity. In the current study, we
found a direct effect of specific PIT stimuli on BOLD activity in the left putamen. These
results complement the animal and human neuroimaging literature by again showing
the involvement of the putamen during specific PIT. We did not find any evidence for
bilinear effects at the group-level, suggesting that specific and general PIT stimuli are not
modulating connectivity patterns between left putamen and the other selected ROIs during
the task. This may be due to the nature of the PIT paradigm used in the current study.
Recent research has suggested that HRF-GIMME can more reliably detect task related
effects with slow-event related designs where the inter-trial interval (ITI) is approximately
as long as the HRF [24]. In the current study, our ITIs were jittered and ranged from 3-16 s.
It could be the case that heterogeneity in the sample made it more difficult to detect signal-
contingent differences in connectivity patterns because the signal was weaker across some
individuals. The lack of group-level bilinear task effects on the effective connectivity maps
matches recent research using HRF-GIMME, where high levels of heterogeneity between
individuals made detecting task-related effects more difficult at the traditional cutoff of
75% [24]. Additionally, Duffy and colleagues [24] suggest that task designs that evoke
weaker effects may be missed when using HRF-GIMME to model rapid event-related
designs. The combination of the rapid event-related design and the nature of HRF function
results in less variability in the expected HRF making the detection of bilinear effect more
difficult at the 75% cutoff value. The authors suggest lowering the cutoff threshold from
75% to 51% in order to increase the power to detect effects from task-related variables. We
chose to keep the 75% cutoff due to the small sample size, and that this is the first-time
effective connectivity maps have been estimated for an avoidance-based PIT task. Future
research should aim to have a larger sample size in order to justify lowering the cutoff to
51%.

Our findings should be considered in the context of several limitations. First, the sam-
ple size is too small to be considered representative of a population. GIMME has performed
well with as low as 10 participants [31] given that GIMME estimation is dependent on the
length of the time series rather than the number of participants. However, the ability to
conduct post hoc tests using GIMME output is limited due to the small sample size. Addi-
tionally, relating performance during the task to heterogeneity in network connectivity in a
formal way would require methodological developments within the GIMME framework.
Future work will expand this sample and assess whether behavioral performance during
the PIT task is associated with effective connectivity parameters that are estimated from
GIMME. Another potential limitation is the number of brain ROIs to assess when using in
GIMME. While there is no formal limit to the number of selected ROIs, a maximum of 25
is suggested by the GIMME developers [31]. Other methods ought to be used if a whole
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brain (or whole network) approach is desired. Additionally, another limitation has to do
with whether these transfer effects rely on the same brain regions across avoidance-based
PIT tasks. This potential limitation stems from the differing learning mechanisms that are
invoked across these tasks. During Pavlovian and instrumental learning S-O or R-O associ-
ations are either acquired via direct experience (e.g., learning to avoid a shock by pressing
a button), or instructed about the relationship between the cue and the response (e.g., being
instructed to remove an image of a creature by pressing buttons). Learning via experience
or via instruction may share similar neural recruitment, but learning by instruction taxes
additional cognitive mechanisms [62], and as such, may differentially effect the circuits
that underlie avoidance based PIT. In sum, the current research on avoidance-based PIT
in humans is emerging [63], but a paucity of extant studies and the inability to directly
compare them makes assessing the neural underpinning of PIT challenging. An interesting
future direction would be to examine individual-level differences in transfer effects, and
assess whether these differences in PIT effects are associated with consummatory or drug
seeking behavior.

5. Conclusions

In summary, this study is the first to our knowledge to assess behavior and effec-
tive connectivity during an avoidance-based PIT task using HRF-GIMME. Behaviorally,
we found evidence for specific PIT; participants increase instrumental responding for a
conditioned stimulus that previously shared a Pavlovian outcome. However, we did not
find evidence for a general PIT effect. Effective connectivity results complement past
research suggesting that corticostriatal circuits are recruited during the PIT task and add
new information related to possible directional information flow through a PIT network.
Importantly, we also found a direct effect of specific PIT stimuli on left putamen activity.
Results from this study should be extended to more fully characterize behavior and neural
underpinnings of PIT such that we main gain insight into important health behaviors (e.g.,
eating, drug use) that are affected by PIT.
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