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Supplementary Materials 

Data Analysis 

Individual Hit rates (H), i.e., when the participant correctly reported that the test 

RDK direction was present in the sample motion sequence, and individual False Alarm 

rates (F), i.e., when the participants erroneously reported that the test RDK direction was 

present in the sample motion sequence, were calculated as follows [1]:  

hits
=

hits + misses
H

          Eq.1 

False Alarms
=

False Alarms + Correct Rejections 
F

      Eq.2 

H and F rates were then converted in non-parametric measures of sensitivity and 

bias; called A and b, respectively. The A index is the corrected version of the A’ index 

proposed by [2] and the A” index proposed by [3], and it was calculated with the correc-

tion introduced by [4]. We used a non-parametric measure of sensitivity to deal with the 

presence of some H = 1 (13.5% out of the total hits values calculated, i.e., 21/156; there were 

no F = 0) and the small number of responses per condition (i.e., 6 repetitions per condi-

tion). A is a non-parametric estimate of the area under a proper Receiver Operating Char-

acteristic (ROC) curve1 [2] that passes through any single point p = (F, H) and that is less 

sensitive to extreme hit and false-alarm rates than the classic d-prime [5]. As pointed out 

in [4,6], based on standard Signal Detection Theory (SDT), H and F rates are transformed 

into indices of sensitivity (i.e., d-prime) and bias based on the assumption of normality of 

signal and noise distributions with equal variance. However, other transformations are 

possible including those not tied to an underlying statistical detection model, including 

ones based on the range of proper ROC curves that could pass through any single point. 

Additionally, these assumptions cannot be tested in Yes/No tasks, as rating tasks are re-

quired for this purpose [6]. Therefore, we used A and b indexes as reported in [4]:  
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1 Based on Zhang and Mueller [4], a proper ROC curve is a monotonically non-decreasing function with a non-increasing slope 

connecting the points (0,0) and (1,1) and necessarily lying above the line H = F. Therefore, a ROC curve between (0,0) and (1,1) is 

convex.  
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A sensitivity values ranges from 0 to 1.0, with 0.5 being considered the chance level 

and 1.0 perfect performance. Low values of A (i.e., below 0.5 and close to zero) could de-

pend on sampling errors or response confusion [6]. b represents the slope of the proper 

ROC curve, and b values were log-transformed to get a symmetric bias measure with re-

spect to zero. The non-parametric bias measure log(b) ranges from -1.0 (extreme bias in 

favor of yes responses) to 1.0 (extreme bias in favor of no responses). A value of 0.0 means 

no response bias [6]. A and log(b) values were the input data for the statistical analyses. 

Data were analyzed using R (R Core Team, 2019, v4.0.4; https://www.r-project.org/) in 

RStudio (RStudio Team, 2015, v1.4.1103; https://www.rstudio.com/). 

Sensitivity/accuracy (A values) and bias (log(b)) values were analysed using general-

ized linear mixed-effects models (GLMM) with ‘lme4’ package [7]. For the analysis, we 

followed the protocol of [8,9] for data exploration, model selection, and presentation. The 

Shapiro-Wilk test was used to test whether residuals were normally distributed. Outliers 

were identified using the median absolute deviation with a cut-off of 3 [10,11]. A Gamma 

function (experiment 1) or an Inverse Gaussian function (experiment 2) with an identity 

link transformation function were used in the GLMM. The identity link transformation 

function was used for A values (experiment 1) and precision values (experiment 2). An 

identity link function means that data were not transformed. However, for the b values 

(bias) we used a log link transformation function, thus log-transforming b values. For ex-

periment 1 we chose a Gamma function for the regression analysis because most of the A 

values fell into the Gamma quantiles, allowing us to deal with the presence of outliers 

without removing them or transforming the original data. This is because the Gamma 

probability distribution allows greater variation for large mean values [8]. In general, 

Gamma and Inverse Gaussian distributions provided a better fit to the data because they 

can account for heteroscedastic patterns of increasing variability [12]. 

Results 

Experiment 1: Control experiment for Direction Discrimination 

The results of the control experiment for motion direction discrimination showed 

that participants, on average, needed 1.62 (SE: 0.33) training blocks to obtain the desired 

level of accuracy (≥ 0.95 correct performance rate). The mean accuracy at the control ex-

periment for direction discrimination was 0.97 (SEM: 0.011). Given that the residuals were 

not normally distributed (W = 0.78, p = 0.004), a one-sided one-sample permutation test 

(sampling permutation distribution 5k) showed that accuracies on the last training block 

were significantly higher than a median of 0.95 (p = 0.0378). Additionally, we tested 

whether the direction of the target had any effect on performance. The residuals were not 

normally distributed (W = 0.44, p < 0.001). A Friedman test on performance values of the 

last training block did not reveal a significant effect of the target direction (χ2 = 5.82, df = 

7, p = 0.56). These results suggest that after the training blocks, participants’ performance 

remains constant over cardinal and intercardinal directions of the target. 

Experiment 2: Control Experiment for Direction Discrimination and Training blocks 

The results of the control experiment for motion direction discrimination showed 

that the mean accuracy for direction discrimination was 0.98 (SEM: 0.008), with one train-

ing block for each participant. Given that the residuals were not normally distributed (W 

= 0.80, p = 0.027), a one-sided one-sample permutation test (sampling permutation distri-

bution 5k) showed that accuracies on the last training block were significantly higher than 

a median of 0.95 (p = 0.0084). 

Participants, on average, performed 2.12 training blocks (SEM: 0.23). After the initial 

training, mean precision values across target spatial positions were: 3.65 (SEM: 0.67), 3.02 

(SEM: 0.72), 3.05 (0.95), and 8.23 (SEM: 1.97) for target spatial position 1 - 4, respectively.  

A series of one-sided one-sample permutation tests (sampling permutation distribu-

tion 5k) were performed for each target position on precision values to assess whether 
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they were significantly above zero (i.e., chance level). The results showed that all the pre-

cision values across the four serial positions were significantly above chance (all p < 0.005). 

Experiment 2: Precision Calculation 

Precision was defined as the inverse of the circular standard deviation of the angular 

distance (error in radians) between the target direction and the participant’s response. 

Target and response directions (i.e., angles in radians) were wrapped to the interval [-π, 

π], such that odd, positive multiples of π map to π and odd, negative multiples of π map 

to – π. The pairwise difference around the circle between target and response angles was 

then computed (i.e., error in radians) and finally we calculated the inverse of the circular 

standard deviation of the errors. 

The mean circular standard deviation was calculated on 15 measures of error for each 

target position and stimulation condition. However, for the No-TMS trials, the mean cir-

cular standard deviation was calculated on 30 measures of error, i.e., pooling the No-TMS 

trials for the hMT+ and Cz stimulation conditions. The angular distance (error) and circu-

lar standard deviation were calculated using the Matlab circular statistics toolbox (v1.21) 

[13,14]. Chance performance is expected to produce a precision value that approaches 

zero. 

Modeling of Visual Short-term Memory 

Delayed estimation tasks are particularly useful to assess the components of VSTM. 

In this account, in the variable precision (VP) model precision is variable across items and 

trials and previous studies have shown that visual short-term memory precision is indeed 

continuous and variable across memory items and trials [15-18]. In the VP model the 

amount of resource an item receives, thus regulating its encoding precision, varies ran-

domly across memory items and trials and decreases with set size. The concept of resource 

may be linked to the gain (i.e., mean response amplitude) of a neural population pattern 

of activity encoding a memorized feature, such as color, orientation, motion direction etc. 

The higher the gain, the higher the precision with which a stimulus is encoded [17]. The 

variability in gain across items and trials is consistent with single neuron firing rate vari-

ability [19] and the effects of attentional fluctuations in neural populations [20,21]. There-

fore, following the rationale of Fougnie et al. [16], the VP model can be considered as an 

infinite scale mixture, a general framework that describes error distributions with a fixed 

mean and a precision (scale) that is sampled from some higher-order distribution, known 

as the ‘mixing distribution’. In fact, in the model, precision is distributed according to 

some higher-order distribution, for example, a truncated normal or gamma distribution. 

When the error is normally distributed around the correct value, and when precision (i.e., 

the inverse of the variance) is gamma distributed, the resulting experimental data takes 

the form of a generalized Student’s t-distribution wrapped on the circle, when considering 

stimulus dimensions such as color, orientation, or motion direction. For guess rate (g), 

bias (µ), and SD (σ), the probability density function of this model is given by: 

𝑓(𝑥;  𝜇, 𝜎, 𝑔, 𝑣) = (𝑔)
1

360
+ (1 − 𝑔)𝜓(𝑥;  𝜇, 𝜎, 𝑣)      Eq.5 

where 𝜓 is the wrapped generalized Student’s t-distribution and is:  

𝜓(𝑥;  𝜇, 𝜎, 𝑣) =
𝑐

𝜎
∑ (1 +

(𝑥+360𝑙−𝜇)2

𝜎2𝑣
)

−(𝑣+1)/2
∞
𝑙=−∞       Eq.6 

with  

𝑐 = Γ (
𝑣+1

2
) / (Γ

𝑣

2
√𝜋𝑣)          Eq.7 

(see [16] for more details on the VP model and mixing distribution). 

The VP model we fitted to error values was characterized by three parameters: guess 

rate (g), the mean standard deviation of responses (meanSD), and the standard deviation 

of response error (SDvar). In this case, the standard deviations of observers’ reports are 

assumed to be distributed as a normal distribution [22]. The guess rate (g) expresses the 

probability with which the observer does not remember the direction of the target patch 
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probed in the test phase and consequently guesses randomly. MeanSD represents the 

mean standard deviation of the precision of the remembered items, and it is inversely 

related to precision; high values in meanSD indicate a less precise memory representation. 

SDvar indicates intertrial variation in memory precision; high values of SDvar indicate 

high trial-to-trial variability. 

The VP model was fitted to error values calculated using the circular distance (in 

radians) between the target RDK direction and the observer’s response in the test phase. 

In our experiment, we tested only one set size (i.e., four memory items on each trial). The 

VP model was fitted using the Matlab MemToolbox [22] (http://vi-

sionlab.github.io/MemToolbox/) to assess whether there were differences in g, meanSD, 

and SDvar between the three stimulation conditions. The model also included a bias term 

(µ) (using the function ‘WithBias’ in MemToolbox), such that the central tendency of the 

data was not fixed at zero. However, only the parameters g, meanSD, and SDvar were 

analyzed. 

The MemToolbox uses Bayesian inference to derive a probability distribution over 

parameter values. This probability distribution describes the reasonableness of parame-

ters after considering the observed data considering a prior distribution (see [22] for a 

detailed description of model fitting and parameters estimation). The VP model was fitted 

to the entire set of each observer’s data. 
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