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1. FMRI Data Preprocessing

The first 10 volumes were discarded to assure the remaining volumes of fMRI data were at
magnetization steady state. The remaining volumes were corrected with slice timing and realigned
for head motion correction. Nuisance variables were then regressed out including white matter,
cerebrospinal fluid (CSF), global mean signal and Fristion 24 head motion parameters [1]. To further
control for head motion, scrubbing process were done for the volumes with framewise displacement
(FD) value execeed 0.3 [2]. Then the anatomical dataset was aligned to the functional dataset.
Detrending and temporal band-pass filtering (0.01 Hz - 0.1 Hz) [3] were performed to remove higher
frequency physiological noise and lower frequency scanner drift. Subsequently, the functional images
were spatially normalized to the Montreal Neurological Institute (MNI) template (MNI152: average
T1 brain image constructed from 152 normal subjects), resliced to 2 mm × 2 mm × 2 mm voxels, and
smoothed with a Gaussian kernel with a full-width at half-maximum (FWHM) of 6 mm.

2. Defining the Seed Locations

When acquiring task-based fMRI, subjects were asked to try to do grasp and open using their
paretic hand when a mark of "L" or "R" (decided by each subject’s paretic hand) appeared on the
screen and were also asked to maintain 6 seconds until the mark disappeared from the screen. An
event-related design was adopted and randomized time intervals from 14 to 20 seconds were assigned
between every two tasks. Two 6-minute task-based fMRI runs were performed for each subject.

The task-based fMRI data were also preprocessed using DPARSF toolbox. Similar preprocessing
steps were performed on task-based fMRI data except that the threshold for FD value was set to 0.7
in the motion scrubbing step [4] and no band-pass filter was used. Subjects with left-hemispheric
lesions were also flipped along the midsagittal plane. The preprocessed task-based fMRI data were
fitted into a GLM for subject-level analysis where each of the events were convolved using a canonical
hemodynamic response function (HRF) and used as a regressor. Besides, six motion regressors were
also included in the design matrix to regress out motion-related fluctuations in the BOLD signal. As a
result, each subject acquired a t-map at each session. The statistical maps from all sessions were used
to do the group level analysis (one sample t-test). Voxels were identified as significantly active if they
surpassed a threshold of z > 2.7 and corrected using Gaussian random field theory at a threshold of
p < 0.05 at a cluster level. The seed locations for iM1 and cM1 were defined based on the group-level
activation map.

3. EEG Data Preprocessing

Under the condition where MRI was acquired simultaneously, the switching of magnetic field
gradients would pollute and overwhelm EEG signal which led to low signal to noise ratio (SNR).
A principle component analysis (PCA)-based optimal basis set (OBS) algorithm [5] was adopted
to remove the MRI gradient artifact and the onset markers indicating the beginning of each fMRI
volume, generated by MRI scanner were also provided for better extraction and selection of artifactual
features. The output EEG signal were double-checked visually to ensure that the amplitude was
not grandiosely large. The time course of heartbeat artifact was determined with a R-peak detection
algorithm [6]. The final ECG artifact was eliminated channel-wisely using the strategy which combined
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independent component analysis, OBS and an information-theoretic rejection criterion developed by
Liu and colleagues [6].

After that, EEG signal was band-pass filtered from 2 to 40 Hz using a Butterworth non-causal filter.
Subsequently, bad channels were removed and reconstructed using spherical spline interpolation with
neighbor electrodes. Following that, all data were common average referenced. According to the fMRI
trigger markers, these data were segmented into non-overlapping two-second epochs where the first
and last several data segments were removed due to signal instability. Bad epochs were rejected based
on statistical measurement metrics (e.g. z-score, variance, min, and max etc.) with remaining ones
further inspected visually to guarantee the signal quality. We utilized adaptive mixture independent
component analysis (AMICA) algorithm [7] to separate EEG signals into spatially static and maximally
temporally independent components [8]. The components related to residual artifact induced by
MRI scanning, Electrooculogram (EOG) artifact and muscular artifact were rejected. Processes of
remaining components were then projected back to all original channels. Finally, we applied a surface
Laplace filter with the spherical spline method [9] to increase the topographical selectivity, eliminate
the volume conduction and highlight the high-spatial-frequency components while attenuating low
ones [10].

4. Correlation of Information Flow When iM1 Was the Source Region

Then we explored the relationship between training effect and information flow changes when
iM1 was treated as a source region (i.e. information flow from iM1 to cPMA or SMA). However, neither
information flow change from iM1 to cPMA (r = −0.405, p = 0.7660, Bonferroni corrected) nor from
iM1 to SMA (r = 0.1189, p = 1, Bonferroni corrected) correlated significantly or strongly with FMA
score change.

Figure S1. The correlation between functional connectivity change and information flow change from
iM1 to cPMA (left), iM1 to SMA (right).

1. Friston, K.J.; Williams, S.; Howard, R.; Frackowiak, R.S.J.; Turner, R. Movement-Related effects in fMRI
time-series. Magnetic Resonance in Medicine 1996, 35, 346–355. doi:10.1002/mrm.1910350312.

2. Power, J.D.; Barnes, K.A.; Snyder, A.Z.; Schlaggar, B.L.; Petersen, S.E. Spurious but systematic correlations
in functional connectivity MRI networks arise from subject motion. NeuroImage 2012, 59, 2142 – 2154.
doi:https://doi.org/10.1016/j.neuroimage.2011.10.018.

3. Auer, D.P. Spontaneous low-frequency blood oxygenation level-dependent fluctuations and
functional connectivity analysis of the ‘resting’ brain. Magnetic Resonance Imaging 2008, 26, 1055
– 1064. Proceedings of the International School on Magnetic Resonance and Brain Function,
doi:https://doi.org/10.1016/j.mri.2008.05.008.

https://doi.org/10.1002/mrm.1910350312
https://doi.org/https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/https://doi.org/10.1016/j.mri.2008.05.008


Version December 8, 2020 submitted to Journal Not Specified S3 of S3

4. Siegel, J.S.; Power, J.D.; Dubis, J.W.; Vogel, A.C.; Church, J.A.; Schlaggar, B.L.; Petersen, S.E. Statistical
improvements in functional magnetic resonance imaging analyses produced by censoring high-motion
data points. Human Brain Mapping 2014, 35, 1981–1996. doi:10.1002/hbm.22307.

5. Niazy, R.; Beckmann, C.; Iannetti, G.; Brady, J.; Smith, S. Removal of FMRI environment
artifacts from EEG data using optimal basis sets. NeuroImage 2005, 28, 720 – 737.
doi:https://doi.org/10.1016/j.neuroimage.2005.06.067.

6. Liu, Z.; de Zwart, J.A.; van Gelderen, P.; Kuo, L.W.; Duyn, J.H. Statistical feature extraction
for artifact removal from concurrent fMRI-EEG recordings. NeuroImage 2012, 59, 2073 – 2087.
doi:https://doi.org/10.1016/j.neuroimage.2011.10.042.

7. Palmer, J.A.; Kreutz-Delgado, K.; Makeig, S. Super-Gaussian Mixture Source Model for ICA. Independent
Component Analysis and Blind Signal Separation; Rosca, J.; Erdogmus, D.; Príncipe, J.C.; Haykin, S., Eds.;
Springer Berlin Heidelberg: Berlin, Heidelberg, 2006; pp. 854–861.

8. Makeig, S.; Bell, A.J.; Jung, T.P.; Sejnowski, T.J. Independent Component Analysis of
Electroencephalographic Data. In Advances in Neural Information Processing Systems 8; Touretzky, D.S.;
Mozer, M.C.; Hasselmo, M.E., Eds.; MIT Press, 1996; pp. 145–151.

9. Perrin, F.; Pernier, J.; Bertnard, O.; Giard, M.; Echallier, J. Mapping of scalp potentials by
surface spline interpolation. Electroencephalography and Clinical Neurophysiology 1987, 66, 75 – 81.
doi:https://doi.org/10.1016/0013-4694(87)90141-6.

10. Cohen, M.X. Analyzing neural time series data: theory and practice; Issues in clinical and cognitive
neuropsychology, The MIT Press: Cambridge, Massachusetts, 2014.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.1002/hbm.22307
https://doi.org/https://doi.org/10.1016/j.neuroimage.2005.06.067
https://doi.org/https://doi.org/10.1016/j.neuroimage.2011.10.042
https://doi.org/https://doi.org/10.1016/0013-4694(87)90141-6

	FMRI Data Preprocessing
	Defining the Seed Locations
	EEG Data Preprocessing
	Correlation of Information Flow When iM1 Was the Source Region
	References

