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Abstract: The present study investigates the relationship between individual differences in verbal
and non-verbal cognitive abilities and resting-state EEG network characteristics. We used a network
neuroscience approach to analyze both large-scale topological characteristics of the whole brain as
well as local brain network characteristics. The characteristic path length, modularity, and cluster
coefficient for different EEG frequency bands (alpha, high and low; beta1 and beta2, and theta) were
calculated to estimate large-scale topological integration and segregation properties of the brain
networks. Betweenness centrality, nodal clustering coefficient, and local connectivity strength were
calculated as local network characteristics. We showed that global network integration measures
in the alpha band were positively correlated with non-verbal intelligence, especially with the more
difficult part of the test (Raven’s total scores and E series), and the ability to operate with verbal
information (the “Conclusions” verbal subtest). At the same time, individual differences in non-
verbal intelligence (Raven’s total score and C series), and vocabulary subtest of the verbal intelligence
tests, were negatively correlated with the network segregation measures. Our results show that
resting-state EEG functional connectivity can reveal the functional architecture associated with an
individual difference in cognitive performance.

Keywords: functional connectivity of the brain; EEG; nonverbal and verbal cognitive abilities

1. Introduction

Individual differences in intelligence play a prominent role in human life. It largely
determines success not only in learning but also in real-life outcomes, such as success in
occupational or even marital status [1–4]. However, the neurophysiological mechanisms of
intelligence are still understudied. Modern studies suggest that cognitive functions are the
result of the concerted work of multiple brain structures [5–7]. The brain regions involved
in cognition are connected to each other through anatomical and functional connections,
forming networks [8]. The collaborative activity of different brain areas can be studied
from the network neuroscience perspective. The use of a network neuroscience approach
allows us to study the interaction of brain regions on the scale of the whole brain [9,10] and
to identify global patterns of the brain networks activity underlying individual differences
in cognitive abilities [11]. These global connectivity patterns can be revealed using math-
ematical graph theory. Herewith, if neurons or brain regions are represented as vertices
of a network (graph), and synapses, neural connections, and/or temporal correlations of
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activity that may occur between pairs of brain regions—as the edges, the graph can be
analyzed with specific metrics, characterizing its topological properties [12]. For example,
these metrics can be used to describe fundamental processes within the brain: integra-
tion of brain networks (measured as the average or characteristic path length within the
graphs, and segregation (measured as the coefficient of the clusterization and modularity
of the graph [13,14].

According to the neural efficiency hypothesis of intelligence [15], a higher level of
intelligence is characterized by efficient information flow in the brain (i.e., less energy spent).
From the network neuroscience approach point of view, “efficiency” can be defined as cost
minimization in the transfer of information within the network and is achieved through
small-world network topology organization [16–18]. This form of the organization provides
adequate information transmission with minimal power consumption and is characterized
by a balance of integration and segregation processes in brain networks [19–21]. The neural
efficiency hypothesis predicts that cognitive abilities will correlate with brain activity
during cognitive load. However, whether the characteristics of brain efficiency, associated
with individual differences in intelligence, can also be derived from EEG resting state is
still unclear.

Previously, it has been shown that resting-state characteristics of brain activity can be a
stable measure of the individual’s global functional connectivity [22,23]. The resting-state ac-
tivity was associated with individual differences in several behavioral characteristics [24,25],
including individual differences in the level of intelligence [26,27]. A study by Schultz and
Cole [28] shows that more effective reconfiguration of functional connectivity at rest was
associated with higher performance during cognitive tasks. According to Saxe and col-
leagues [29], there is a positive association between resting-state brain activity entropy and
intelligence test performance, indicating that although the resting brain does not solve any
specific tasks, resting-state activity creates prerequisites for more effective tasks solving in
the future.

However, recent studies have failed to find an association between resting-state fMRI
activity and various intelligence measures [30], while other studies showed that resting-
state EEG network integration characteristics were positively correlated to individual dif-
ferences in non-verbal intelligence [31,32]. It has been hypothesized that this lack of associa-
tion between fMRI-resting states may be related to its poor temporal resolution (2–3 s [33]).
In numerous EEG and MEG studies, it has been shown that high-frequency brain activity
plays an important role in cognitive processes [34–36]. These results are also in line with
a recent fast fMRI study [37] showing that different fMRI frequency bands (0.01–0.15 Hz,
0.15–0.37 Hz, 0.37–0.53 Hz, and 0.53–0.7 Hz) demonstrate band-specific shifts of the brain-
wide neural coherence. The study by Nentwich et al. [38], however, showed that EEG
functional connectivity patterns differ from fMRI connectivity patterns. These differences
may be explained by the physiological origin of these two signals and the methods used to
calculate functional connectivity.

The present study aimed to test whether EEG-resting state network characteristics
are associated with verbal in addition to non-verbal cognitive abilities. Verbal intelligence
refers to specific language skills and is evaluated by performing one or more special tests
that include receptive and/or expressive speech, such as a vocabulary test, tasks to identify
associations between words (verbal abstract reasoning), and providing factual answers
to general knowledge questions [39]. Nonverbal abilities refer to “the ability to represent,
transform, generate, and recall symbolic, non-linguistic information” [40]. According to
the results of factor analysis, it is individual differences in verbal and nonverbal cogni-
tive abilities that make the greatest contribution to individual differences in intelligence
quotient [41], which is likely to make the neurobiological basis of verbal and non-verbal
intelligence the most important of part of brain mechanism of general intelligence.

Previous fMRI-studies have shown the relationship between functional connectivity
patterns with both nonverbal and verbal cognitive characteristics. For example, in the
study by Pamplona and colleagues [42], the relationship between global characteristics



Brain Sci. 2021, 11, 94 3 of 15

of functional connectivity and verbal and non-verbal cognitive abilities were estimated.
According to their study, the capacity of the “verbal comprehension” subscale (Wechsler
Adult Intelligence Scale III) was positively correlated with global efficiency. Non-verbal
cognitive abilities were significantly associated with local characteristics of functional
connectivity, but not with global ones. EEG studies have shown that verbal abilities are
associated with the EEG alpha power synchronization, especially in the anterior (from
anteriofrontal to frontocentral) regions [43].

The current study aims to investigate whether both verbal and non-verbal individual
differences characteristics are associated with large-scale topological properties of the
brain networks and local functional connectivity characteristics according to the network
neuroscience approach.

2. Materials and Methods
2.1. Participants

One hundred and forty-four students from universities and colleges in Moscow and
Chelyabinsk aged 18 to 25 years (95 females) were recruited voluntarily to participate in
the research. There were no monetary incentives for the participants.

All participants were assigned a unique ID and familiarized with the research proce-
dure and gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol
was approved by the Ethics Committee for Interdisciplinary Research (protocol number
28122017-6 dated 23 December 2017). All participants had no history of neurological or
mental disorders or head injuries. Twenty-nine participants were excluded from the analy-
sis due to the lack of cognitive test data (16 people), and/or due to numerous excessive
artifacts in EEG recording (more than 15% of the record, 13 people).

2.2. EEG Procedure

For EEG resting-state recording, we instructed all participants to sit calmly, not to
think about anything specific, and not to fall asleep for 10 min. Every 2 min, participants
were asked to open or close their eyes using the verbal instruction “Now open your eyes”,
“Now close your eyes”, altogether with 6 min in eyes closed and 4 min in eyes open
conditions. The EEG data with eyes closed only was used for analysis in this study. Verbal
and nonverbal cognitive abilities were estimated online after recording EEG.

2.3. Intelligence Testing (Measures of Cognitive Abilities)

We applied the Raven’s Standard Progressive Matrices test [44] to estimate nonverbal
cognitive abilities. The total amount of correct answers was used as a general indicator
of nonverbal abilities, and the success of each of the five series (A, B, C, D, and E) was
estimated separately. The series of the Raven’s “Standard Progressive Matrices” test were
presented in the following order: A→ B→ C→ D→ E; each series was presented with
increasing complexity. Participants were limited to 20 min to complete the test.

Verbal cognitive abilities were estimated using a short version of the vocabulary test
“My Vocab” [45] and the verbal scales of the Universal Intellectual Test [46].

The short version of the vocabulary test consists of 95 words of different frequency of
occurrence in the Russian language. The participants were asked to mark those words the
meaning of which they knew. The volume of vocabulary was estimated by the number of
words marked by the participant.

The Universal Intellectual Test (UIT) is a diagnostic complex for assessing the level
and structure of intelligence. This test has high validity and reliability [47] and is widely
used to evaluate intelligence in Russian samples. Universal Intellectual Test consists of 11
subtests, including nonverbal subtests (operating with figures and numbers) and verbal
subtests (operating with words and verbal constructions). In our study, we used verbal
subtests of the Universal Intellectual Test which measure the following parameters of
intellectual functions: erudition (subtest “Awareness”) and deductive thinking, and the
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ability to operate with verbal information (subtest “Conclusions”). For each subtest, the
number of correct answers was estimated. The subjects had a limited amount of time
to complete the UIT subtests: the participants were given 6 min to complete the tests
“Awareness” and 8 min for “Conclusions”.

2.4. EEG Data Acquisition and Pre-Processing

EEG data were recorded from 64 electrodes placed according to the international 10-10
system with a Brain Products ActiChamp amplifier (BrainProducts, Munich, Germany).
All experiments were performed in a soundproofed and electrically shielded room with
dim lighting. Impedance was maintained below 25 kOhm with a highly conductive
chloride gel. The Brain Products PyCorder acquisition system was used for continuous
recording without any filtering and continuous sampling at 500 Hz. The reference electrode
was located at point Cz (re-referenced to average). The data were filtered from 0.1 to
30 Hz. Eyes closed/eyes open markers were added to separate continuous EEG into
corresponding conditions. The “autoreject” algorithm for MNE was used for automatic
artifact correction [48] was used. If the total length of the artifacts exceeded 15% of
the overall recording, or if more than 2 electrode channels needed interpolation, the
participant’s data was not included in the final analysis. After artifact correction, the
data were divided into theta (4–8 Hz), alpha (full 8–13 Hz, low alpha—8–10 Hz, and high
alpha 10–13 Hz), beta1 (13–20 Hz), and beta2 (20–30 Hz) frequency bands. To source
reconstruction and functional connectivity analysis, the overall EEG recording was divided
into 6-s epochs with a 1-s overlap to avoid the possible filter edge effects [49]. For every
participant, around 60 epochs were used.

2.5. Source Reconstruction

Functional connectivity was calculated for reconstructed sources of brain activity.
Source reconstruction was performed for each frequency band using the standard source
localization pipeline from MNE Python [50]. Firstly, a source space with 1026 sources
per hemisphere was created. Secondly, the BEM (boundary-element model) method was
used to create a three-layer model of the hemispheres: the inner skull, outer skull, and
outer skin. The conductivity of layers was standard for the MNE package (0.3, 0.006, 0.3,
respectively). The source was reconstructed using a standard model head (Colin27) without
any individual anatomical images. Thirdly, the forward operator was constructed based
on the source space and BEM model. And fourthly, the individual inverse operator was
created for every participant with an individual noise covariance matrix. We used the
standard BrainVision montage positions for the Electrical Lead Field estimation. The source
reconstruction of each individual was performed with the appropriate inverse operator
using a dSPM method. The Desikan–Killiany Atlas [51] was used for cortical parcellation
with 34 ROI per hemisphere. Activation of the cortical ROI was extracted via the MNE
function mne.extract_label_time_course with the “pca_flip” method. dSPM method of
source reconstruction belongs to a minimum norm class of methods and is preferably used
when distributed sources are expected. It is applied under the assumption that the currents
constrained to the cortex and the amplitudes of the currents have a distribution with mean
zero and a diagonal covariance matrix with equal variances for all sources. Though it is
one of the most widely used source reconstruction methods, it can be substantially affected
by the regularization procedure and is vulnerable to the creation of ghost sources.

2.6. Synchronization Measures

We used the built-in wPLI function from MNE Python [52,53] as a synchronization
measure. The Weighted Phase Lag Index is a PLI extension that measures the asymmetry
of the relative phase distribution. PLI ignores amplitude and is resistant to a false increase
in coherence between signals due to common sources of brain activity.
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2.7. Graph Analysis

To calculate the graph, we constructed the adjacency matrices for every participant
from synchronization estimates between electrical activities of pairs of anatomical struc-
tures resulting in a full weighted graph. The adjacency matrices were calculated separately
for each epoch and then averaged before the network characteristics analysis. To avoid is-
sues from the deliberate choice of threshold measure, we use the area under curve approach
for each measure by the following procedure: each full graph was gradually thresholded
starting from 10% of weakest connections with 10% step until top 10% remains. On each
step, the graph measures were calculated. Then, for each measure, AUC was calculated on
the values on each threshold. One of the problems of the connectivity analysis on the EEG
data is the volume conduction effects. In the present study, we used the wPLI measure,
designed to reduce the effect of common sources of brain activity on the connectivity
measures. However, while wPLI is insensitive to zero-lag interactions, it is still prone to
spurious interactions due to common input problems. To address this issue, we used a
method developed by Shahbasi et al. [54]. The main idea of this method is to compare the
connections on the real EEG data with surrogate data constructed as the superposition of
independent EEG sources (the details of the method are described in [54]). The interac-
tions found both in real and surrogate were not used in further connectivity analysis and
graph metrics calculation. We calculated two types of graph measures in the present study.
First, we calculated large-scale topological network metrics: the characteristic path length,
modularity, and the averaged clustering coefficient. The characteristic path length is the
shortest path length between all pairs of nodes; the clustering coefficient is the number
of connections in the neighborhood of a certain node divided by the maximum number
of possible connections between the neighbors of this node. Modularity is a measure
of a division of a network into subgraphs (modules), which are characterized by more
dense connections inside subgraphs than between them [19]. The characteristic path length
is hypothesized to reflect the integration of the network. The clustering coefficient and
modularity are hypothesized to be measures of network segregation [12].

We also calculated nodal (local) network characteristics. Nodal metrics included local
connectivity strength, betweenness centrality, and nodal clustering coefficient. Betweenness
centrality is a measure of all the shortest paths passed through a node; local connectivity
strength is a sum of weights at all edges connected to a node. Nodal clustering coefficient
is the proportion of existing nodal edges to possible edges. Both large-scale topological and
local metrics were calculated using “network” package for Python [55]. Louvain method
was used as the cluster detection algorithm.

2.8. Statistical Analysis

The descriptive analysis of all the variables (demographic data, connectivity metrics,
cognitive abilities) collected was performed for each group (men and women). To study
the relationship between large-scale topological functional connectivity metrics and char-
acteristics of verbal and nonverbal cognitive abilities, we used Spearman’s correlation
analysis. Correction for multiple comparisons was made using the FDR method [56]. To
identify relationships between local functional connectivity characteristics and cognitive
indicators, we used the Bayesian correlation approach [57] to reduce the probability of
false-positive correlations due to multiple comparisons. The statistical processing was
completed in the Statistical Programming Environment R [58] with packages “igraph”,
“psych”, and “corrplot”.

3. Results

To test the comparability of the results between the two data collection labs, we
applied Levene’s test for homogeneity of results. For all variables, the p-values were higher
than 0.05 with no evidence to reject the null hypothesis about the equal variance between
the groups. We calculated descriptive statistics for separately for cognitive variables and
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three types of connectivity metrics within narrow EEG frequency bands. The results are
presented in Tables 1–4.

Table 1. Descriptive statistics of cognitive variables.

Mean Sd Median Min Max Skew Kurtosis

Total 49.89 6.59 51.00 21.00 60.00 −1.47 3.27
A 11.47 1.24 12.00 2.00 12.00 −5.19 34.21
B 11.07 1.45 11.00 2.00 12.00 −3.32 15.86
C 9.99 1.87 11.00 3.00 12.00 −1.05 0.99
D 9.89 1.59 10.00 3.00 12.00 −1.52 3.82
E 7.59 2.53 8.00 2.00 12.00 −0.36 −0.53

Vocab 65.84 15.27 67.00 19.00 92.00 −0.76 0.55
Aw 8.92 3.37 9.00 0.00 15.00 −0.53 0.34

Conc 10.67 3.59 11.00 0.00 16.00 −0.71 −0.11
A, B, C, D, E—scores of the series of the Raven test, total—total score on the Raven test, Vocab—scores of the
Vocabulary test, Aw—scores of the verbal subtest “Awareness”, Conc—scores of the verbal subtest “Conclusion”.

Table 2. Descriptive statistics of characteristic path length metric for narrow EEG bands.

EEG
Band Mean Sd Median Min Max Skew Kurtosis

10–12 Hz 0.27 0.06 0.25 0.18 0.42 0.83 −0.16
13–20 Hz 0.26 0.06 0.24 0.19 0.44 0.84 −0.09
20–30 Hz 0.27 0.06 0.25 0.19 0.46 0.86 0.05
4–30 Hz 0.27 0.06 0.25 0.19 0.44 0.79 −0.22
4–8 Hz 0.26 0.06 0.25 0.18 0.42 0.8 −0.25
8–10 Hz 0.26 0.06 0.25 0.18 0.42 0.74 −0.21
8–13 Hz 0.27 0.06 0.25 0.19 0.43 0.77 −0.27

Table 3. Descriptive statistics of cluster coefficient metric for narrow EEG bands.

EEG
Band Mean Sd Median Min Max Skew Kurtosis

10–12 Hz 0.19 0.03 0.19 0.13 0.40 2.46 15.20
13–20 Hz 0.26 0.03 0.27 0.17 0.37 −0.59 1.20
20–30 Hz 0.27 0.04 0.28 0.13 0.40 −0.90 2.31
4–30 Hz 0.32 0.05 0.33 0.18 0.41 −1.13 0.99
4–8 Hz 0.24 0.03 0.24 0.16 0.39 1.46 12.04
8–10 Hz 0.20 0.03 0.20 0.14 0.39 2.50 16.21
8–13 Hz 0.23 0.03 0.23 0.14 0.38 0.48 3.55

Table 4. Descriptive statistics of modularity metric for narrow EEG bands.

EEG
Band Mean Sd Median Min Max Skew Kurtosis

10–12 Hz 0.10 0.01 0.10 0.07 0.13 0.22 −0.05
13–20 Hz 0.09 0.01 0.09 0.07 0.12 0.72 0.36
20–30 Hz 0.09 0.01 0.09 0.06 0.13 0.60 0.93
4–30 Hz 0.09 0.01 0.09 0.07 0.12 0.61 0.65
4–8 Hz 0.09 0.01 0.09 0.06 0.12 0.43 1.22
8–10 Hz 0.10 0.01 0.09 0.07 0.13 0.53 −0.31
8–13 Hz 0.09 0.01 0.09 0.06 0.11 0.01 −0.44
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The EEG source distribution maps for the Desikan Atlas ROIs are presented in Figure 1.
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frequency bands. 68 ROIs are reconstructed according to Desikan–Killiany Atlas [50]. Note that the density values are
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3.1. The Relationship between Verbal and Non-Verbal Abilities and Large-Scale Topological
Network Characteristics

To investigate the complex interplay between the various connectivity metrics and
the characteristics of verbal and nonverbal cognitive abilities, we have calculated the full
zero-order correlation matrix of the interconnections between the cognitive variables and
the connectivity graph measures in different frequency bands. The results of the Spearman
correlations (FDR-corrected for multiple comparisons) are presented in Figures 2–4.

It can be seen that for a number of topological properties, the sex of the participants
and EEG band’s power were significant predictors. We ran separate partial correlations to
regress out the effect of these variables. The results are presented in Table 5.

All the associations of interest except with the UIT1 (“Awareness”) test remained
significant after partial correlation analysis. For the significant correlations, scatterplots
with the linear trends have been calculated to visually inspect the relationship between the
variables. The results are presented in Figure 5.

From the visual analysis of the scatterplots, it can be seen that correlations with the A
and D Raven’s series are likely due to ceiling effects. Overall, it can be seen that both verbal
and non-verbal cognitive abilities are correlated with integration and segregation network
characteristics in the EEG alpha band (higher alpha, predominantly). To further investigate
the relationship between alpha-band EEG network characteristics and cognitive abilities
we calculated nodal integration and segregation connectivity metrics.
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Table 5. The results of the partial correlation analysis between the EEG measures, verbal and
non-verbal cognitive variables, and potential regressors.

Variable Correlate Regressor R Estimate p-Value

Raven total 10–12 CPL Sex 0.21 * 0.04
Raven total 10–12 Modularity Alpha & Theta power −0.24 * 0.02

A series 8–13 Clust. Coef. Alpha power 0.16 0.11
C series 10–12 Modularity Alpha & Theta power −0.22 * 0.02
D series 10–12 Modularity Alpha & Theta power −0.26 * 0.01
E series 10–12 CPL Sex 0.22 * 0.03

UIT1 13–20 CPL Sex −0.02 0.8
UIT1 13–20 Mod Sex 0.13 0.2
UIT5 10–12 CPL Sex 0.28 ** 0.005
UIT5 8–10 CPL Sex 0.28 ** 0.006

MyVocab 8–13 Clust. Coef. Alpha power −0.29 ** 0.001
CPL—Characteristic Path Length, Clust. Coef—Cluster Coefficient, Mod—Modularity; UIT1—”Awareness”
verbal subtest, UIT5—”Conclusion” subtest of the Universal Intellectual Test, vocab—“MyVocab” test. * p < 0.05.
** p < 0.01.
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3.2. The Relationship between Verbal and Non-Verbal Abilities and Nodal Connectivity Measures

For each of the 68 reconstructed ROIs, we estimated the relationship between the given
nodal connectivity characteristic and verbal and non-verbal cognitive measures. Numerous
studies have shown that there are specific brain areas repetitively associated with intelli-
gence. These brain areas have been combined into P-FIT (parieto-frontal integration) net-
work [59]. We, thus, specifically tested whether nodal network characteristics of these areas
were associated with verbal and non-verbal cognitive abilities in our study. The results are
presented in Supplementary Materials Figures S1–S12 in the supplementary information.
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Both positive and negative associations were found between betweenness centrality
characteristics and cognitive measures. It can be seen that for the “MyVocab” test negative
correlations are prevalent. For the “Awareness” subtest mostly positive correlations can
be seen. There is no clear pattern for the involvement of the P-FIT areas. The highest
correlations both for Raven’s total score and the Awareness subtest were found with the
right pars triangularis ROI.

For the nodal cluster coefficient, it can be clearly seen that the association with local
network segregation characteristics is opposite for verbal comparing to non-verbal cogni-
tive abilities. For non-verbal intelligence, a lot of the highest correlation values are found
for the P-FIT areas.

For the local connectivity strength characteristic, it can be seen that all the associations
with both verbal and non-verbal characteristics are positive, however, very small and do
not exceed r = 0.10.

4. Discussion

In our study, we were focused on the relationship between the large-scale topologi-
cal brain network characteristics and local functional connectivity EEG measures during
resting state and the level of verbal and nonverbal cognitive abilities. The local functional
connectivity and the large-scale topological properties of the networks were estimated
according to the network neuroscience approach [60]. We have found that network integra-
tion measures in the alpha band were positively correlated with non-verbal intelligence,
especially with the more difficult part of the test (Raven’s total scores and E series). At
the same time, individual differences in non-verbal intelligence (Raven’s total score and C
series), and vocabulary subtest of the verbal intelligence tests, were negatively correlated
with the whole-brain segregation measures. It should be noted that the association between
network characteristics and individual differences in cognition found in the present study
does not exceed the r = 0.3, which is quite a moderate correlation. However, according to
the meta-analysis by Gignac [61], such a correlation value should be considered typical for
the individual differences research.

The negative association between segregation and cognition is contrary to the previous
results by Langer et al. [31] who showed positive relationships between the degree of
segregation of the global brain network and nonverbal cognitive abilities. However, these
results are in line with the previous results by Zakharov et al. [32], who showed that the
alpha band characteristic path length of the brain graphs are robustly associated with
non-verbal intelligence across different connectivity calculation routines. The present
results are also consistent with structural brain connectivity data [62], which showed that
high density and low modularity of white matter fibers are associated with higher fluid
intelligence. Note, however, that anatomical and functional connectivity results should be
compared with caution [38]. Previously, it has been shown that brain integration increases
during cognitive load [14]. Our results may indicate that segregation decrease in a situation
without any specific cognitive demand at rest with eyes closed [63], can provide the brain
with the resources to higher performance and more efficient transmission of information
during high-demand test administration.

Resting-state connectivity characteristics analyzed in our study can also capture the
intrinsic frequency-specific brain functional architecture of the communication dynamics
within the brain [34,60]. In the present study, we found the association between individual
differences in cognitive abilities and the network characteristics in the EEG alpha range.
EEG alpha power has been associated with numerous brain state characteristics that can
play an important role in cognition, e.g., vigilance [64,65] or inhibition [66]. Individual
differences in the alpha band were also shown to be related to giftedness and creativity [67]
and language abilities [68]. It has also been directly associated with intelligence [43,69],
though the results are mixed.

According to our results, the association between local network characteristics and ver-
bal and non-verbal cognition are generally in line with the P-FIT theory of intelligence [59].
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We have found that verbal and non-verbal intelligence performance are inversely correlated
with the local brain segregation characteristics. These results are consistent with data from
an fMRI study, which shows that at rest, the regional homogeneity of the regions included
in P-FIT positively correlates with the level of cognitive abilities [70]. However, the results
of the local brain source activation analysis derived from EEG should be interpreted with
caution given the minimum norm methods constraints and the fact that it was based on
the standard head template without individual MRI-data.

Limitations

Firstly, in our study, we evaluated the relationship of only certain aspects of verbal and
nonverbal cognitive abilities with the characteristics of functional connectivity of the brain
at rest. In future studies, we are planning to expand the number of cognitive areas tested.
Secondly, in the present study, the connectivity metrics were calculated for EEG sources
reconstructed from the standard head model, which can bias the results. The individual
EEG-MRI data are needed to confirm the results of the present study. Thirdly, our research
sample consisted of young adults only. Further research is needed to understand whether
the results we found can be generalized to other age ranges.

5. Conclusions

To sum up, we have found that both verbal and non-verbal cognitive abilities are asso-
ciated with the local and the large-scale topological characteristics of the brain networks in
the EEG alpha band. Our results show that resting-state brain can reveal the functional
architecture that are associated with the individual difference in cognitive performance.
The relationship between resting-state and on-task brain network characteristics and the re-
organization of the brain networks are needed to better understand the neurophysiological
basis of intelligence according to the network neuroscience approach.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-3
425/11/1/94/s1, Figure S1: The relationship between non-verbal abilities (the Raven test (total
score) and betweennes centrality of the nodes of the brain network, Figure S2: The relationship
between verbal abilities (the test UIT1 (“Awareness”) and betweennes centrality of the nodes of
the brain network, Figure S3: The relationship between verbal abilities (test UIT5 (“Conclusions”)
and betweennes centrality of the nodes of the brain network, Figure S4: The relationship between
verbal abilities (the test MyVocab) and betweennes centrality of the nodes of the brain network,
Figure S5: The relationship between non-verbal abilities (Raven test (total score) and nodal clustering
coefficient of the brain network, Figure S6: The relationship between verbal abilities (the test UIT1
(“Awareness”) and nodal clustering coefficient of the brain network, Figure S7: The relationship
between verbal abilities (the test UIT5 (“Conclusions”) and nodal clustering coefficient of the brain
network, Figure S8: The relationship between verbal abilities (the test MyVocab) and nodal clustering
coefficient of the brain network, Figure S9: The relationship between non-verbal abilities (Raven
test (total score) and local connectivity strengths of the nodes in the brain network, Figure S10: The
relationship between verbal abilities (the test UIT1 (“Awareness”) and local connectivity strengths of
the nodes in the brain network, Figure S11: The relationship between verbal abilities (the test UIT5
(“Conclusions”) and local connectivity strengths of the nodes in the brain network, Figure S12: The
relationship between verbal abilities (the test MyVocab) and local connectivity strengths of the nodes
in the brain network.
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