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Abstract: Over the last few decades, the Brain-Computer Interfaces have been gradually making their
way to the epicenter of scientific interest. Many scientists from all around the world have contributed
to the state of the art in this scientific domain by developing numerous tools and methods for brain
signal acquisition and processing. Such a spectacular progress would not be achievable without
accompanying technological development to equip the researchers with the proper devices providing
what is absolutely necessary for any kind of discovery as the core of every analysis: the data reflecting
the brain activity. The common effort has resulted in pushing the whole domain to the point where
the communication between a human being and the external world through BCI interfaces is no
longer science fiction but nowadays reality. In this work we present the most relevant aspects of the
BCIs and all the milestones that have been made over nearly 50-year history of this research domain.
We mention people who were pioneers in this area as well as we highlight all the technological and
methodological advances that have transformed something available and understandable by a very
few into something that has a potential to be a breathtaking change for so many. Aiming to fully
understand how the human brain works is a very ambitious goal and it will surely take time to
succeed. However, even that fraction of what has already been determined is sufficient e.g., to allow
impaired people to regain control on their lives and significantly improve its quality. The more is
discovered in this domain, the more benefit for all of us this can potentially bring.

Keywords: signal processing methods; Brain-Computer Interfaces; neuro-imaging; electroencephalog-
raphy; electrocorticography

1. Introduction

Rapid technological development, especially during the last 30 years has led to the in-
creased scientific interest in using biomedical data (of various types and for many purposes
including communication, movement control, environment control, neurorehabilitation,
etc. [1–6]. It is also related to the rapid development of the cognitive sciences, which include
the following areas [1,7–11]:
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• cognitive psychology,
• artificial intelligence,
• neuroscience,
• linguistics,
• anthropology,
• philosophy,
• robotics,
• information technology.

It is also important to mention the occurrence of various Brain-inspired Cognitive
Systems (BCSs), which are gradually becoming more and more popular in particular in bio-
cybernetics or cognitive science [8]. Due to the fact that the analysis of biomedical signals
has become one of the most important diagnostic methods in many research, biological or
medicine areas [12].

One of the most important aspects of the biomedical data analysis (which is the
predominant authors’ scientific interest), in particular signals, is a desire to develop a
perfect, ideal, intuitive, Human-Machine Interface (HMI) [1], to which the Brain-Computer
Interfaces belong (it will be presented in detail further in this work) [2,3,13].

As it has been mentioned above—the Human-Machine Interfaces (HMI) are currently
playing more and more important role in human lives [1], also because the most modern
Human-Machine Interfaces enable direct communication between an external device
and a human, so there is no need to use any other control equipment such as mouse or
keyboard [3,14].

Such systems can also help some handicapped users to interact with the external
environment in a more direct, user-friendly, intuitive way [3,15,16]. Some of the listed below
newest HMI systems apply various biomedical signals for control purposes [2,3,11,14,17]:

• electromygraphy—EMG,
• electrooculography—EOG,
• brain signals (electroencephalograhhy—EEG and electrocorticography—ECoG)—

(Brain Computer Interfaces).

The HCI systems can be divided into the two following categories [18]:

• neural prostheses, which are a cybernetic alternative for a limb using nerves connected
with the muscles;

• Brain-Computer Interfaces (BCI), which detect human decision through electromag-
netic pulses directly from the brain.

2. Brain-Computer Interfaces

The human brain is claimed to be the most complicated human organ, which could be
compared to a very powerful and complex computer, where, until today, no one was able
to recreate and simulate successfully its entire structure [10,11,19–21].

Recently, a very rapid development of medicine and information technology (and
their combination) started the era of the Brain-Computer Interfaces (BCIs), in particular
their non-invasive version, based on the electroencephalography (EEG) [2,3].

It is possible to divide the BCIs into invasive and non-invasive systems [2,3,10]. Usu-
ally, for either type of BCI information exchanged between the brain and computer (or
any other device being part of the BCI system) constitutes data that is being processed
in real-time. For that purpose each brain activity has to be measured either directly or
indirectly. Direct connection means measurement of electrical activity the brain generates
(e.g., EEG), while indirect connection can be performed via [2]:

• blood oxygen measurements,
• functional resonance imaging (fMRI),
• functional infrared spectroscopy (fNIRS), etc. . .

The development of the BCI systems has advanced from a simple EEG recording into
a really efficient Brain-Computer communication [2]. The BCI acquires signals from the
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brain, then analyzes them and translates into particular commands. Thus, this allows
a complete or partial replacement of peripheral devices (computer keyboard, mouse,
joystick) to perform an action. BCI from the terminology viewpoint refers to a system,
which measures and uses signals acquired from the central nervous system (CNS), which
means that e.g., voice-activated and muscle-activated systems could not be called a BCI.
According to the definition, a single electroencephalogram (EEG) is not a BCI either because
it is only a measurement appliance and does not provide any feedback to its user [22].

Obviously, it is equally incorrect to perceive BCIs as mind-reading devices because it
is impossible to extract unwilling information from users or their particular thoughts. Thus,
the BCIs enable the user to carry out direct action only with their brain activity without
muscle engagement [22,23]. In Figure 1 a simplified scheme of a BCI system is presented.
The acquired brain signals are initially amplified and then digitized, which simplifies
extraction of the particular signal’s characteristics or patterns and then translating them
into commands [3]. The obtained result identifies the type of user’s reaction and constitutes
one of the mandatory elements of feedback loop.

Figure 1. Components of a typical BCI system and its communication methods—simplified scheme.

The brain signals, which represent the overall electrophysiological activity of the brain
nerve cells, are obtained from either, the surface of the scalp or directly from the cortical
surface. It is a voltage fluctuation generated by the neurons, which can reflect the changes
of different human body states [21,24,25].

As majority of the non-invasive BCI systems are based on EEG data, the invasive
BCIs are mostly based on signals recorded directly from the brain e.g., electrocorticogra-
phy [26,27]. The electrocorticogram (ECoG) is an invasive signal reflecting recordings of
electrical activity of the brain, which is obtained from macro electrodes (typically 2–3 mm
in diameter) placed directly on the cortex surface [26,28,29]. It was developed in 1930 by
W. Penfield and H. Jasper as a technique applied for epileptic seizure foci detection [30].
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In Figure 2 three different methods used for the recording of the electrical activity
of brain, including one non-invasive (EEG) and two invasive (ECoG and intracortical
recordings) are illustrated [3,27,31].

Figure 2. Three different methods for electrical activity of brain recordings [3,22,31].

The ECoG recordings provide stronger and better-quality signals than the EEG data,
mainly because of their following [22,30]:

• spatial resolution in the millimeters scale,
• frequency bandwidth up to 200 Hz or higher,
• amplitude up to 100 µV,
• reduced sensitivity to movement and myoelectrical artifacts.

The invasive methods have one advantage over the non-invasive methods—the signal
is “stronger” and of higher amplitude, which results in more accurate data. The problem
is that acquiring these signals is often risky, expensive and requires undertaking major
surgery. One of the main disadvantages of the invasive method is that it can only be placed
for a very short time and has to be removed as soon as possible as it may cause a tissue
damage [4,27,31–33].

The electrocortical recordings are carried out mostly through electrodes (in form of
arrays) placed directly on the cortex surface (see Figure 3)—in this case on the monkeys’
scalp [34–36]. As the signal is recorded from the surface of the scalp, the ECoG electrodes
are placed on the cortical surface and the electrodes’ spikes enable recording data from
local-field potentials (LFPs) [4,22,27].

Although implementation of the invasive recording methods may look painful and
it is also very risky (requires longer convalescence), it is important to mention that the
brain itself (despite being the most important part of the central nervous system) does not
generate any kind of pain [27,31].

The Brain-Computer Interfaces enable direct communication between the human
brain and computer. As it was mentioned above—many different kinds of signals can be
applied for development of a BCI system [22].
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Figure 3. Sample net of electrodes placed on the cortex surface [3,34].

The most popular are non-invasive BCI systems as they do not require any surgical
intervention, and is neither their implementation difficult nor risky [3,22]. On the other
hand—the invasive BCI systems, despite being risky and requiring surgical intervention,
can be much reliable mostly due to the nature of the applied signals (such as inter alia
Electrocorticography (ECoG) providing a reliable signal) which can be used to decode
movements, vision, and speech [22].

2.1. History of Brain-Computer Interfaces

As it was mentioned in the earlier part of this work about non-invasive, EEG-based
BCI systems, it is important to start with the short characteristic of the EEG, which was at
first recorded by Hans Berger in 1924 and that’s what has led to the identification of the
alpha and beta waves [26,37,37–41]. Hans Berger published in 1930 a paper titled: “Über
das Elektrenkephalogramm des Menschen”, where he presented his findings [2,39,42,43].
Figure 4 shows Hans Berger in his laboratory [37].

Discovery of the electroencephalography was a kind of prelude to the development
of the BCI systems [2,18,43], however, its history dates back to the 19th century, when the
English physicist Richard Caton recorded (as the first ever) animals’ electrical signals and
published his results in 1875 in the British Medical Journal [44]. At the same time—two
Polish scientists—Napoleon Nikodem Cybulski and Adolf Beck have been working on
bioelectrical brain signals recording [45,46].

As the very first experiments were carried out on animals, it is important to mention
that in 1913—Vladimir Vladimirovich Prawdicz-Nieminski was the first one to show as
many as seven different types of changes in the bioelectrical activity of the brain in animals
and to register the alpha and beta frequencies, which he called “electrocerberogram” [46,47].
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Figure 4. Hans Berger in his lab [37].

It is also worth mentioning the enormous contribution of the Russian researcher—
Ivan Sechenov, who studied stimulations in the central nervous system and found that the
nervous system was reflexive. His student was the creator of the theory of unconditional
reflexes—Pavlov [46,48,49].

Despite that Hans Berger was the first one to record the alpha and beta frequencies,
he considered them as artifacts [43]. His findings were confirmed in early 1934 by English
scientist Lord Adrian and American researcher from the Harvard University—Hallowell
Davis [50]. As a useful part of the EEG data these frequencies were only taken into
consideration by American pioneers of the electroencephalography (among them was the
above mentioned H. Davis): Hallowell Davis, Herbert H. Jasper, Frederic A. Gibbs, William
Lennox, and Alfred L. Loomis [17,43,50].

Nowadays, the EEG examination is one of the most popular diagnostics methods of
the inter alia below mentioned disorders [26,51–55]:

• Epilepsy,
• Attention Deficit Disorder (ADD),
• Attention-Deficit/Hyperactivity Disorder (ADHD),
• concentration problems,
• Parkinson’s Disease (PD),
• Multiple Sclerosis,
• sleep problems,
• various mental disorders.

Many studies carried out on the EEG signals proved that the specific bands in the
signal are closely related to particular functions, and the disproportion in these frequencies
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is the basis for the diagnosis of certain disorders and diseases [37,51]. Table 1 presents
frequency ranges with their short description [26,56–58].

Table 1. Frequency ranges of the EEG signal [26,56–58].

Brainwave Frequency Range Mental Condition

Delta 0–4 Hz State of deep sleep, when there is no focus, the person is totally absent, uncon-
scious.

Theta 4–8 Hz Deep relaxation, internal focus, meditation, intuition access to unconscious
material such as imaging, fantasy, dreaming.

Low Alpha 8–10 Hz Wakeful relaxation, consciousness, awareness without attention or concentration,
good mood, calmness.

High Alpha 10–12 Hz Increased self-awareness and focus, learning of new information.

Low Beta 12–18 Hz Active thinking, active attention, focus towards problem solving, judgment and
decision making.

High Beta 18–30 Hz Engagement in mental activity, also alertness and agitation.

Low Gamma 30–50 Hz Cognitive processing, senses, intelligence, compassion, self-control.
High Gamma 50–70 Hz Cognitive tasks: memory, hearing, reading and speaking.

The EEG signals can be recorded with the use of various types of electrodes covered
with various compounds such as silver chloride or gold. Standard electrode resistance
(impedance) is just a few kΩ [26,41,59]. The electrodes placement on the surface of the
examined person’s scalp complies with the “10/20” system, where the values “10” and
“20” refer to the distance between the measurement points of the arcs running along the
three planes [3,59].

Such a thorough history of the electroencephalography (EEG) is being presented in
this work as these signals represent electrical activity of the brain and are recorded in a
non-invasive way [2,3,26,43,60,61].

It is also important to mention that the EEG signals are considered to be non-deterministic
and that they have no special characteristics like ECG signals, what affects their analy-
sis [58,62,63].

The real research on the BCI began in the 1970s in California (UCLA) with experiments
performed on animals to develop a new, direct communication path between external
environments (or devices) and the brain [2,18]. In 1973 Jacques Vidal published a paper
titled: “Toward Direct Brain-Computer Communications” [64].

The very first tests with the BCI development were carried out on monkeys in 1969
and 1970, while the first attempts with human beings were performed in the 90s. The first
full definition of the BCI was provided by Jonathan Wolpaw in 2000 [2,18].

One of the most popular signs describing activity of brain are slow cortical potentials
(SCP), which had been used in the past for communication of patients in LIS (Locked-in
Syndrome), but now has been replaced with direct current (DC) EEG shifts [2,65], which
was described for the first time by Walter et al. in 1964 in [66].

M. Sterman and his colleagues carried out some experiments on cats in the 1970s,
where they investigated a rhythmic EEG activity of the frequency ranges 12–15 Hz, which
was later labeled as SMR (sensorimotor rhythm) [2,67]. The SMR can be also referred to as
µ rhythm [2,68].

The 1970s and 1980s brought growing interests on studies on Event-Related Potentials
(ERP) as a brain response to external and internal stimulation [2]. Already in 1988 a
paper titled: “Talking off the top of your head” written by L.A. Farwell and E. Donchin
on implementation of ERP and as the first ones they introduced a now-famous mode of
stimulus presentation, which enabled letter choice [2,69].

In 1991 Wolpaw and his colleagues showed that a cursor on a computer screen
can be controlled using brain waves, in particular with the above mentioned µ-rhythm



Brain Sci. 2021, 11, 43 8 of 41

(SMR) [2]. Also in the redbeginning of the 1990s the Pfurtscheller and his team applied the
ERD (Event-Related Desynchronization) and ERS (Event-Related Synchronization) as an
input signal for controlling a BCI [2,70].

2.2. Invasive Brain-Computer Interfaces

In 1998 Philip Kennedy implanted the first invasive BCI into human, in 2003 a first
BCI game called “BrainGate” was introduced John Donoghue and in 2004 Matt Nagle
(1980–2007) was the first patient with implanted invasive BCI system, who had 3rd category
quadriplegia with retained speaking ability. He became quadriplegic following a stabbing
in the spine, which unfortunately left him disabled [64,71,72].

In 2006 Leuthardt et al. proved ECoG to be an effective source for control signal in
BCI Systems, achieving accuracy between 73% and 100% [27]

As mentioned above—the SCP were applied for the early BCI systems. As it was
also possible to change the amplitude and polarity of these potentials voluntarily, it was
possible to apply them for clinical application and to allow LIS or ALS (Amyotrophic
Lateral Sclerosis) patients to communicate. It has been for the very first time published by
N. Birbaumer et al. in 1999 in Nature [73,74].

The 2000s brought a highly increased number of studies and papers about the BCI
systems [2]. It is also important to mention the two groundbreaking studies published
in 2012 Nature [35,36,75]. The both studies showed how the BCI systems enabled neural
arm control and arm movements restoration after paralysis [35]. The first one concerned
experiments carried out on monkeys [35,36]. In this study the authors implanted a 100-
electrode recording array (Blackrock Microsystems) in the M1 hand area and intramuscular
electrodes (during separate surgery) for hand and forearm muscles stimulations and
recording. The overall success rate for both animals using the neuroprosthesis was about
80% [36]. The second study was inspired by the first one, but involved two human subjects
(58 years old female and 66 years old male), who were tetraplegic and anarthric due
to the stroke. The neural signals were recorded with the use of 4 × 4 mm, 96-channel
microelectrode array implanted in the dominant M1 hand area. Both participants were able
to move robotic arm, so the applied BCI system restored partially their hand motor ability.
The female participant was able to drink on her own for the first time in 14 years [75].
During the new millennium new solutions, which much improved patients’ quality of life
have been developed, such as the system applied on Cathy Hutchinson, who was then 58
and unable to move for nearly 14 years. She was able to use a robotic arm for among the
others drinking. It significantly improved her quality of life [64,75,76].

Further investigations on tetraplegic patients with implanted invasive BCI system,
applied for robotic arm control, were presented in inter alia [11]. In this study two 96-
channel intracortical microelectrodes were implanted in the motor cortex area of a 52-year-
old female subject. The BCI training lasted 13 weeks with its main aim for controlling an
anthropomorphic prosthetic limb with seven degrees of freedom [11].

The first information transfer between two human brains without any kind of inter-
vention of motor or PNS (Peripheral Nervous System) was carried out in 2014 [10].

Another very advanced implementation of an invasive BCI system is the one applied
on Tim Hemmes, who was injured in a motorcycle accident. He had an implanted system,
which allowed him to recover the tactile sensation of his friend through the BCI system.
He was able to “feel” touching another person [21,64].

One of the most interesting studies is the one with a BCI implementation on a non-
spastic 24-year-old quadriplegic male. In this case a Utah microelectrode array (Blackrock
Microsystems) was implanted in his left primary motor cortex, which was identified
through functional magnetic resonance imaging (fMRI) performance while the participant
had to mirror videos of hand movements. The patient attended up to three sessions per
week for 15 months, where he was trained to use his motor cortical neuronal activity in
order to control a custom-built high-resolution neuromuscular electrical stimulator (NMES),
which delivered electrical stimulation to his paralysed right forearm muscles. It consisted
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of an 130-electrodes-array embedded in a custom-made flexible sleeve wrapped around his
arm. As a result of this research the participant partially gained wrist and hand function,
which gave him some independence in daily life activities. The applied NBS system is
invasive, but provides an advantage over existing functional electrical stimulation systems
using low-amplitude signals such as EEG or EMG [77].

In [64] a restoration of touch feeling using a BCI system was described, and the
hypothesis of the BCI system leveraging sensory incompleteness, enhancing touch events,
and simultaneous restoration both, the sense of touch and motor function in a person
with a spinal cord injury, was assessed in [78]. Participant of this study was chronically
paralyzed and had an intracortical recording array implanted in the primary motor cortex
M1. For the study purposes he used his own hand with electrodes wrapped around his
forearm (similar to those applied in [77]) [78].

In 2017 Ajiboye et al. [79] described a study with a 53-year-old male with a spinal
cord injury, who has implanted two intracortical 96-microelectrode arrays in the hand
area of motor cortex and later received a total of 36 implanted percutaneous electrodes in
his dominant right side to electrically stimulate his hand, elbow, and shoulder muscles.
The participant used a mobile arm support for support against gravity and motorised
humeral abduction and adduction. The patient achieved 80–100% success during single-
joint movements of the elbow, wrist, hand, and mobile arm support. For other joint
movements the participant achieved high success rates either, however, the targets were
acquired more slowly. The overall study showed promising results and confirmed the
effectiveness of the intracortical BCI systems in impaired people recovery [79,80].

In [81] a study with a 27-year-old male tetraplegic participant was presented. He
had implanted a 96-channel micro-electrode array in his left dominant hand and arm area.
The patient underwent 80 sessions, where he had to imagine a series of four distinct hand
movements, such as e.g., index extension, index flexion, wrist extension, wrist flexion.
The obtained results were very promising.

2.3. Non-Invasive BCI Systems

The BCI Systems can be divided into the two main categories: invasive and non-
invasive [3,82]. Most of the EEG-based BCI systems rely on the listed below
paradigms [15,64,70,83–88]:

1. ERD—associated with motor imagery (MI),
2. ERP—event-related potentials (P300 and other components),
3. SSVEP—steady-state visual evoked potentials,
4. ASSR—auditory steady-state response,
5. SCP—slow cortical potentials,
6. SMR—sensorimotor oscillations,
7. various hybrid systems (based on more than one input signal).

The most popular and effective are, based on thorough literature review, the ERP-
based BCI systems [86,89]. However, the SSVEP systems are considered to be high-speed
BCIs as they require less training and are easier to configure [84,85,90]. However, they need
gaze control and have been reported as tiring and uncomfortable for users [85]. The P300-
based BCIs are very popular as they are the oldest studied paradigms and need relatively
little training [84–86]. The ASSR-based BCI paradigm is a relatively new BCI, and can be
classified as a vision-free BCI model. In contrast to the high-speed, well known SSVEP
or the P300 paradigms the participants do not need to move their eyes to enforce desired
commands, which could be a good solution for totally paralyzed patients [84].

Based on the thorough background study it is possible to distinguish other than EEG-
based non-invasive Brain-Computer Interfaces. However, due to their complex technical
requirements, high cost, low portability, limited real-time connection, they are not suitable
for daily usage [18,84,91]:

• magnetoencephalography (MEG)—requires large, unhandy equipment;
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• functional Magnetic Resonance Imaging (fMRI)—large, expensive, unhandy device,
poor temporal resolution;

• near infrared spectroscopy (NIRS)—poor temporal resolution;
• positron emission tomography (PET)—large, expensive, unhandy equipment.

The non-invasive story of the BCIs started much later than the invasive one—in the
90s [92–94]. As the BCI definition, which was mentioned above, was at first introduced
by Jonathan Wolpaw [92], numerous scientific groups from all over the world became
interested in this scientific area such as inter alia scientists from Graz, who developed the
Graz-BCI systems [95].

The non-invasive, EEG-based BCI systems have various applications—from gaming
to rehabilitation via various external devices control such as inter alia wheelchair, robotic
arm or video display [96–103]. The main aim of development of non-invasive systems was
the need for finding an alternative way of control and communication for handicapped
users, as those fully impaired or paralysed are unable to use conventional assisting devices
due to the necessity of using some degree of muscle functions [3,99,101].

Rapid development of the digital signal processing technologies enables more efficient
analysis of the EEG signals, which led to the further development of the EEG-based
BCIs [94,99].

McFarland et al. in 1997 ([99]) proposed a 64-EEG-channel system, with real-time
spatial filtering and spectral analyses performance. The user was able to control a video
display using his “thoughts” only. The data was processed on-line, but stored for further
off-line analysis, which allowed the whole processing evaluation. Only one year later,
in 1998—Miner et al. ([100] presented a similar study, where four adults, including one
suffering ALS learned to use µ- and β-rhythm-based BCI in order to move cursor on a
video screen. Their efficiency was between 93% and 99%. Further investigations, such as
those from Pfurtscheller et al. ([104] proved that it was possible to use the EEG data for the
cursor control purposes.

At the beginning the EEG-based BCIs applied the CSP-based algorithms, which were
at first introduced by the Graz BCI group. They operated on a 27-channel EEG [105].

Desire for further BCI development for patients with severe motor disabilities has
brought the BCI2000 project by the scientists from the Wadsworth Center, which unlike
other BCI systems, is not designed for one purpose only, but is rather a type of a general-
purpose system. The BCI2000 allows to combine various brain signals, various signal
processing methods and operating protocols. It is a free of charge, well documented project,
recommended for among the others educational purposes [101,105,106]. Their BCIs work
based on the SMRs or P300s [105,106].

The groundbreaking milestone in the development of the BCI systems are, as it was
already mentioned above, the researchers from Graz. In 2003 they proposed a cue-based
system, which applied imagery motor action and translated it into control command
enabling to control a virtual keyboard or a hand orthosis [107].

Based on the experience with the off-line results del Millan et al. suggested in
2002 ([108]) to use local neural classifier, which was based on quadratic discriminant
analysis. After few days of training only, the study participants were able to reach correct
command recognition of 75% [105,108]. This system was later applied for the purpose of a
motorized wheelchair and a virtual keyboard control [102,105].

A huge impact on the development of this scientific area had also scientists from
Berlin, who developed a project called Berlin-BCI (BBCI). Their solution was efficient,
however required a very long (over 20 min) calibration. Their BCI was based on the SMR
and required little or no training, which makes it more flexible [105].

The main aim for the development of the BCI system was the need for communication
enabling for handicapped people, however, some interesting projects, where the systems
were destined for pure entertainment only, have also to be mentioned, such as the one
presented in [98], where the EEG signals were used for playing pinball.
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One of the interesting projects is the one developed by del Millan et al. in 2008, where
the participants were able to control a wheelchair. The authors proposed asynchronous
EEG-based BCI, which allowed operating of a wheelchair for a longer time, mostly due to
shared control system between the BCI and the simulated intelligent wheelchair [97].

Another SMR-based BCI was the one presented in [109], where 28 participants (14
control group patients and 14 suffering from Spinal Muscular Atrophy type II (SMA II) or
Duchenne Muscular Dystrophy (DMD)) underwent BCI training in environment, targeting
home area and had to control some domestic appliances such as neon lights and bulbs, TV
and stereo sets, motorized bed, acoustic alarm, front door opener, telephone and wireless
cameras (to monitor the different rooms of the house ambient).

One of the most important and the first BCI application enabling communication are
spellers, which are meant for subjects unable to speak. Spellers can be P300-, SSVEP- or
motor imagery-based (event-related (de)synchronization (ERD/ERS)) [96,110–113]. De-
spite being very basic, they are able to provide some kind of independence for patients,
who are unable to communicate in any way, such those with the ALS or locked-in pa-
tients [96,112,114–116]. This is because most of the BCI paradigms rely on Event-Related
Potentials (ERPs), such as among the others P300 and SSVEP [114,115,117,118].

The P300 paradigm is one of the most reliable techniques for BCI systems. They are
also useful for more complex BCI applications [119]. The P300 can apply either standard
(passive) or “oddball” paradigms (uncommon, unconventional stimulus) [120,121]. The use
of P300 BCI requires very little user-training, which makes it easy to apply [18,112,116].

The P300 BCI appear in the following forms/implementations [112,116]:

• Classic P300 BCIs;
• P300 BCIs using tactile stimulation through small discs (tactors) places over specific

areas;
• Hybrid P300-BCIs—combining various types of BCI systems;

One of the most popular P300 applications are the P300 spellers, which were first
introduced in 1988 by Farwell and Donchin [69,116]. It is based on rare stimuli, which
occur as a positive deflection 300 ms after it [116,117]. P300-based spellers require patient
to choose appropriate character from a 6 × 6 or 5 × 5 matrix [112,114,116] or to control a
wheelchair [117]. Another interesting P300 application is mouse emulation device (MED)
for users with cervical spinal cord injury (SCI) with the accuracy of 82% and response
time below 149 s. The study participants showed interest in using such BCI application
on a regular basis [122]. The P300-BCI can also be applied in smart home applications,
such as the one presented in [123]. Besides practical implementations of the P300-based
Brain-Computer Interfaces, it is also important to mention systems designed typically for
entertainment purposes—VR (virtual reality) gaming [124].

In [119] it has been shown that visual stimuli provide stronger P300 responses, which
may enhance the difference between target and non-target responses, which may positively
affect the accuracy and reliability of the P300-BCIs.

The current P300-based BCIs rely not only on P300 paradigms but also on other visual
ERPs such as the N100, N200 or N400 components [115,119].

The SSVEP-based (steady state visual evoked potentials) Brain-Computer Interfaces
are one of the most widely developed systems, mostly due to their non-invasiveness, high
signal-to-noise-ratio and high-speed performance [118,125]. The SSVEP-BCIs also require
little or not training, what makes it a great candidate for real-life applications [113,118].
The steady state visual evoked potentials (SSVEPs) are elicited by the same, repeated visual
stimulus applied [18].

One of the interesting SSVEP-BCI applications are spellers, such as Shuffle Speller
typing interface presented in [126], which could be also applied by ALS patients. In another
study (see: [127] the authors adopted a QWERT style keyboard with flickering LEDs for the
SSVEP-BCI. The data for the SSVEP-BCIs is usually measured from the occipital regions,
however, interesting system using an in-ear electrode was presented in [125]. Such systems
can also be used to control neuropstheses with the flickering lights mounted on it as
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presented in [128,129] (two-axes electrical hand proshesis control with the accuracy of
44–88%), or to control robotic arms or assistive robots [130].

The BCI systems enable also to control various external devices such as inter alia
quad-copter. The solution presented in [131] applies inexpensive off-the-shelf Emotiv
EPOC device for the purpose of real-time brain’s activity recording. Besides, the EEG
signals, facial expression are also used in order to control the device.

Cho et al. presented in 2018 ([132]) an EEG-BCI system, which relied on decoding of
five different real (ME—motor execution) and imagery (MI—motor imagery) hand move-
ments. The experiment involved using common spatial patterns (CSP) and regularized
linear discriminant analysis (RLDA). The data was analysed offline and the obtained results
were as follows—56.83% for the ME, and 51.01% for the MI.

Despite the fact that the BCI systems are still not being widely used in everyday life,
they provide a lot of important medical information for diagnostics purposes [18].

As it was presented above—the most popular Brain-Computer Interfaces are best on
either EEG or intracortical recordings. This is mostly due to their portability and relatively
low cost for implementation. Due to the lack of necessity of surgical intervention—the
vast majority of the BCI systems are based on non-invasive scalp recorded signals such as
the EEG [3,133,134]. Thus, it is important to mention also other measurement techniques
such as among the others near-infrared spectroscopy or functional magnetic resonance
imaging (fMRI), which are not very popular, but have their implementation in various
applications—such as inter alia rehabilitation, and despite their higher cost are still being
further investigated [82,83,134–137].

The fMRI-based BCI systems are one of the most important complements technology
to the “family” of the non-invasive BCIs. Their main disadvantage is lack of portability,
cost and challenging data analysis. Implementation of the fMRI is also uncomfortable for
the patients, mostly due to the noise it generates [88,135]. However, it is the only method,
which provides high spatial resolution data of the whole brain activity, where the EEG
signals provide rather low spatial resolution [135,136,138].

The fMRI measures the blood oxygen level-dependent signals (BOLD) [136]. The fMRI
technology is very advanced and allows volitional control of brain’s anatomically specific
regions and it also can show some neurological disorders in these areas, such as inter
alia [82]:

• chronic pain,
• motor diseases,
• psychopathy,
• social phobia,
• depression.

It is possible to classify the fMRI-based BCI systems into the four below listed cate-
gories [135]:

1. performance of higher-order cognitive tasks such as e.g., mental calculation,
2. language-related tasks conversion such as e.g., mental speech and/or mental singing,
3. performance of imagery tasks such as e.g., motor, visual, auditory, tactile, and emotion

imagery,
4. performance of selective attention tasks such as e.g., visual, auditory, and tactile

attention.

The fMRI-BCIs can be applied for the modifications in neurologically affected regions
and treated in appropriate way, as unlike the EEG-BCIs—the fMRI-BCIs enable brain’s
activity in very specific parts of its cortical and sub-cortical regions. The fMRI system is a
typical closed-loop system [82].

As it was mentioned above, one of the main disadvantages of the fMRI-based BCI
are its high cost, lack of portability and complexity of development and usage. Hopefully,
with the rapid technological development such systems may become more popular in the
near future [82,88,139–141].
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Despite some disadvantages of the fMRI-based BCIs, they can be a good solution for
patients with little or none functional recovery of upper limb motor function. It has also
strong therapeutic potential for stroke rehabilitation, combined with more portable near
infrared spectroscopy (fNIRS) [137,140,142]. Both BOLD and EEG data seem to be highly
correlated, which is a good combination for hybrid EEG-fMRI-BCI systems [136].

Another interesting brain’s activity measurement method is functional near-infrared
spectroscopy (fNIRS), which is a low-cost, non-invasive and portable technique [91,142–144].
Despite its lower spatial resolution to the one obtained from the fMRI and the lower tem-
poral resolution to the one obtained from the EEG, it can be a good alternative to those
two. It is because of its features such as among the others—low price and high portability
and the fact that it can be used in nearly natural environments [143]. The fNIRS allows
measurement of the oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) concentration
changes by picking two distinct near-infrared (NIR) wavelengths (600–1000 nm). It also
offers subsecond temporal resolution and spatial resolution in 1 cm2. Its disadvantage is
the response time for the commands execution compared to the EEG [91].

A good alternative in order to overcome the above mentioned issues are hybrid BCI
systems combining various brain imaging methods, such as EEG-fNIRS BCIs [91,145,146]
or EEG-fMRI [136,147].

An overview of the most typical BCI sensors ordered by their invasiveness was
illustrated with the Figure 5 and Table 2 [148,149].

Figure 5. BCI-sensors types [148,149].
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Table 2. Summary of the most popular sensors applied in BCIs [148].

Sensor Type Spatial Resolution Temporal Resolution Portability

micro-electrode YES 0.05–0.50 mm 3 ms moderate

ECoG YES 1.0 mm 5 ms good

intravascular electrode YES 2.4 mm 5 ms good

EEG NO 2.4 mm 50 ms good

fMRI NO >1 mm 1 s poor

fNIRS NO 1 cm 1 s good

MEG NO >1 mm 1–5 ms poor

PET NO 3–51 mm 50–100 s poor

2.4. BCI Systems—Recording Devices—Brief Review

Due to the inter alia high costs—commercial, non-invasive BCIs will remain limited to
the public [96]. There is still drive in medicine or neurosciences towards smaller, portable,
cost-effective and efficient devices [10].

The Brain-Computer Interface devices are becoming cheaper and more inconspicuous.
The right choice of appropriate device is remarkably important for further research pur-
poses. In 2018 Yu and Qi (see: [25]) conducted a consumer survey for choosing the best
wearable non-invasive EEG-based BCI and the three top features for choosing appropriate
headset were the following criteria:

1. safety—84.26%,
2. effect accuracy 59.34%,
3. wearing comfort 58.3%.

The most frequently applied headset are delivered by the following
companies [25,150–157]:

• Emotiv Inc. (San Francisco, CA, USA),
• Ant Neuro (Hengelo, Netherlands),
• Cognionics (San Diego, CA, USA),
• Neurosky Inc. (San Jose, CA, USA),
• OpenBCI (Brooklyn, NY, USA),
• interaXon (Toronto, Canada),
• g.tec (Schiedlberg, Austria),
• CREmedical (Kingston, RI, USA).

In Figure 6 the most popular off-the-shelf EEG headsets are illustrated. Their features
list is outlined in Table 3 [156,158]. This is because one of the latest challenges in BCI
development are both, software and hardware improvements in order to make them as
user friendly as possible [159].

The Emotiv Inc. was founded in 2011 by tech entrepreneurs Tan Le and Dr. Geoff
Mackellar, but they started their research already in 2003. The company is located in San
Francisco—USA, with some branches located in Sydney (Australia), Hanoi (Vietnam),
and Ho Chi Minh (Vietnam). Their products are intended to be used for research applica-
tions and personal use only. Emotiv is a well recognized pioneer and market leader in this
field [25,150,151].

Applications for the Emotiv technology and interface span an amazing variety of
potential industries and applications—from gaming to interactive television, everyday
computer interactions, hands-free control system, smart adaptive environments, art, ac-
cessibility design, market research, psychology, learning, medicine, robotics, automotive,
transport safety, defense, and security [25,150,151,163].
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Table 3. Some of the most popular inexpensive, off-the-shelf BCI systems—summary table [154,156–
158,160–162].

Manufacturer Wearable Sensors Type Channels Amount Sampling Rate Data Transfer

Neurosky YES Dry 1 500 Hz Bluetooth

Emotiv YES Wet/Dry 5–32 500 Hz Bluetooth

OpenBCI YES Wet/Dry 8–21 250–500 Hz Bluetooth

ANT Neuro YES Dry 32–256 <16 kHz Wi-Fi

g.tec YES Wet/Dry 8–256 500 Hz Cable/Wi-Fi

Cognionics YES Dry 8–128 >2 kHz Bluetooth

CREmedical YES Wet 20 500 Hz Cable

interaXon YES Wet 4–7 250 Hz Bluetooth

Cognionics YES Wet 8–128 <2 kHz Bluetooth

Figure 6. The most popular inexpensive, customer-grade EEG headsets from the Table 3 (based
on [156,158]).

The Emotiv company released few devices [150,151,156,161,163]:

• Emotiv EPOC (2009) and Emotiv EPOC+ NeuroHeadset (2013)—14-channels device,
with 2 referential sensors, wireless Bluetooth connection, battery, and a USB port;

• Emotiv Insight (2015)—a simpler 5-channel wireless EEG device, designed for every-
day use with advanced electronics and full optimization, designed for everyday use
by individuals;

• Emotiv EPOC Flex (2019)—equipped with 32 measuring sensors available in two
options: gel- and saline-sensors. It has wireless technology, is elastic, and adjusts to
the head shape;

• Emotiv EPOC X (2020)—14-channel wireless headset.
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Their prices range from 299 USD to 1699 USD [161,163,164]. The Emotiv EPOC
headset is very easy to use and does not require any particular scalp preparation [3,164]. Its
disadvantage (for all versions) is that it does not provide much open source and has some
applicability limitations, as it is very difficult to implement on it the SSEVP-BCI (Steady
State Visual Evoked Potential) [164].

A very interesting study was the one where the Emotiv EPOC was compared with
the clinically-approved device—g.tec. Comparison between the two devices proved the
recorded data to be similar, although the g.tec provided stronger and cleaner
signal [163,164].

Neurosky Inc. was founded in 2004, in Silicon Valley, California but they began to work
on their technology development already in 1999. They deliver non-invasive, inexpensive
EEG-based Brain-Computer Interfaces, where they also use EMG signals [25,150].

The Neurosky Inc. launched a couple of products, such as [25,150,156]:

• MindSet (2009),
• MindWave (2011),
• MindWave Mobile (2012),
• MindWave Mobile 2 (2018).

The biggest advantage of their products is a low, competitive price (starting from 99
USD) and ease of use. The Neurosky devices are also appropriate for mental monitoring of
biometric data such as attention/meditation during sports or visual tasks [150,165].

In 2010—Crowley et al. carried out some psychological tests in order to induce stress
and correlated the results with measured attention and meditation signals. The applied
headset was Neurosky Mindset. The assessment was performed with the use of Stroop
and Towers of Hanoi tests [25,150,152,160,166].

• electroencephalography (EEG),
• electromyography (EMG),
• electrocardiography (ECG).

Manufacturers have also released an open-source application for use with the de-
vice, which allows users to freely work with it [160]. The OpenBCI delivers 4 types of
kits [150,160]:

1. 21-channel EEG Electrode Cap Kit (2019) with Ag/AgCl coated electrodes;
2. 16-channel All-in-One Biosensing R&D Bundle (2014) with different approaches EEG

data acquisition:

• dry electrodes—EEG Headset,
• wet electrodes—gold cup electrodes;

3. 8-channel OpenBCI EEG Headband Kit (2018) with dry electrodes.
4. OpenBCI Galea (announced in Novemebr 2020)—combines mixed reality (XR) head-

sets with state-of-the-art biosensing and BCIs with several types of sensors:

• electroencephalography (EEG),
• electrooculography (EOG),
• electromyography (EMG),
• electrodermal activity (EDA),
• photoplethysmography (PPG).

The prices vary from 199 USD to 2500 USD [25].
One of the interesting projects, where OpenBCI was applied was related with affective

video selection and users’ emotions recognition. This was introduced by Lakhan et al. in
2019 in: [167].

Similar study was presented in [163]—the OpenBCI headset was compared with a
clinically approved g.tec device g.USB. The medical grade equipment slightly outperformed
the consumer grade one and the OpenBCI gave very close EEG readings to those obtained
with the g.tec device [168]. The correlation between both temporal and spectral features
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showed that the signals acquired by both amplifiers were almost identical—very close.
The obtained Pearson R score was greater than 0.99 [169].

InteraXon was founded in 2007 by Ariel Garten, Trevor Coleman, Chris Aimone,
and Steve Mann [162]. The company is based in Toronto, Ontario, Canada. The aim of their
product is to help patients reach a deep relaxation state. Their headsets are also widely used
for various purposes such as health-related or scientific and medical research [25,162]. Their
product’s price is about 250 USD [162]. They offered the following models [25,150,162]:

• Muse (2014)—a 7-sensors device designed with dry sensors, which do not require any
liquid;

• Muse 2 (2018)—device with 4 EEG electrodes, heart sensors (PPG + Pulse Oximetry),
accelerometer, and gyroscope.

Another BCI manufacturer is g.tec medical engineering created by Christoph Guger
and Günter Edlinger in 1999 in Austria. The company develops and produces high-
performance Brain-Computer Interface Systems and neurotechnologies for non-invasive
and invasive recordings. The equipment provided by them is clinically approved and en-
ables to register high quality data. Their current offer include the following
products [155,164]:

• g.NAUTILUS PRO—available with prefixed 8/16/32 dry or wet EEG electrodes with
3-axis accelerometer.

• g.NAUTILUS RESEARCH—a hybrid (dry and wet EEG electrode) version and a gel
EEG electrode version with 8/16/32/64 EEG channels. This device is non-certified
(for potential clinical applications), which results in a lower price of this device for
only neuroscience research.

• g.NAUTILUS fNIRS—it enables simultaneous recordings of both EEG and fNIRS
(functional near-infrared spectroscopy) signals. It provides the top-quality EEG record-
ings from 64/32/16/8 g.SCARABEO EEG channels and 8 fNIRS channels within a
few minutes.

• g.NAUTILUS MULTI PURPOSE—multiple EEG and biosignal amplifier, which can
connect to other body sensors such as ECG/EOG/EMG electrodes to measure GSR,
respiration, and many other biosignals.

One of the most popular clinically-approved, professional EEG systems from g.tec
is g.USBAMP from the g.tec company. It is rather a pricey device (ca. 25 USD), which
provides excellent data quality [155,164].

An alternative to traditional (dry and wet) EEG electrodes is a Tripolar EEG (tEEG),
which is a new platform of the EEG device using innovative ultra-sensitive electrodes—the
Tripolar Concentric Ring Electrodes (TCREs) in order to detect brain signals from the
surface of the scalp [153,154,170].

The tEEG device was founded in 2017 by CREmedical corporation. Unlike conven-
tional EEG, the tEEG can increase the resolution and the quality of the recorded brain
signals, which is carried out while using their new electrodes (TCRE), which enables to
perform artifacts suppression in real time [153,171,172]. Therefore, it can increase signal-to-
noise ratio up to 375%, spatial selectivity up to 257%, and reduce overlap information with
8.3% [153,170,172].

Above—mostly inexpensive, off-the-shelf BCI systems were presented, which are
popular mostly due to their price and availability, it is however, important to mention those
applying clinical-grade equipment, mostly due to the high quality-signals they provide [3].
Based on authors’ professional experience and thorough literature studies, most of the
clinical-quality EEG data for the BCI applications are gathered using the following clinical-
grade amplifiers [18,107,155,173–180]:

• g.tec amplifiers;
• Porti7 (TMSI);
• Nuamp amplifier;
• BrainAmp128DC;
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• BioNomadix amplifier (Biopac);

Clinical-level (medical devices) EEG equipment is also popular in numerous BCI-
related applications. There is a wide range of cases where the g.tec ([155]) amplifiers are
used, e.g., BCI systems dedicated for controlling a neuroprosthesis [173]. Another popular
clinical-level device is Porti7 from the TMSI company, which was applied for a SSVEP-BCI
system, where the authors tried to find the most appropriate SSVEP frequencies [174]. Sim-
ilar study also with the use of Porti7 was presented in [176], where the authors tried to find
the most appropriate frequency range of the SSVEPs and based on these EPs speller. An-
other study involving Porti7 device regarded comparison of various wet-electrodes (water-
vs. gel-based) in SSVEP-based BCIs [175]. The neuroscan device—Nuamp was applied
for a BCI-based post-stroke patients’ rehabilitation [177]. BrainAmp128DC was used in
studies [178,180] for the data gathering for EEG-based robotic arm control. In [179] the au-
thors compared inexpensive Neurosky’s Mindwave device with the Biopac’s BioNomadix
amplifier, the obtained results proved similar quality of the recorded data (correlation
factor between the power spectra of the both devices was greater than 0.7).

It is very hard to describe all medical devices, mostly due to the fact that in many
cases they are very expensive and such a high quality specification may not be necessary
for simple signal detection required for P300- and SSVEP-based BCIs. Numerous studies
regarding data quality comparison between the inexpensive and professional equipment
have been carried out and proved that those cost-efficient headset are able to provide
signals of similar to clinical quality. In [163,168] the OpenBCI (inexpensive) was compared
with a g.tec amplifier, and the study proved that the cos-efficient OpenBCI can record data
of close to the professional quality. The obtained signals were identical and the Pearson R
score was greater than 0.99. Similar comparison, but with different devices was presented
in [179], where the Mindwave was compared with the BioNomadics. The power spectra
of the obtained EEG signals were very similar. Such tests prove that rapid development
of inexpensive-EEG-headset manufacturing results with high-quality, but cost-efficient
devices.

3. The Newest Trends and Further Development Paths in BCIs

In the late 50s Bancaus and Talarach introduced sEEG (stereoencephalography) elec-
trodes, which are invasive, deeply implanted EEG electrodes [181]. They were mostly
applied for the purpose of epileptic zones detection [181–185]. They can be a great al-
ternative to the popular ECoG-based systems, however, in some cases the both types of
the measurement electrodes are combined [182]. The ECoG provides higher density data
coverage, while the sEEG provides sparser coverage spanning more, bilateral brain regions
including its deeper structures [182,186]. It is believed that the sEEG, despite not being
the newest measurement technology, holds great potential for the BCI applications as it
offers the measurement of brain structures, which cannot be reached with the ECoG, also,
the sEEG enables to decode the memory-related processes and limbic activity, which can
also be used in order to either supplement or further enhance decoding of other cognitive
processes. The sEEG can be a future of invasive-BCIs [182,187].

One of the newest trends in the SSVEP-BCIS is application of combined spatial filtering
algorithms. In [188] a framework consisting of these four elements: data, temporal filter,
orthogonal projection and new spatial filter. The authors solution enables to study, explore,
compare and improve spatial filtering algorithms in order to develop high performance
SSVEP-based BCI systems.

The most efficient BCIs are claimed to be P300- and SSVEP-based. Unfortunatelly
there is still no perfect, ideal Brain-Computer Interfsce, therefore, in order to overcome
the limitations of many modern BCIs—the hybrid BCIs can be applied. The hybrid BCIs
are systems, where traditional BCI is combined with another interface in order to have the
system more versatile, usually it means combination of brain signals with other physio-
logical data. One of the most promising solutions is a Hybrid BCI using Visual Evoked
Potential (VEP)—called V-BCI. Some intiial studies showed that in the future the use of
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hybrid V-BCI in direct control mode in entertainment and quality of life applications will
be highly demanded in particular for patients with neurological disorders [103].

The future directions of the BCI-related studies are strongly connected with the avail-
ability of the cost-efficient EEG headsets. The current tendency of sensor development
focuses on signal quality improvement (by using more and more sophisticated signal
processing methods) and also improvement of the comfort while using the system (ma-
terial for sensors’ construction and design of various types of dry electrodes). The future
directions also involve combination of the non-invasive BCIs with Augmented Reality
(AR) systems, which are also becoming more and more available and cost-efficient [158].
The BCI technology itself is not the newest, however, its improvement and development is
rapid [189].

Current and probably future trends in development of the BCI systems are strongly
related with the development of intelligent algorithms for the analysis of biomedical data
(in particular brain signals). There is also a need to improve the performance of the already
used methods by calibration time reduction and classification accuracy improvement.
The scientists are also trying to design and develop systems with reduced number of
channels [159].

Another emerging trend in the development of the BCI systems are the passive BCIs.
The traditional BCI systems are active or reactive, which means that the user has to be
engaged in particular mental task, while the passive BCIs work more autonomously [190].
Based on this it is possible to divide the BCI systems into the following categories [189,191]:

1. Active BCIs—are controlled by the user through a specific mental task performance:

• motor imagery—the user has to imagine movement of a limb, which can be later
translated into appropriate command;

• blinking—eye blinking registered in the EEG can be used as a control command.

2. Reactive BCIs—the user produces brain signals as a response to external stimulations
such as visual or audio stimuli:

• Event-Related Potential—natural brain’s response to a specified event or a stim-
ulation;

• Visual Evoked Potential—a form of ERP, which depends on visual stimuli.

3. Passive BCIs—a system, which focuses on the cognitive feedback of the users’ brains’
activity. The system works partially autonomous:

• emotions—emotion recognition, recognized by the BCI system;
• mental state—the BCI system is able to recognize and analyse the user’s mental

state and provide him/her with appropriate feedback.

Table 4 presents brief summary of the most current trends, based on subjective au-
thors’ choice [18,82,83,130,134–137,140,142,150,192–225]. It is impossible to list all trends,
improvements or developments in this study area, as there are too many.

Table 4. The summary of the most popular BCI applications.

Application Description Source Data Analysis Method

spelling applica-
tions

One of the most basic applications of BCIs for
people with disabilities used for communication
purposes, where users using their brain activity
choose appropriate letter [192–195].

EEG, EOG P300 evoked potentials

neurogaming and
VR/AR

Controlling video games, virtual and/or aug-
mented reality applications using BCIs. It is
one of the most popular current trends in the
field [196–200].

EEG, EOG, EMG,
heart-rate, motion
control, facial ex-
pression

mVEPs, AI, DNN

neuromarketing Neuromarketing methods, including EEG anal-
ysis, provide a better understanding of brain
mechanisms and consumer behavior to improve
marketing strategies [201–205].

EEG, EOG, facial
expression, heart-
rate

AI, DNN, various
pattern recognition-
methods
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Table 4. Cont.

Application Description Source Data Analysis Method

smart wheelchairs One of the most needed BCI applications is the abil-
ity to control a wheelchair. Such devices are des-
tined for people with cognitive/motor/sensory im-
pairments [206–211].

EEG, EOG, heart-
rate, facial expres-
sions

DL, P300, SSVEP, EMD

emotional condition Recognition of human emotions and/or mental states
using biomedical data analysis—part of passive BCIs.
Most of them are based on facial expression recogni-
tion and analysis of speech signals. It is one of the
future development paths of BCIs [150,212–216].

EEG, heart-rate,
EOG, EMG, facial
expression, speech

DWT, AI, DNN, various
pattern recognition meth-
ods (e.g., KNN, LDA),
SSVEPs, Fuzzy Systems

robotics Improvement of multidimensional control systems
with the use of BCIs [130,217–219].

EEG, EMG, EOG AI, DNN, CNN

’smart’ appliances Controlling of various domestic appliances using BCIs,
such as among the others window shutters, lighting,
ambiance music, TV set screens, etc. or for connecting
reality with AR solution [200,220–224].

EEG, EOG, heart-
rate, speech

SSVEPs, P300, Fuzzy Sys-
tems, AI

rehabilitation Good solution for patients with little or none func-
tional recovery of upper limb motor function. It has
strong therapeutic potential for inter alia stroke pa-
tients [18,82,83,134–137,140,142,225].

EEG, EOG, ECoG,
fMRI, fNIRS, speech

SSVEPs, P300, EP, Fuzzy
Systems, AI

4. Advanced Signal Processing Methods for BCI Systems

The biological signals appear to be of random (stochastic) nature, so it is impossible to
predict their value at any instant in time and therefore only some statistical measures can
be used in order to determine some of their features. The stochastic signals can be divided
into two groups [226,227]:

1. stationary:

• ergodic,
• non-ergodic.

2. non-stationary.

The brain signals used in the BCI system have typical biomedical data features, which
allows to classify them as either, continuous or discrete [3,226,228]. In order to process
these signals and classify them in the appropriate way it is important to conceptualise them
and have awareness of what kind of data they actually are. In Figure 7 a very basic and
simplified scheme of signals’ classification is shown [3,226].

Figure 7. Basic scheme for classification of signals [226].



Brain Sci. 2021, 11, 43 21 of 41

The brain signals in their nature have spatio-temporal information. The BCIs are
applied to process this information along with a specific task, which can be used e.g., for
detection purposes. In fact, the performance of the BCI systems strongly depends on the
quality of provided information (in this case—brain activity related signal) [146,229].

The electroencephalography (EEG) using classic disc electrodes can be qualified as
a non-invasive technique used to record brain activities from the scalp and to discern
temporal information but it leaves out spatial information [152]. Therefore a range of newer
methods has been proposed in order to improve the overall quality of the brain signals,
including e.g., those increasing signal-to-noise ratio (SNR) methods [3,13,153,154,230–236]:

1. conventional and high density EEG with different montages:

• bipolar,
• Laplacian,
• common average references.

2. some methods of linear spatial filtering such as inter alia:

• Principle Component Analysis (PCA),
• Independent Component Analysis (ICA).

3. different hardware electrodes such as inter alia:

• a bipolar electrode with five points finite difference method (FPM),
• quasi-bipolar concentric electrode,
• tri-polar concentric electrode.

The choice of appropriate electrodes types for the purpose of EEG data recording is of
utmost importance, in particular when it comes to potential BCI implementation [152]. It is
possible to distinguish two main categories of EEG electrodes [41,152,237,238]:

1. wet electrodes:

• silver-chloride electrodes (Ag/AgCl):

– low cost,
– popular and widely used by current market products,
– they have low contact impedance,
– they require removing outer skin layer of the scalp and using conductor

gels or pastes,
– they require longer preparation time,
– they may be uncomfortable for potential patients,

2. dry electrodes:

• they do not require any type of skin preparation,
• they do not need using any types of conductive gel or paste,
• they may provide worse signal quality to the wet electrodes.

Biomedical data (in particular brain signals—EEG) are very challenging from the
analytical viewpoint, mostly due to their non-stationary character and their low amplitude
and low frequency range. Furthermore, these signals are often noisy and contaminated with
various artifacts, which negatively affects their potential processing usability [3,13,230].
The EEG artifacts can be divided into the two following categories [3,13,152,239]:

• external:

– Apparatus: broken electrode wire, bad contact of the electrode with the surface
of the scalp, detachment of the electrode, etc.

– power artifact: 50 Hz (Europe) or 60 Hz (US).

• internal—physiological artifacts generated by the body of the examined person:

– EOG artifacts—caused by the eye movements;
– cardiac artifacts—related to the ECG;
– muscle artifacts—related to the EMG;
– movement artifacts—caused by the subject’s body movements;
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– artifacts related to the sweat gland activity;
– respiratory artifacts.

Also, the overall quality of data is affected by the non-invasive way of their recording,
as the signals have to “go” through multiple layers (see: Figure 8) [4].

Figure 8. Layers the EEG signals have to go through [4].

The last few years have brought quite a significant development of advanced digital
signal processing methods and also rapid development in the measuring devices com-
parment [12]. Analysis of biomedical data usually requires some kind of pre-processing,
especially in order to obtain desired patterns. This is because these signals are of a very
complex nature, they are non-stationary and can be contaminated with various distur-
bances. Unfortunately, despite numerous attempts, an ideal and versatile method for them
is still non-existent [2,58,226].

A typical bio-signal can be expressed by the below simple Equation (1) [226,240–242]:

x(t) = s(t) + n(t), (1)

where:
x(t)—is the measured biosignal,
s(t)—the actual deterministic signal,
n(t)—the additive noise.

The main aim for the application for most of the signal processing methods is the
removal of the noise (n(t)) from the analysed data [240,241]. Based on the thorough
literature review and on the authors’ professional experience—the most popular methods
applied for analysis of biomedical signals include the following [12,40,52,58,228,243,244]:

1. advanced/sophisticated signal processing methods:

• discrete and continuous Fourier Transforms,
• Wavelet Transforms (WT),
• Time-Frequency Analysis (TFA),
• Blind Source Separation (BSS) methods:
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– Principal Component Analysis (PCA),
– Independent Component Analysis (ICA),
– Empirical Mode Decomposition (EMD).

• Fuzzy Logic.
• Artificial Neural Networks:

– Convolutional Neural Networks;
– Deep Learning Networks.

2. basic/simple simple digital and adaptive filtering methods;
3. various modifications and combinations—the so-called “hybrid methods”.

Signal processing of brain signals requires implementation of various modern and
advanced signal processing methods as they consist of the two components—signal and
noise, where the signal is usually in the form of a waveform and the noise is the remaining
part, which has to be eliminated in order to make the analysed data more legible [242].

The amount of noise in the signal is expressed by the signal-to-noise ratio (SNR),
which is basically the ratio of the signal to noise, expressed in the dB units in accordance
with the (2) [3,242,245]:

SNR = 20log(
Signal
Noise

)[dB]. (2)

The higher the SNR the better is the signal quality [242,245,246].
The most popular signal processing methods applied for the purpose of analysis of

biomedical data are various Transforms, such as [3,26,40,53,58,227,240,246–257]:

• Fourier Transform (FT);
• Discrete Fourier Transform (DFT)—enables decomposition of discrete time signals

into sinusoidal components, were their frequencies are multiples of a fundamental
frequency;

• Fast Fourier Transform (FFT)—frequently applied in analysis of any deterministic
bio-signal’s spectral content, which is also a faster version of the Fourier (FT) and the
Discrete Fourier (DFT) Transform. It is not designed for short-duration signals;

• Short-Time Fourier Transform (STFT)—involves multiplication of the analysed signal
by a short-duration time window, which is slid along the time axis of the signal in
order to cover the whole duration of it and to obtain estimate of the signal’s spectral
content. Within the short-duration window the signal is assumed to be stationary.
The STFT can be also considered as a kind of method for signal filtering using a
band-pass filter centered around a given frequency f , where the impulse response is
the FT of the short-duration window modulated to that frequency. It is also known as
Gabor Transform;

• Discrete Hartley Transform (DHT)—very popular in various BCI applications. It is
similar to the DFT;

• Fast Hartley transform (FHT)—faster DHT, twice as fast as the FFT;
• the Discrete Cosine Transform;
• the Discrete Hilbert Transform;
• the Discrete Fractional Hilbert Transform;
• the Discrete-Time Wavelet Transform;
• the Discrete Walsh Transform;
• the Discrete Hadamard Transform;
• Wavelet Transforms (WT)—popular in processing of biomedical images and biomed-

ical signals. Used for conversion of the complex signals from the time- into the
frequency-domain. Is computationally heavy, which makes them unsuitable for im-
plementation on embedded platforms. Contrary to the STFT the WT provides a more
flexible way of signal’s time-frequency representation by allowing the use of variable
sized windows. There are numerous types of Wavelet Transforms such as inter alia:

– Continuous Wavelet Transform (CWT),
– Discrete Wavelet Transform (DWT);
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– Tunable-Q Wavelet Transform.

The main aim of Fourier Transforms application is to transform the signals from the
time-domain to the frequency-domain [3,248,258].

The main difference between the above mentioned Fourier Transforms and the Wavelet
Transform is that the FT use windows of constant width and the WT use frequency-
dependant windows [240]. The Wavelet Transforms enable arbitrarily good time resolution
for the high-frequency components and arbitrarily good frequency resolution for the low-
frequency components [240,243,255]. The Wavelet Transforms are particularly effective for
non-stationary signals processing [26].

The analysis of biomedical data requires implementation of sophisticated signal process-
ing methods such as wavelets, and in particular [3,26,40,58,212,240,243,255,259–261]:

• Morlet Wavelet—works well with signals with short duration of the high-frequency
components and long duration of the low-frequency components, such as the EEG
signal;

• Daubechies Wavelet function—were investigated for the analysis of epileptic EEG
recordings;

• Harmonic Wavelet function—enables to achieve exact band separation in the fre-
quency domain.

Wavelets can be defined as waves with limited duration and 0 average values. The
Wavelets’ roots can be traced back to the thesis of Alfred Haar published in 1909, however,
the broader concept of Wavelet was introduced by Alex Grossman and Jean Morlet in
1984 [26,58].

One of the most popular, well-known, but still efficient methods is the Time-Frequency
Analysis (TFA), which can be applied not only for the purpose of analysis of biosignals,
but also for other types of signals such as non-stationary, non-Gaussian signals, etc. [3,253].
The TFA relies on on cutting the signal into slice segments, which are later processed
with e.g., Fourier Transform-based analysis, where in case of biosignals’ analysis—the
segments would be interpreted as discontinuity [255,262]. The Time-Frequency analysis is
a non-linear, quadratic transformation applied frequently for analysis of non-stationary
signals. It uses both time and frequency functions [3,255].

The most popular windows applied in the TFA are [253,262]:

• Hamming,
• Hanning,
• Kaiser,
• Barlett.

Because every signal can be represented in form of any convenient set of orthogonal
basis functions, which are its principal components [240,263]. The Principal Components
Analysis (PCA) is another popular and advanced method applying mathematical principles
to the signals, which transfer their correlated variables into principal components [264,265].

It has been developed before the World War II [264], but until today it is still an
efficient method for removing various artifacts from biomedical signals [266–268]. It is also
one of the simplest methods based on the BSS (Blind Source Separation) and its algorithm
is based on the eigenvalues of the covariance matrix [243,263,269]. The PCA is sensitive to
the original variables scaling [263].

The Principal Component Analysis (PCA) can be frequently implemented in analysis
of biomedical signals such as EEG or ECoG [240,270]. One of the main disadvantages of
the PCA is that using it with the extracted components is not always independent and
invariant under transformation, which ends up with some classification assumptions and
not real, desired results [271]. Sort of “improvement” of this method is the Independent
Component Analysis (ICA), which is more flexible and which will be described in more
detail in the next sub-subsection [243].

The Independent Component Analysis (ICA) is also a statistical method applied for
the purpose of decomposition of a multi-variable signal into a set of mutually independent
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components [269]. The particular values of the signals are considered as samples of random
variables and not as time functions [240,243,269].

As the ICA is kind of extended method of the PCA, however, it is more flexible and
effective in artifacts removal from biosignals [240,243]:

• the source signals are statistically independent from each other and instantaneously
mixed;

• the dimensions of the analysed signals have to be greater than or equal to the source
signal;

• the sources

The ICA method, despite being so popular, has also some limitations [266,269]:

• only the original IC (Independent Component) can have the Gaussian distribution;
• only for the n-dimensional data vector it is possible to find a maximum of the n-

dependent components with the use of the ICA method;
• it is impossible to determine the order of the original components with the ICA

method.

The Empirical Mode Decomposition (EMD) is a method for pairs of signals decompo-
sition, where one of them is introduced as a reference signal. It is a very suitable method for
analysis of biomedical signals, which was introduced in 1998 [243,266]. The EMD method
decomposes the signal s(n) into the sum of band-limited functions dm(n)—intrinsic mode
functions (IMF) [243,266]. The EMD is an empirical and data driven technique, which
means that, unlike other similar methods, it does not depend on basic functions selection
such as inter alia the WT [243].

The EMD method is claimed to be one of the best methods for analysis of non-linear
and non-stationary signals. It has however some limitations such as among the others the
endpoint effect or modal aliasing, therefore it is frequently combined with other methods
and applied as hybrid methods [272,273].

It is also possible do find BCI systems based on Fuzzy Logic (FL) [70,274–279].
The Fuzzy Logic provides more flexibility in the decisions making process as it has many
facets, which can be inter alia as follows [280]:

• logical,
• fuzzy-set-theoretic,
• relational,
• epistemic.

It is very rare that the raw EEG data is possible to be analysed, mostly due to the pres-
ence of various contamination, artifacts and disturbances [3,13,230]. Appropriate filtering
applications reduces noise, unwanted signal components and improves the SNR [13,226].
It is possible to distinguish the four main types of filters [3,242]:

1. low-pass filters—exclude the unwanted higher values in the signal;
2. high-pass filters—exclude the unwanted lower values in signals;
3. band-pass filters—pass signals within a certain range of frequencies without distorting

the input signal or introducing extra noise;
4. band-stop filters (notch)—reject signals within a specific frequency band called the

stop band frequency range and passes the signals above and below this band.

The most popular classical filters are the following [3,226,281]:

1. Butterworth,
2. Chebyshev (Type and II),
3. Elliptic,
4. Bessel.

Along with the four above mentioned filters it is possible to use one of four kinds of
approximation—required by the characteristic’s modulus. On the choice of approxima-
tion depends the presence or lack of ripple in the filtering band, which is unfortunately
impossible to be avoided [226,281].
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As it was mentioned above—it is very hard to find perfect filters without a riddled
characteristic. Also the integer order limits flexibility of the filter design, what can be
solved with the use of non-integer order (fractional) filters. It his also frequently applied
for the purpose of biomedical signals’ analysis, mostly due to enabling flexibility in filter
shaping. Such filters are well grounded, however, their implementation still has some
disadvantages [282].

The application of such filters is becoming more and more popular. The theoreti-
cal background of these filters is very well-documented and they were developed long
ago—being first introduced in the 19th century [283,284], despite becoming popular re-
cently [285].

The non-integer order systems enable detection of the waves in robust biomedical
signals, but they also enable to model them [282–284].

The fractional order calculus means the calculation of non-integer order derivatives,
which is an extension and kind of improvement of an ordinary differential calculus [286].
The non-integer based systems are mainly applied for control purposes [285,287], however,
they are also applied for modeling of biological systems, in HIV therapy or in order to
predict the dynamics of the hepatitis C virus spreading [283,286].

Another type of useful filtering method applied on the EEG data are smoothing filters
as they do not affect the data in a negative way, which means important information
removal. The smoothing filters make also the biomedical data more legible for medical
professionals [13].

The most popular smoothing filters are the following [13,286,288,289]:

• Savitzky-Golay filter (S-G),
• Median filter,
• Bessel smoothing filter.

The Savitzky-Golay filter is one of the most popular and efficient smoothing filters, it
is a simplified method for differentiation calculations, which smooths the data based on
a least-squares technique [13,288]. It is a generalized moving average digital polynomial
filter, which works in a way that each value is replaced with a new value previously
obtained form a polynomial fitting, which is performed with a basic linear least-square
fitting to the 2n + 1 neighboring points, where the value n should be equal or greater
than the order of the above mentioned polynomial. The more neighbors are applied the
smoother the final signal is [288].

The Savitzky-Golay filters are usually applied for both, differentiation and smoothing.
Their properties have also been very deeply studied and have been popular for over
50 years [290–292].

The median filter is on the other hand a non-linear filter, in which the mean value of
a sequence of the processed point and its surroundings is measured. The advantage of
this filter is that all of the values that deviate from the average are omitted and the output
signal consists of the individual median values of all windows. The filter can be applied on
both offline and online data using the moving median algorithm, which is similar to the
moving average [13,293].

Both median and SG filters provide good results in filtering of various types of the
data [13,196,292,293].

It is good to mention also some spatial filters (in particular the Laplacian filters), which
are frequently applied for the purpose of the EEG data analyses [294].

Some of the authors of this work decided to develop an alternative to filtering of EEG
signal and designed innovative threshold-base method, which does not involve filtering
and does not affect the EEG data in a negative way [3,230].

In order to have a broader view on the most popular EEG signals’ processing methods
it is important to mention the Artificial Neural Networks (ANN), which have been widely
applied for the purposes of ECG and EEG classification of over twenty years [40,81]. One
of the first attempts in using ANN in analysis of EEG signals was performed in 1994 by
Tsoi et al. [52,295].



Brain Sci. 2021, 11, 43 27 of 41

Implementation of traditional neural networks (NN) has been a part of scientific
interests of many researchers for many years. The most recent has become developments of
Deep Learning (DL) for such purposes, especially in case of large data-sets analysis, where
the traditional NN had some difficulties, which resulted in development of the DNNs
(Deep Neural Networks) [87,296,297].

The most popular architectures of the DNNs are the following [87,296–302]:

• Convolutional Neural Network (CNN)—relies on linear operation known as convolu-
tion. Provides good results during processing of images, audio, video and biomedical
signals such as EEG;

• Recurrent Neural Network (RNN)—This type of network involves inbuilt memory
cells for preserving the previous output states and uses it for processing purposes.

The implementation of the RNN for BCI systems decoding seems to be a perfect
solution as it has network dynamics, computation and is non-linear and distributed. Unfor-
tunately their BCI-applicability is limited, mostly due to their complexity in training [300].
In order to use their positive features, some modifications have been proposed such as
inter alia multiplicative recurrent neural network (MRNN), as they are recurrent, but easier
to train and has been found to be a good method for neuroprotheses [301].

In [302] the DNN model decoder was applied for controlling functional electrical stim-
ulation (FES) of the participants’ paralyzed forearm. The implemented DNN model was at
first trained offline using the concatenated imagined six-movement dataset. The obtained
results were promising and showed good work of these system offline, however, due to
such networks’ complexity, some further investigations regarding their online efficiency
have to be carried out.

5. Discussion and Conclusions

This paper is an attempt to summarise over half century of Brain-Computer Interfaces—
mostly because of the electroencephalography influence on these systems [2,54]. Over the
time, numerous Brain-Computer Interfaces (invasive and non-invasive) have been devel-
oped, described and tested. Non-invasive nature of the EEG-based BCIs made them the
most popular BCI systems [54,303]. Their application potential is vast and ranges from
clinical to home-entertainment applications [10,303].

Their main purpose was to enable direct, non-muscular communication for handi-
capped people and later came solutions destined for gaming (pure entertainment), were fol-
lowed by issuing various inexpensive, consumer-grade headsets [3,10,160,161,230,303,304].

To sum it all up—the BCIs can be applied to education and training, entertainment
and neurogaming, medical assistance (e.g., spelling program, a motorized wheelchair,
or neuroprostheses or exoskeletons), and/or emotional testing after appropriate devel-
opment [11,23,25,214]. Also, the recent times show increased focus on the real-world
applications of the BCI technology which speed up the transition of the BCI research from
the laboratory to clinical products useful in everyday life.

Potentially, the BCI users might be individuals who are severely disabled by disorders
such as inter alia [3,55,304–306]:

• ALS (Amyotrophic Lateral Sclerosis),
• cerebral palsy,
• brainstem stroke,
• spinal-cord injuries,
• muscular dystrophies,
• chronic peripheral neuropathies,
• psychiatric disorders.

Meanwhile, it is still important to develop and solve problems in the three critical
areas [23]:

1. signal-acquisition hardware,
2. BCI validation and dissemination,
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3. reliability.

As the EEG signals are prone to occurrence of various artifacts and disturbances it
is difficult to analyse them and extract relevant information from such sensitive data [3].
Also, credibility of the obtained results and of the proposed solutions are not very straight-
forward. In many cases they appeared to be disappointing for people who gave hope to
them [2].

The whole scientific area related to the BCIs is challenging, ungrateful and hard to
follow. Also, after the rapid development in the 1990s, it is now difficult to find some
spectacular breakthroughs. Despite some difficulties the Brain-Computer Interface-related
research and development is source of tremendous excitement for scientists, engineers,
clinicians, and individuals in general [23]. The market offers a solution for each of them, it
is possible to fit an appropriate device for a particular user’s needs. Evidently, the recently
implemented wireless, lightweight, and easy-to-use wearability has fashioned an impact
on the ascending attractiveness of the non-invasive consumer-grade EEG devices among
researchers from various fields of study [307,308].

One of the main disadvantages of this work is that it does not fully cover all new
findings and all applied methods in the field, but it would be simply impossible—mainly
due to the rapid development and growing interest in this scientific domain, so the authors
were enforced to make something difficult choices regarding whether or not to include
some of the most important systems/solutions, based on their subjective decisions.

To sum it all up, again, the BCIs took fiction, known from the sci-fiction literature,
into reality by providing some ways to use “thoughts” for the control purposes [189].
However, although the systems are becoming more and more achievable, there is still
a problem which makes it difficult to bring them out of the laboratories into daily life.
And the problem is the convenience factor: long calibration time, using abrasive paste or
gel to improve conduction and time related to placing the headsets on scalp are on the
verge or slightly beyond the average user acceptance. Ultimately, some of these issues can
be difficult to deal with by healthy users and almost impossible to deal with by people
with various motor impairments [96,309]. When these obstacles will have been resolved,
the BCIs will become a real part of our lives [309].

From the philosophical and ethical point of view concerning the brain-machine interac-
tions raise many questions regarding distribution and attribution of responsibility, decision
making and this is also designing a step toward construction artificial intelligence [310].
The interaction between brain and computer can help to explain intentions—the important
attribute feature of human goal-directed behavior and have been debated commonly in the
philosophy of mind [311].
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Abbreviations
The following abbreviations are used in this manuscript (in alphabetical order):
ADD Attention Deficit Disorder
ADHD Attention-Deficit/Hyperactivity Disorder
ALS Amyotrophic Lateral Sclerosis
ANN Artificial Neural Networks
AR Augmented Reality
ASSR auditory steady-state response
BCI Brain-Computer Interfaces
BCS Brain-inspired Cognitive System
BOLD blood oxygen level-dependent signals
BSS Blind Source Separation
CNN Convolutional Neural Network
CNS central nervous system
CWT Continuous Wavelet Transform
DC direct current
DFT Discrete Fourier Transform
DHT Discrete Hartley Transform
DL Deep Learning
DNN Deep Neural Networks
DSP digital signal processing
DBD Duchenne Muscular Dystrophy
DWT Discrete Wavelet Transform
ECG Electrocardiography
EDA electrodermal activity
ECoG electrocorticography
EEG electroencephalography
EMD Empirical Mode Decomposition
EMG electromygraphy
EOG electrooculography
ERD event related desynchronisation
ERP event-related potentials
ERS Event-Related Synchronisation
FES functional electrical stimulation
FFT Fast Fourier Transform
FHT Fast Hartley transform
FL Fuzzy Logic
fMRI functional resonance imaging
fNIRS functional infrared spectroscopy
FT Fourier Transform
HMI Human-Machine Interfaces
ICA Independent Component Analysis
LIS Locked-in Syndrome
MEG magnetoencephalography
ME motor execution
MI motor imagery
mVEPs motion-onset visually evoked potentials
NN Neural Networks
PCA Principal Component Analysis
PD Parkinson’s Disease
PET positron emission tomography
PPG hotoplethysmography
RNN Recurrent Neural Network
SCP slow cortical potentials
sEEG stereoencephalography
SG Savitzky-Golay filter
SMR sensorimotor rhythm
SNR signal-to-noise ratio
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SMA II Spinal Muscular Atrophy type II
SSVEP steady-state visual evoked potentials
STFT Short-Time Fourier Transform
TFA Time-Frequency Analysis
VR virtual reality
XR mixed reality
WT Wavelet Transform
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Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2006.
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2018; Springer: Cham, Switzerland, 2017; Volume 496, p. 63.

284. Bauer, W.; Kawala-Janik, A. Implementation of bi-fractional filtering on the arduino uno hardware platform. In Theory and
Applications of Non-Integer Order Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 419–428.

285. Baranowski, J.; Bauer, W.; Zagórowska, M.; Piątek, P. On digital realizations of non-integer order filters. Circuits Syst. Signal
Process. 2016, 35, 2083–2107.
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