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Abstract: Background: Functional magnetic resonance imaging (fMRI) is one of the most important
neuroimaging techniques; nevertheless, the acoustic noise of the MR scanner is unavoidably linked
to the process of data acquisition. We hypothesized that the auditory noise of the scanner has an
effect on autonomic activity. Methods: We measured heart rate variability (HRV) while exposing
30 healthy subjects to fMRI noise. In doing so, we demonstrated an increase in parasympathetic
nervous system (PNS) activity compared to silence and white noise and a decrease in sympathetic ner-
vous system (SNS) activity compared to white noise. Conclusions: The influence of MR scanner noise
on the autonomic nervous system should be taken into account when performing fMRI experiments.
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1. Introduction

Resting-state functional magnetic resonance imaging (fMRI) is an invaluable tool
for clinical and basic neuroscience [1]. The process of fMRI sequence acquisition is un-
avoidably linked to high intensity (mostly >80 dB) and rhythmic acoustic noise, typically
lasting 5–10 min. Previous studies suggest that fMRI noise may affect brain activity and
connectivity, but the potential impact on the autonomic system is poorly known. Interest-
ingly, music and auditory stimuli influence autonomic activity and brain connectivity, as
revealed by heart rate variability (HRV) [2,3]. The introduction of noise to the brain has
long been shown to have an influence on signal processing, the effects of which have been
termed stochastic and coherence resonance [4,5]. We designed an experiment where an
electrocardiogram (EKG) was acquired under three conditions: (a) while listening to fMRI
acoustic noise (hereafter fMRI), (b) during acoustic White noise exposure (hereafter White)
and (c) at rest during silence (hereafter Silence). Our goal was to assess the influence of
fMRI acoustic noise on HRV in a within-subject design.

2. Materials and Methods

Thirty healthy participants aged 20–50 were included (mean age = 28.57 ± 4.18 years;
24 female). Exclusion criteria were: (a) present or past history of neuropsychiatric disorders,
(b) hearing deficits, (c) irregular wakefulness-sleep cycle, (d) medications that act on the
central nervous system, and (e) medical conditions potentially affecting the autonomic
activity. The study was approved by the Research Ethics Board of the Province of Venice,
Italy, complied with the 1964 Declaration of Helsinki and its later amendments and was
performed at IRCCS San Camillo Hospital in Venice, Italy. Subjects signed a written
informed consent prior to participation.

Participants were lying supine with eyes closed and wearing earplugs connected to
the audio delivery system. They were instructed to relax during the experiment. An EKG
was recorded with one bipolar electrode on the left and right upper part of the musculus
pectoralis. The acoustic noise of the fMRI corresponded to a standard echo planar imaging (EPI)
sequence with the following parameters: [TR] = 2000 ms, [TE] = 35 ms, voxel size = 3.3 mm3

isotropic, slices = 37, frequency = 0.5 Hz + 54 Hz + ~11 kHz (220 voxel in gradient direction x
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slices acquisition frequency = 220 × 54 Hz) of a 3T Ingenia CX Philips scanner. The sound
pressure level was set to 85 dB during White and fMRI. A depiction of the fMRI noise spectrum
can be found in Figure S1. The order of the conditions was counterbalanced across subjects.
Each condition lasted 8 min (Figure 1, Panel A).

Figure 1. Experimental design and autonomic difference between Silence, fMRI and White noise. Panel A. Subjects were
exposed to fMRI noise, Silence or White noise in a counterbalanced order during the course of one EKG recording session.
Panel B. Parasympathetic activity was significantly higher during fMRI noise as compared to Silence and White noise.
Sympathetic activity was significantly higher for White noise as compared to fMRI noise.

Kubios software [6] was used to extract metrics for the autonomic nervous system
activity from EKG R-R intervals. We specifically focused on two comprehensive measures
for sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activ-
ity [7], as defined in the Kubios software (v. 3.5, https://www.kubios.com/) (accessed on
25 October 2021). While the SNS index assumes an increase in heartrate and a decrease in
heart rate variability, the PNS index takes into account the opposite pattern [8]. The
levels of SNS and PNS were evaluated between the three conditions using repeated
measures ANOVA.

3. Results

Kolmogorov-Smirnov tests for each condition indicated normal distribution for PNS
and SNS variables. Mauchly’s tests indicated the sphericity of data.

https://www.kubios.com/
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Repeated measures ANOVA was significant for PNS (F2,58 = 4.129, p = 0.021) as well
as SNS (F2,58 = 4.612, p = 0.014).

Consequently, post hoc pairwise paired t-tests were calculated in order to reveal
significant differences between conditions.

PNS was significantly higher for fMRI compared to Silence (t29 = 2.33, pfdr = 0.04,
mSilence = 1.25, mfMRI = 1.41) as well as compared to White (t29 = 2.54, pfdr = 0.04,
mWhite = 1.19, mfMRI = 1.41; Figure 1, Panel B, left). There was no significant difference
in PNS between Silence and White (t29 = 0.78, pfdr = 0.44). SNS was significantly higher
for White than for fMRI (t29 = 2.62, pfdr = 0.04, mWhite = −0.68, mfMRI = −0.85; Figure 1,
Panel B, right); there were no differences in the comparisons of fMRI–Silence (t29 = 0.63
pfdr = 0.54) and White–Silence (t29 = 2.18, pfdr = 0.057) for SNS.

4. Discussion

The significant enhancement of PNS and the decrease of SNS during fMRI might reflect
the tendency to transition into a relaxed state and drowsiness favored by exposure to the
monotonous rhythmic sound environment [9]. People in the MR scanner face difficulties in
maintaining a state of wakefulness over the time of the scanning session, with sleep states
contaminating resting-state connectivity patterns and 30% of the subjects unable to sustain
wakefulness after 3 min [10]. On the other hand, we may speculate that the increase of
PNS/decrease in SNS score might be independent of drowsiness and possibly due to the
specific noise pattern produced during fMRI acquisition. This interpretation would be
in agreement with previous studies, demonstrating the association between autonomic
function and auditory processing [2,11]. In this respect, exposure to rhythmic noise might
influence the autonomic nervous system via entrainment [5], compared to white noise that
might influence the excitability of the brain [12,13].

The effect of fMRI acoustic noise on autonomic activity should therefore not be
neglected. The acquisition of an EKG during fMRI should be considered a potential tool to
unveil and account for such an effect.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
brainsci11111416/s1, Figure S1: Signal Spectrum of the fMRI Acoustic Noise Stimulus.
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