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Abstract: Cigarette smoke is a highly complex mixture of nicotine and non-nicotine constituents.
Exposure to cigarette smoke enhances tobacco dependence by potentiating glutamatergic neuro-
transmission via stimulation of nicotinic acetylcholine receptors (nAChRs). We investigated the
effects of nicotine and non-nicotine alkaloids in the cigarette smoke condensates extracted from
two commercial cigarette brands in South Korea (KCSC A and KCSC B) on psychomotor behav-
iors and glutamate levels in the dorsal striatum. Repeated and challenge administration of KCSCs
(nicotine content: 0.4 mg/kg, subcutaneous) increased psychomotor behaviors (ambulatory, rearing,
and rotational activities) and time spent in psychoactive behavioral states compared to exposure
to nicotine (0.4 mg/kg) alone. The increase in psychomotor behaviors lasted longer when exposed
to repeated and challenge administration of KCSCs compared to nicotine alone. In parallel with
sustained increase in psychomotor behaviors, repeated administration of KCSCs also caused long-
lasting glutamate release in the dorsal striatum compared to nicotine alone. KCSC-induced changes
in psychomotor behaviors and glutamate levels in the dorsal striatum were found to be strongly
correlated. These findings suggest that non-nicotine alkaloids in commercial cigarette smoke syner-
gistically act with nicotine on nAChRs, thereby upregulating glutamatergic response in the dorsal
striatum, which contributes to the hypersensitization of psychomotor behaviors.

Keywords: cigarette smoke condensate; nicotine; non-nicotine alkaloid; behavioral sensitization;
glutamate

1. Introduction

Nicotine is a major psychoactive alkaloid in tobacco plants and causes dependence
due to its rewarding and reinforcing effects [1–4]. Repeated exposure to nicotine in-
creases dopamine and glutamate releases in the nerve terminals of the dorsal striatum,
and nucleus accumbens (NAc) by stimulating excitatory nicotinic acetylcholine receptors
(nAChRs) [5–9]. Tobacco plants and products, such as cigarettes and chewing tobacco,
contain nicotine as well as non-nicotine alkaloids such as nornicotine, cotinine, and
anatabine [10–13]. These non-nicotine alkaloids can also bind strongly to nAChRs due
to their structural similarities with nicotine [14,15], and thus, contribute to development
and expression of tobacco dependence [16–21]. In addition, acetaldehyde, a component
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of cigarette smoke, also has psychoactive properties and plays a role in development of
tobacco dependence [22,23]. Although tobacco contains various psychoactive substances
as well as nicotine, most tobacco dependence studies have been conducted using nico-
tine only [16–18]. Additionally, it is difficult to understand tobacco dependence induced
by exposure to commercial cigarettes itself since the nicotine and non-nicotine alkaloid
compositions of commercial cigarettes differ significantly from brand to brand [13].

Glutamate is a major excitatory neurotransmitter in the mammalian brain and plays
important roles in the development of drug dependence, including dependence on nicotine
and tobacco [24–26]. Exposure to nicotine increases glutamate release in the dorsal striatum,
NAc, ventral tegmental area, and prefrontal cortex by stimulating nAChRs [6,8,25,27,28].
However, repeated administration of 3R4F Kentucky reference cigarette smoke conden-
sate (CSC) causes more prolonged and greater glutamate release in the dorsal striatum
compared to nicotine alone [29]. These findings suggest that nicotine and non-nicotine
alkaloids in cigarette smoke synergistically upregulate glutamatergic response in the brain
reward system by hyperstimulation of nAChRs.

Intermittent and repeated exposure to drugs leads to psychomotor sensitization and
hypersensitive motivational behaviors [8,30]. Growing evidence shows that repeated ad-
ministration of psychoactive drugs, such as nicotine, causes behavioral sensitization by
increasing glutamate release in the dorsal striatum and NAc [6,8]. In our previous study,
repeated administration of CSC produced more prolonged increase in glutamate release
of the dorsal striatum and more hypersensitization of psychomotor behaviors compared
to nicotine alone, which are highly correlated [29]. These findings suggest that altered
glutamate concentrations in the striatum due to response to the combined effects of nicotine
and non-nicotine compounds in cigarette smoke contribute to the hypersensitization of
psychomotor activities. However, the relationship between commercial cigarette-induced
psychomotor behaviors and hyperactivation of glutamate response is not fully charac-
terized. In this study, we investigated the effects of CSC extracted from two commercial
cigarettes in South Korea on psychomotor sensitization and glutamate release in the dorsal
striatum that involves in the habitual behavior of drug dependence in rats. In addition,
we explored a relapse potential of commercial cigarettes to evoke behavioral sensitization
after CSC abstinence in rats.

2. Materials and Methods
2.1. Animals

A total of 48 adult male Sprague-Dawley rats were used in this study: 24 for behavioral
sensitization test and 24 for glutamate biosensing test. Rats weighing between 200 and 230 g
(6 weeks old) were purchased from Hyo-Chang Science Co. (Daegu, South Korea). Rats
were separated into pairs and acclimated to animal cages for a minimum of 5 days. Food
and water were provided ad libitum. Animals were maintained under a 12-h light-dark cycle
(light on at 8:00 AM) at 21–23 ◦C and 45–55% relative humidity throughout all experiments.
Experimental treatments were applied in a quiet room to minimize environmental stress.
All animal procedures were approved by the Institutional Animal Care and Use Committee
of Pusan National University (Approval No. PNU-2019-2336, 07-29-2019) and conducted
in accordance with the provisions of the Guide for the Care and Use of Laboratory Animals
issued by the US National Institute of Health.

2.2. Drugs

Nicotine hydrogen tartrate was purchased from Sigma-Aldrich (St. Louis, MO, USA),
dissolved in vehicle solution, 1% dimethyl sulfoxide (DMSO)/0.9% physiological saline,
and adjusted to pH 7.2–7.4 with sodium hydroxide. Commercial CSCs (KCSC A and
KCSC B) were extracted from randomly selected two brands of most preferred cigarettes in
South Korea. L-glutamic acid (Sigma-Aldrich) and L-ascorbic acid (Duchefa Biochemie B.V.,
Haarlem, Netherlands) were dissolved in phosphate buffered saline (PBS, pH 7.4) to pro-
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duce glutamate standard and interfering solutions, respectively, for in vitro calibration of
glutamate biosensors. All drug solutions were prepared immediately prior to experiments.

2.3. Preparation of KCSCs

KCSCs (KCSC A and KCSC B) were prepared by the Research Center for Inhala-
tion Toxicology at the Korea Institute of Toxicology (Jeongeup, South Korea), as previ-
ously described [31,32]. Commercial cigarettes were conditioned for a minimum of 72-h
prior to use at 21–23 ◦C and 57–63% relative humidity in accordance with ISO 3402 [33].
KCSCs were generated using a 30-port smoking machine in accordance with ISO 3308
(puff volume 35 mL, drawn over 2 s, time between puffs 60 s, and no vent blocking) [34].
All cigarettes were smoked 3 mm from the filter-tip paper according to ISO 4387 [35].
KCSCs were prepared using a Cambridge filter pad (44 mm; Whatman, Maidstone, UK)
after shaking for 30 min, such that the final concentration of total particulate matter was
20 mg/mL in methanol. The methanol was then moved to a vacuum oven for one day.
Obtained dried KCSCs were dissolved in the vehicle solution, passed through 0.45 µm
polyetrafluoroethylene sterile filters (ThermoFisher Scientific, Waltham, MA, USA), and
stored at −80 ◦C until use. Since it is impossible to analyze all components of KCSCs due
to technical difficulties, only the composition of nicotine and seven non-nicotine alkaloids
in the KCSCs were analyzed. The contents of nicotine and non-nicotine alkaloids in the
two KCSCs are presented in Table 1. Aldehydes were rarely detected in the particulate
phase of cigarette smoke than gas phase [36–38] due to its volatile property, and thus the
possibility of psychoactive effect of aldehydes (e.g., acetaldehyde) in the particulate KCSCs
was excluded in this study.

Table 1. Nicotine and non-nicotine alkaloid contents of the two commercial cigarette brands in South Korea
(KCSCs) (µg/mL).

Types Nicotine Nornicotine Cotinine Anabasine Anatabine Myosmine Norharmane Harmane

KCSC A 5640.0
(95.85)

28.6
(0.49)

6.9
(0.12)

199.8
(3.40)

6.1
(0.10)

1.6
(0.02)

0.9
(0.01)

0.5
(0.01)

KCSC B 3800.0
(95.80)

18.7
(0.47)

6.1
(0.15)

136.7
(3.46)

3.3
(0.08)

0.9
(0.02)

0.7
(0.01)

0.4
(0.01)

The values in parentheses indicate the relative content of each alkaloid to total amount of alkaloids analyzed in each KCSC.

2.4. Administration of Nicotine and KCSCs

The rats were given vehicle, nicotine, or KCSCs administration via subcutaneous
route (s.c.) once a day. The dose of nicotine was 0.4 mg/kg (1.0 mL/kg), as determined
by previous studies [8,29,39]. The extracted KCSCs were dissolved in vehicle solution and
diluted to produce working solutions with a nicotine content of 0.4 mg/mL. The vehicle
and nicotine groups were used as negative and positive controls, respectively.

2.5. Experimental Designs

Two separate experiments were conducted to determine the relationship between
KCSC-induced behavioral sensitization and hyperactivation of glutamate response in the
dorsal striatum. The first experiment was conducted to determine whether (1) repeated
administration of KCSCs for 14 days or (2) challenge administration of KSCSs after with-
drawal period alters the behavioral activities. An open-field test was conducted for 60 min
after repeated or challenge administration of KCSCs. Rats were randomly divided into
four different groups: (1) 14 days repeated vehicle treatment + 6 days withdrawal + vehicle
challenge group; (2) 14 days repeated nicotine treatment + 6 days withdrawal + nicotine
challenge group; (3) 14 days repeated KCSC A treatment + 6 days withdrawal + KCSC A
challenge group; and (4) 14 days repeated KCSC B treatment + 6 days withdrawal + KCSC
B challenge group. The detailed timeline is illustrated in Supplementary Figure S1A.
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The second experiment was performed to determine whether repeated administration
of KCSCs for 14 days alters the extracellular glutamate concentration in the dorsal striatum.
We performed real-time glutamate biosensing for 60 min after repeated administration
of KCSCs for 14 days. Another cohort of rats was randomly divided into four different
groups: (1) 14 days repeated administration of vehicle; (2) 14 days repeated administra-
tion of nicotine; (3) 14 days repeated administration of KSCS A; and (4) 14 days repeated
administration of KCSC B. The detailed timeline is illustrated in Supplementary Figure S1B.

2.6. Open-Field Test

An open-field test was performed as previously described [8,29]. Ambulatory activ-
ity (total distance traveled, as determined by horizontal beam breaks), rearing (number
of vertical beam breaks), and rotation (number of turns clockwise or counterclockwise)
were measured using the infrared photocell-based automated Opto-Varimex-4 Auto-Track
system (Columbus Instruments, Columbus, OH, USA) under open-field, illuminated,
and sound-attenuated conditions. Rats were acclimated to a behavioral test chamber
(44.5 cm × 44.5 cm × 24 cm) for at least 6 days to avoid environmental variations prior to
experiments. Three pairs of sensors were positioned on x-, y- (horizontal), and z- (vertical,
placed above normal animal height) axes to provide coordinates that recognizes ambu-
latory and rearing activities. Each sensor pair produced 16 infrared light beams in the
test chamber (beam scan rate = 10 Hz). The Auto-Track system senses the presence of
animals using infrared beam interruptions. Changes in ambulatory activity (cm), rearing
(count), and rotation (count) activities were measured in 1 min intervals between 30 min
before and 60 min after drug administration. Data were transferred from all sensors to a
computer running Opto-Varimex 4 Auto Track Rapid Release software (software version
4.99B, Columbus Instruments).

2.7. Surgery for Real-Time Glutamate Biosensing

Brain surgery for glutamate biosensing was performed as previously described [8,29].
Briefly, rats were anesthetized with a mixture of Zoletil 50 (tiletamine, 18.75 mg/kg)
(Virbac Korea, Seoul, South Korea) and Rompun (xylazine, 5.8 mg/kg) (Bayer Korea,
Seoul, South Korea) by intraperitoneal (i.p.) injection and placed in a stereotaxic apparatus.
Under aseptic conditions, a BASi Rat Guide Cannula (Pinnacle Technology, Lawrence,
KS, USA) (inner diameter, 0.7 mm; length, 10 mm) was surgically implanted into the center
of the right dorsal striatum (1.0 mm anterior to bregma, 2.5 mm right of midline, and
5 mm below the skull surface) to allow insertion of a glutamate biosensor. BLE Rat
Hat Bottoms (Pinnacle Technology) were used to enable potentiostat placement (Pinna-
cle Technology) and were covered with BLE Rat Hat Tops (Pinnacle Technology). After
surgery, rats were given a minimum of 6 days of recovery in home cages and treated with
0.1 mL of gentamycin (i.p., Eagle Vet, Seoul, South Korea) prior to the first administration
of the vehicle, nicotine, KCSC A, and KCSC B. Physical accuracies of cannula implantations
were verified by reconstructing guide cannula placements after glutamate biosensing
(Supplementary Figure S2). The presence of guide cannula-induced gliosis and the
placement of correct glutamate biosensor insertion were verified by Nissl staining (data
not shown).

2.8. In Vitro Calibration and In Vivo Real-Time Glutamate Biosensing

Real-time glutamate biosensing was performed as previously described [8] using
commercial L-glutamate oxidase-based glutamate biosensors (glutamate biosensors) (Pin-
nacle Technology) and L-glutamate oxidase-free glutamate biosensors (glutamate null
biosensors) (Pinnacle Technology). Before and after measurements, calibrations were
conducted in PBS (pH 7.4) by gradually increasing glutamate concentrations from 0 to
4 µM in 1 µM increments. A single addition of 250 µM ascorbic acid, which commonly
causes biological interference, did not interfere with glutamate detection (data not shown),
which concurs with the results of our previous study on glutamate biosensors [8]. All
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calibration procedures were performed at 37 ◦C and a minimum of 5 min was allowed
prior to measurements to ensure conditions had stabilized because biosensor sensitivity is
directly influenced by temperature [40]. In addition, since glutamate biosensor outputs are
inversely related to changes in currents in vivo, rats were acclimated to testing environ-
ments for a minimum of 120 min after biosensor insertion. When currents had stabilized,
real-time glutamate biosensing in the dorsal striatum was conducted in freely moving rats
for 60 min after the final administration of vehicle, nicotine, KCSC A, and KCSC B in home
cages. Because the baseline currents of individual rats were slightly different, we adjusted
absolute currents induced by the administration of vehicle, nicotine, KCSC A, and KCSC
B by setting basal values at 0 nA. Changes of glutamate currents in the dorsal striatum
were then converted into changes in glutamate concentrations using individual sensor
calibration plots. Data were sampled at 1 Hz using SIRENIA acquisition software (version
1.6.1, Pinnacle Technology).

2.9. Statistics

Data are represented as mean ± standard error of the mean (SEM). Bonferroni’s post-
hoc test was used for all repeated measures followed by two-way analysis of variance
(ANOVA) and multiple comparison test. Analysis was conducted using GraphPad Prism 8
(GraphPad Software, La Jolla, CA, USA). Statistical significance was accepted for p values
of < 0.05.

3. Results
3.1. Repeated Administration of KCSCs Increased Ambulatory, Rearing, and Rotational Activities

Since repeated exposure to 3R4F CSC (extracted from 3R4F Kentucky Reference
cigarette) increased psychomotor activities compared to repeated treatment of nicotine
alone [29], an open-field test using two different KCSCs was performed to determine
whether repeated exposure to commercial cigarettes alters psychomotor activities such
as ambulatory, rearing, and rotational activities. The results showed that repeated ad-
ministration of KCSC A increased ambulatory activity (two-way RM-ANOVA, Time:
F(2, 45) = 11.01, p < 0.05; Treatment: F(2, 45) = 30.71, p < 0.05; Time × Treatment:
F(4, 45) = 6.37, p < 0.05) (multiple comparison test, 7th day: F(2, 15) = 15.16, p < 0.05; 14th
day: F(2, 15) = 15.22, p < 0.05) (Figure 1A,B) compared to the vehicle and nicotine control
groups. Similarly, repeated administration of KCSC B also increased ambulatory activity
(two-way RM-ANOVA, Time: F(2, 45) = 61.19, p < 0.05; Treatment: F(4, 45) = 10.14, p < 0.05;
Time × Treatment: F(2, 45) = 17.50, p < 0.05) (multiple comparison test, 7th day: F(2, 15) = 42.21,
p < 0.05; 14th day: F(2, 15) = 25.15, p < 0.05) (Figure 1A,C) compared to the vehicle and
nicotine control groups. However, acute administration of the vehicle, nicotine, KCSC A,
and KCSC B did not alter ambulatory activity (Figure 1A–C).

Repeated KCSC A administration increased rearing activity (two-way RM-ANOVA,
Time: F(2, 45) = 16.27, p < 0.05; Treatment: F(2, 45) = 19.52, p < 0.05; Time × Treatment:
F(4, 45) = 7.58, p < 0.05) (multiple comparison test, 7th day: F(2, 15) = 9.31, p < 0.05; 14th
day: F(2, 15) = 13.85, p < 0.05) (Figure 1D), and rotational activity (two-way RM-ANOVA,
Time: F(2, 45) = 12.38, p < 0.05; Treatment: F(2, 45) = 41.08, p < 0.05; Time × Treatment:
F(4, 45) = 8.17, p < 0.05) (multiple comparison test, 7th day: F(2, 15) = 17.91, p < 0.05; 14th day:
F(2, 15) = 29.18, p < 0.05) (Figure 1F) compared to the vehicle and nicotine control groups.
Similar to KCSC A, repeated administration of KCSC B also increased rearing activ-
ity (two-way RM-ANOVA, Time: F(2, 45) = 23.22, p < 0.05; Treatment: F(2, 45) = 26.09,
p < 0.05; Time × Treatment: F(4, 45) = 9.79, p < 0.05) (multiple comparison test, 7th day:
F(2, 15) = 12.41, p < 0.05; 14th day: F(2, 15) = 21.17, p < 0.05) (Figure 1E) and rotational activity
(two-way RM-ANOVA, Time: F(2, 45) = 15.73, p < 0.05; Treatment: F(2, 45) = 68.08, p < 0.05;
Time × Treatment: F(4, 45) = 10.50, p < 0.05) (multiple comparison test, 7th day:
F(2, 15) = 52.87, p < 0.05; 14th day: F(2, 15) = 36.92, p < 0.05) (Figure 1G) compared to
vehicle and nicotine control groups. However, there was no difference in rearing and
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rotational activities among the acute administration of vehicle, nicotine, KCSC A, and
KCSC B groups (Figure 1D–G).Brain Sci. 2020, 10, x FOR PEER REVIEW 6 of 23 
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Figure 1. Changes in behavioral activities after acute or repeated administration of two cigarette smoke condensates
extracted from two commercial cigarette brands in South Korea (KCSC A and KCSC B). Statistical significance was
determined by two-way RM-ANOVA and multiple comparison test with Bonferroni’s post-hoc test. # p < 0.05, repeated
vehicle group vs. repeated nicotine group; * p < 0.05, repeated vehicle group vs. repeated KCSC groups; + p < 0.05, repeated
nicotine group vs. repeated KCSC groups. AT, ambulatory time; ST, stereotypy time; RT, resting time. n = 6 per group.
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3.2. Repeated Administration of KCSCs Increased Ambulatory and Stereotypy Time, but Decreased
Resting Time in Behavioral States

In order to analyze the relative proportion of time spent in psychomotor behaviors
increased by repeated KCSCs administration, we analyzed time spent in ambulatory,
stereotypy, and resting behavioral states. The results revealed that repeated administra-
tion of KCSC A increased ambulatory time (two-way RM-ANOVA, Time: F(2, 45) = 10.56,
p < 0.05; Treatment: F(2, 45) = 51.18, p < 0.05; Time × Treatment: F(4, 45) = 8.32, p < 0.05)
(multiple comparison test, 7th day: F(2, 15) = 23.46, p < 0.05; 14th day: F(2, 15) = 34.46,
p < 0.05) compared to the vehicle and nicotine control groups (Figure 1H). Similarly, re-
peated administration of KCSC B also increased ambulatory time (two-way RM-ANOVA,
Time: F(2, 45) = 11.27, p < 0.05; Treatment: F(2, 45) = 79.98, p < 0.05; Time × Treatment:
F(4, 45) = 9.18, p < 0.05) (multiple comparison test, 7th day: F(2, 15) = 52.44, p < 0.05; 14th day:
F(2, 15) = 49.32, p < 0.05) compared to vehicle or nicotine control groups
(Figure 1I). Time spent in stereotypy behaviors was also increased after repeated ad-
ministration of KCSC A (two-way RM-ANOVA, Time: F(2, 45) = 10.80, p < 0.05; Treatment:
F(2, 45) = 37.39, p < 0.05; Time × Treatment: F(4, 45) = 9.90, p < 0.05) (multiple comparison
test, 7th day: F(2, 15) = 25.19, p < 0.05; 14th day: F(2, 15) = 47.19, p < 0.05) and KCSC B
(two-way RM-ANOVA, Time: F(2, 45) = 11.27, p < 0.05; Treatment: F(2, 45) = 79.98, p < 0.05;
Time × Treatment: F(4, 45) = 9.18, p < 0.05) (multiple comparison test, 7th day:
F(2, 15) = 26.59, p < 0.05; 14th day: F(2, 15) = 41.23, p < 0.05) compared to the vehicle control
group (Figure 1J,K). In contrast, time spent in resting behaviors was decreased after re-
peated administration of KCSC A (two-way RM-ANOVA, Time: F(2, 45) = 9.68, p < 0.05;
Treatment: F(2, 45) = 43.59, p < 0.05; Time × Treatment: F(4, 45) = 8.31, p < 0.05) (multiple
comparison test, 7th day: F(2, 15) = 27.81, p < 0.05; 14th day: F(2, 15) = 28.84, p < 0.05) and
KCSC B (two-way RM-ANOVA, Time: F(2, 45) = 10.51, p < 0.05; Treatment: F(2, 45) = 62.98,
p < 0.05; Time × Treatment: F(4, 45) = 9.18, p < 0.05) (multiple comparison test, 7th day:
F(2, 15) = 43.18, p < 0.05; 14th day: F(2, 15) = 46.59, p < 0.05) compared to the vehicle control
group (Figure 1L,M). Relative ratios of ambulatory, stereotypy, and resting times (ambula-
tory time: stereotypy time: resting time) in the behaviors on the 14th day were as following:
(1) Vehicle (4.77:8.63:86.60); (2) nicotine (23.06:24.58:52.36); (3) KCSC A (36.32:26.89:36.79);
(4) KCSC B (32.21:27.21:40.58) (Supplementary Figure S3).

3.3. Repeated Administration of KCSCs Induced Prolonged Increases in Ambulatory, Rearing, and
Rotational Activities

Since repeated administration of 3R4F CSC induced prolonged increases in psychomo-
tor behavioral changes [29], the increase in psychomotor behaviors (ambulatory, rearing,
and rotational activities) induced by repeated KCSC administration was divided into
three different time periods (P1, 0–20 min; P2, 20–40 min; P3, 40–60 min) and was fur-
ther analyzed. The results showed that repeated administration of KCSC A produced
prolonged increases in ambulatory activity (two-way RM-ANOVA, Time: F(12, 60) = 50.02,
p < 0.05; Treatment: F(2, 10) = 17.37, p < 0.05; Time × Treatment: F(24, 120) = 6.51, p < 0.05;
Figure 2A,B) (multiple comparison test, P1: F(2, 15) = 15.62, p < 0.05; P2: F(2, 15) = 14.14,
p < 0.05; P3: F(2, 15) = 13.87, p < 0.05; Table 2A), rearing activity (two-way RM-ANOVA, Time:
F(12, 60) = 28.47, p < 0.05; Treatment: F(2, 10) = 22.24, p < 0.05; Time × Treatment:
F(24, 120) = 6.23, p < 0.05; Figure 2D) (P1: F(2, 15) = 13.57, p < 0.05; P2: F(2, 15) = 18.42,
p < 0.05; P3: F(2, 15) = 19.06, p < 0.05; Table 2B), and rotational activity (two-way RM-ANOVA,
Time: F(12, 60) = 29.92, p < 0.05; Treatment: F(2, 10) = 34.03, p < 0.05;
Time × Treatment: F(24, 120) = 5.14, p < 0.05; Figure 2F) (multiple comparison test, P1:
F(2, 15) = 15.62, p < 0.05; P2: F(2, 15) = 19.12, p < 0.05; P3: F(2, 15) = 21.61, p < 0.05; Table 2C)
compared to the vehicle and nicotine control groups.

Similar to KCSC A, repeated KCSC B administration also induced prolonged increases
in ambulatory activity (two-way RM-ANOVA, Time: F(12, 60) = 46.29, p < 0.05; Treatment:
F(2, 10) = 41.15, p < 0.05; Time × Treatment: F(24, 120) = 7.59, p < 0.05; Figure 2A,C) (multiple
comparison test, P1: F(2, 15) = 21.74, p < 0.05; P2: F(2, 15) = 16.83, p < 0.05; P3: F(2, 15) = 15.56,
p < 0.05; Table 2A), rearing activity (two-way RM-ANOVA, Time: F(12, 60) = 22.74, p < 0.05;
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Treatment: F(2, 10) = 30.22, p < 0.05; Time × Treatment: F(24, 120) = 4.30, p < 0.05; Figure 2E)
(multiple comparison test, P1: F(2, 15) = 10.09, p < 0.05; P2: F(2, 15) = 14.24, p < 0.05; P3:
F(2, 15) = 22.25, p < 0.05; Table 2B), and rotational activity (two-way RM-ANOVA, Time:
F(12, 60) = 40.34, p < 0.05; Treatment: F(2, 10) = 47.64, p < 0.05; Time × Treatment:
F(24, 120) = 6.65, p < 0.05; Figure 2G) (multiple comparison test, P1: F(2, 15) = 10.09,
p < 0.05; P2: F(2, 15) = 14.24, p < 0.05; P3: F(2, 15) = 22.25, p < 0.05; Table 2C) compared
to the vehicle and nicotine control groups. Accumulative changes in ambulatory, rearing,
and rotational activities at P1, P2, and P3 after 14 days of repeated administration of vehicle,
nicotine, KCSC A, and KCSC B are listed in Table 2.

3.4. Repeated Administration of KCSCs Induced Prolonged Increases in Ambulatory and
Stereotypy Times, and Prolonged Decrease in Resting Time in Behavioral States

The results showed that repeated administration of KCSC A produced a prolonged
increase in ambulatory time (two-way RM-ANOVA, Time: F(12, 60) = 52.94, p < 0.05; Treat-
ment: F(2, 10) = 32.79 p < 0.05; Time × Treatment: F(24, 120) = 5.47, p < 0.05; Figure 2H)
(multiple comparison test, P1: F(2, 15) = 39.85, p < 0.05; P2: F(2, 15) = 21.23, p < 0.05; P3:
F(2, 15) = 25.97, p < 0.05; Supplementary Table S1A) and a prolonged decrease in resting time
(two-way RM-ANOVA, Time: F(12, 60) = 34.20, p < 0.05; Treatment: F(2, 10) = 29.27, p < 0.05;
Time × Treatment: F(24, 120) = 4.45, p < 0.05; Figure 2L) (multiple comparison test; P1:
F(2, 15) = 31.15, p < 0.05; P2: F(2, 15) = 21.91, p < 0.05; P3: F(2, 15) = 18.93, p < 0.05;
Supplementary Table S1C) compared to the vehicle and nicotine control groups. Ad-
ditionally, repeated administration of KCSC A produced a tendency to increase stereotypy
time (two-way RM-ANOVA, Time: F(12, 60) = 6.52, p < 0.05; Treatment: F(2, 10) = 83.37,
p < 0.05; Time × Treatment: F(24, 120) = 4.17, p < 0.05; Figure 2J) compared to nicotine control
group. However, it was only significant at the 60 min time-point (two-way RM-ANOVA,
Time: F(12, 60) = 6.52, p < 0.05; Treatment: F(2, 10) = 83.37, p < 0.05; Time × Treatment:
F(24, 120) = 4.17, p < 0.05; Figure 2J) (multiple comparison test; P1: F(2, 15) = 20.88, p < 0.05;
P2: F(2, 15) = 28.89, p < 0.05; P3: F(2, 15) = 18.86, p < 0.05; Supplementary Table S1B).

In the KCSC B group, repeated administration of KCSC B induced a prolonged
decrease in resting time (two-way RM-ANOVA, Time: F(12, 60) = 36.53, p < 0.05; Treat-
ment: F(2, 10) = 81.96, p < 0.05; Time × Treatment: F(24, 120) = 4.83, p < 0.05; Figure 2M) (P1:
F(2, 15) = 79.02, p < 0.05; P2: F(2, 15) = 25.36, p < 0.05; P3: F(2, 15) = 21.21, p < 0.05;
Supplementary Table S1C) compared to the vehicle and nicotine control groups. However,
the results showed that repeated administration of KCSC B tended to increase ambulatory
time (two-way RM-ANOVA, Time: F(12, 60) = 56.98, p < 0.05; Treatment: F(2, 10) = 73.94,
p < 0.05; Time × Treatment: F(24, 120) = 6.77, p < 0.05; Figure 2I) (multiple compari-
son test, P1: F(2, 15) = 52.47, p < 0.05; P2: F(2, 15) = 22.56, p < 0.05; P3: F(2, 15) = 25.78,
p < 0.05; Supplementary Table S1A) and stereotypy time (two-way RM-ANOVA, Time:
F(12, 60) = 6.32, p < 0.05; Treatment: F(2, 10) = 83.85, p < 0.05; Time × Treatment: F(24, 120) = 4.21,
p < 0.05; Figure 2K) (multiple comparison test, P1: F(2, 15) = 28.90, p < 0.05; P2: F(2, 15) = 21.97,
p < 0.05; P3: F(2, 15) = 18.35, p < 0.05; Supplementary Table S1B) compared to nicotine, but it
was also only significant at 60 min and 55 min time-points. Accumulative changes in ambu-
latory, stereotypy, and resting time at P1, P2, and P3 after 14 days of repeated administration
of vehicle, nicotine, KCSC A, and KCSC B are listed in Supplementary Table S1.
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Figure 2. Prolonged changes in behavioral activities after repeated administration of two KCSCs for 14 days. Statistical
significance was determined by two-way RM-ANOVA and multiple comparison test with Bonferroni’s post-hoc test.
# p < 0.05, repeated vehicle group vs. repeated nicotine group; * p < 0.05, repeated vehicle group vs. repeated KCSC groups;
+ p < 0.05, repeated nicotine group vs. repeated KCSC groups. AT, ambulatory time; ST, stereotypy time; RT, resting time.
n = 6 per group.
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Table 2. Accumulative changes in ambulatory, rearing, and rotational activities at P1, P2, and P3 after repeated administra-
tion of vehicle, nicotine, KCSC A, and KCSC B.

Groups A. Ambulatory Activity

0–20 Min 20–40 Min 40–60 Min

14 days of repeated vehicle 850.00 ± 180.93 151.67 ± 118.77 30.67 ± 8.08
14 days of repeated nicotine 3840.50 ± 451.28 # 997.33 ± 228.43 # 773.67 ± 305.43
14 days of repeated KCSC A 4124.50 ± 629.04 * 1861.83 ± 298.11 *,+ 1993.00 ± 344.85 *,+

14 days of repeated KCSC B 4641.67 ± 561.08 * 1578.33 ± 159.52 * 1452.83 ± 64.61 *,+

Groups B. Rearing Activity

0–20 Min 20–40 Min 40–60 Min

14 days of repeated vehicle 210.83 ± 70.36 22.83 ± 20.27 7.00 ± 1.73
14 days of repeated nicotine 952.17 ± 131.06 # 299.83 ± 71.24 # 191.67 ± 76.22
14 days of repeated KCSC A 1052.00 ± 156.76 * 612.33 ± 93.19 *,+ 667.33 ± 111.59 *,+

14 days of repeated KCSC B 905.50 ± 170.71 * 460.67 ± 69.61 * 445.17 ± 26.70 *,+

Groups C. Rotational Activity

0–20 Min 20–40 Min 40–60 Min

14 days of repeated vehicle 24.17 ± 5.63 6.00 ± 3.81 2.50 ± 0.56
14 days of repeated nicotine 96.83 ± 6.89 # 41.00 ± 7.29 # 26.33 ± 9.63
14 days of repeated KCSC A 107.33 ± 11.25 * 68.17 ± 9.20 *,+ 68.33 ± 7.83 *,+

14 days of repeated KCSC B 121.00 ± 12.21 * 51.67 ± 6.12 * 48.17 ± 1.14 *,+

Statistical significance was determined by two-way RM-ANOVA and multiple comparison test with Bonferroni’s post-hoc test. # p < 0.05,
repeated vehicle group vs. repeated nicotine group; * p < 0.05, repeated vehicle group vs. repeated KCSC groups; + p < 0.05, repeated
nicotine group vs. repeated KCSC groups. n = 6 per group.

3.5. Challenge Administration of KCSCs after Withdrawal Periods Increased Ambulatory, Rearing,
and Rotational Activities

Since re-exposure to nicotine after nicotine abstinence increased psychomotor behav-
iors [8], open-field tests whether challenge administration of KCSCs after drug abstinence
period induces psychomotor sensitization on ambulatory, rearing, and rotational activities
were performed. The results showed that challenge administration of KCSC A increased
ambulatory activity (two-way RM-ANOVA, Time: F(2, 45) = 34.32, p < 0.05; Treatment:
F(2, 45) = 23.10, p < 0.05; Time × Treatment: F(4, 45) = 9.25, p < 0.05) (multiple comparison
test, challenge: F(2, 15) = 14.62, p < 0.05) (Figure 3A,B) compared to the vehicle and nicotine
control groups. Similarly, challenge administration of KCSC B also increased ambulatory
activity (two-way RM-ANOVA, Time: F(2, 45) = 72.18, p < 0.05; Treatment: F(2, 45) = 25.28,
p < 0.05; Time × Treatment: F(4, 45) = 19.24, p < 0.05) (multiple comparison test, challenge:
F(2, 15) = 24.01, p < 0.05) (Figure 3A,C) compared to the vehicle and nicotine control groups.
KCSC A group showed a tendency to increase ambulatory activity at withdrawal day 6
compared to the nicotine group but there was no significant difference (Figure 3A,B).

Challenge administration of KCSC A increased rearing activity (two-way RM-ANOVA,
Time: F(2, 45) = 51.06, p < 0.05; Treatment: F(2, 45) = 19.12, p < 0.05; Time × Treatment:
F(4, 45) = 11.54, p < 0.05) (multiple comparison test, challenge: F(2, 15) = 14.62, p < 0.05)
(Figure 3D) compared to the vehicle and nicotine control groups. However, there was no
difference in the rearing activity between nicotine and KCSC B challenge administration
groups (two-way RM-ANOVA, Time: F(2, 45) = 53.72, p < 0.05; Treatment: F(2, 45) = 15.48,
p < 0.05; Time × Treatment: F(4, 45) = 11.02, p < 0.05) (multiple comparison test, challenge:
F(2, 15) = 13.43, p < 0.05) (Figure 3E). Similar to the ambulatory activity, challenge admin-
istration of KCSC A (two-way RM-ANOVA, Time: F(2, 45) = 61.54, p < 0.05; Treatment:
F(2, 45) = 33.67, p < 0.05; Time × Treatment: F(4, 45) = 14.83, p < 0.05) (multiple comparison
test, challenge: F(2, 15) = 26.18, p < 0.05) (Figure 3F) and KCSC B increased the rotational
activity (two-way RM-ANOVA, Time: F(2, 45) = 103.20, p < 0.05; Treatment: F(2, 45) = 36.08,
p < 0.05; Time × Treatment: F(4, 45) = 25.49, p < 0.05) (multiple comparison test, challenge:
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F(2, 15) = 35.91, p < 0.05) (Figure 3G) compared to the vehicle and nicotine control groups.
However, there was no difference in rearing and rotational activities among the groups
during withdrawal periods (Figure 3D–G).Brain Sci. 2020, 10, x FOR PEER REVIEW 11 of 23 
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Figure 3. Changes in behavioral activities after withdrawal or challenge administration of two KCSCs. Statistical significance
was determined by two-way RM-ANOVA and multiple comparison test with Bonferroni’s post-hoc test. # p < 0.05, vehicle
challenge group vs. nicotine challenge group; * p < 0.05, vehicle challenge group vs. KCSC challenge groups; + p < 0.05,
nicotine challenge group vs. KCSC challenge groups. WD, withdrawal; CH, challenge; AT, ambulatory time; ST, stereotypy
time; RT, resting time. n = 6 per group.
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3.6. Challenge Administration of KCSCs also Increased Ambulatory and Stereotypy Time, but
Decreased Resting Time in Behavioral States

The results revealed that challenge administration of KCSC A increased ambulatory
time (two-way RM-ANOVA, Time: F(2, 45) = 73.51, p < 0.05; Treatment: F(2, 45) = 41.89,
p < 0.05; Time × Treatment: F(4, 45) = 17.84, p < 0.05) (multiple comparison test, chal-
lenge: F(2, 15) = 30.76, p < 0.05) (Figure 3H) compared to the vehicle and nicotine control
groups. Similarly, challenge administration of KCSC B also increased ambulatory time
(two-way RM-ANOVA, Time: F(2, 45) = 93.52, p < 0.05; Treatment: F(2, 45) = 33.52, p < 0.05;
Time × Treatment: F(4, 45) = 22.82, p < 0.05) (multiple comparison test, challenge:
F(2, 15) = 30.67, p < 0.05) (Figure 3I) compared to vehicle and nicotine control groups.
Time spent in stereotypy behaviors was also increased after challenge administration of
KCSC A (two-way RM-ANOVA, Time: F(2, 45) = 91.07, p < 0.05; Treatment: F(2, 45) = 19.22,
p < 0.05; Time × Treatment: F(4, 45) = 16.88, p < 0.05) (multiple comparison test, challenge:
F(2, 15) = 31.39, p < 0.05) and KCSC B (two-way RM-ANOVA, Time: F(2, 45) = 92.23, p < 0.05;
Treatment: F(2, 45) = 23.21, p < 0.05; Time × Treatment: F(4, 45) = 17.86, p < 0.05) (multiple
comparison test, challenge: F(2, 15) = 36.91, p < 0.05) compared to the vehicle control group
(Figure 3J,K). Interestingly, KCSC B increased stereotypy time at withdrawal day 6 (with-
drawal day 6: F(2, 15) = 6.52, p < 0.05) compared to the vehicle and nicotine control groups
(Figure 3K). In contrast, time spent in resting behaviors was decreased after challenge
administration of KCSC A (two-way RM-ANOVA, Time: F(2, 45) = 34.01, p < 0.05; Treatment:
F(2, 45) = 16.61, p < 0.05; Time × Treatment: F(4, 45) = 8.05, p < 0.05) (multiple compari-
son test, challenge: F(2, 15) = 45.71, p < 0.05) and KCSC B (two-way RM-ANOVA, Time:
F(2, 45) = 13.05, p < 0.05; Treatment: F(2, 45) = 10.18, p < 0.05; Time × Treatment: F(4, 45) = 2.96,
p < 0.05) (multiple comparison test, challenge: F(2, 15) = 39.75, p < 0.05) compared to the
vehicle control group (Figure 3L,M). Relative ratios of ambulatory, stereotypy, and resting
times (ambulatory time: stereotypy time: resting time) in the behaviors after challenge
administration of vehicle, nicotine, KCSC A, and KCSC B were as following: (1) Vehicle
(4.17:9.02:86.81); (2) nicotine (27.29:27.00:45.71); (3) KCSC A (39.71:25.76:34.53); (4) KCSC B
(36.24:26.54:37.22) (Supplementary Figure S4).

3.7. Challenge Administration of KCSCs Produced Prolonged Increases in Ambulatory, Rearing,
and Rotational Activities

The results showed that challenge administration of KCSC A produced prolonged
increase in ambulatory activity (two-way RM-ANOVA, Time: F(12, 60) = 27.58, p < 0.05;
Treatment: F(2, 10) = 13.66, p < 0.05; Time × Treatment: F(24, 120) = 5.04, p < 0.05; Figure 4A,B)
(multiple comparison test, P1: F(2, 15) = 18.49, p < 0.05; P2: F(2, 15) = 9.09, p < 0.05; P3:
F(2, 15) = 11.69, p < 0.05; Table 3A), rearing activity (two-way RM-ANOVA, Time:
F(12, 60) = 16.23, p < 0.05; Treatment: F(2, 10) = 13.10, p < 0.05; Time × Treatment:
F(24, 120) = 3.00, p < 0.05; Figure 4D) (multiple comparison test, P1: F(2, 15) = 10.05, p < 0.05; P2:
F(2, 15) = 15.33, p < 0.05; P3: F(2, 15) = 16.08, p < 0.05; Table 3B), and rotational activity (two-
way RM-ANOVA, Time: F(12, 60) = 30.56, p < 0.05; Treatment: F(2, 10) = 24.72, p < 0.05;
Time × Treatment: F(24, 120) = 5.14, p < 0.05; Figure 4F) (multiple comparison test, P1:
F(2, 15) = 35.22, p < 0.05; P2: F(2, 15) = 17.19, p < 0.05; P3: F(2, 15) = 17.64, p < 0.05; Table 3C)
compared to the vehicle and nicotine control groups.

In the KCSC B group, challenge administration of KCSC B also induced prolonged
increases in ambulatory activity (two-way RM-ANOVA, Time: F(12, 60) = 27.91, p < 0.05;
Treatment: F(2, 10) = 27.47, p < 0.05; Time × Treatment: F(24, 120) = 7.77, p < 0.05; Figure 4A,C)
(multiple comparison test, P1: F(2, 15) = 29.08, p < 0.05; P2: F(2, 15) = 9.38, p < 0.05; P3:
F(2, 15) = 11.57, p < 0.05, Table 3A), rearing activity (two-way RM-ANOVA, Time:
F(12, 60) = 20.62, p < 0.05; Treatment: F(2, 10) = 12.96, p < 0.05; Time × Treatment:
F(24, 120) = 2.36, p < 0.05; Figure 4E) (multiple comparison test, P1: F(2, 15) = 9.25, p < 0.05;
P2: F(2, 15) = 10.02, p < 0.05; P3: F(2, 15) = 12.74, p < 0.05; Table 3B), and rotational activity
(two-way RM-ANOVA, Time: F(12, 60) = 25.22, p < 0.05; Treatment: F(2, 10) = 38.82, p < 0.05;
Time × Treatment: F(24, 120) = 7.08, p < 0.05; Figure 4G) (multiple comparison test, P1:
F(2, 15) = 59.63, p < 0.05; P2: F(2, 15) = 13.78, p < 0.05; P3: F(2, 15) = 15.16, p < 0.05; Table 3C)
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compared to the vehicle and nicotine control groups. Accumulative changes in ambulatory,
rearing, and rotational activities at P1, P2, and P3 periods after challenge administration of
vehicle, nicotine, KCSC A, and KCSC B are listed in Table 3.Brain Sci. 2020, 10, x FOR PEER REVIEW 13 of 23 
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Figure 4. Prolonged changes in behavioral activities after challenge administration of two KCSCs. Statistical significance
was determined by two-way RM-ANOVA and multiple comparison test with Bonferroni’s post-hoc test. # p < 0.05, vehicle
challenge group vs. nicotine challenge group; * p < 0.05, vehicle challenge group vs. KCSC challenge groups; + p < 0.05,
nicotine challenge group vs. KCSC challenge groups. WD, withdrawal; CH, challenge; AT, ambulatory time; ST, stereotypy
time; RT, resting time. n = 6 per group.
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Table 3. Accumulative changes in ambulatory, rearing, and rotational activities at P1, P2, and P3 after
challenge administration of vehicle, nicotine, KCSC A, and KCSC B.

Groups A. Ambulatory Activity

P1 (0–20 Min) P2 (20–40 Min) P3 (40–60 Min)

Vehicle challenge 550.33 ± 118.12 137.83 ± 108.50 54.83 ± 23.88
Nicotine challenge 3510.50 ± 468.54 # 1512.83 ± 337.40 # 1037.33 ± 299.56
KCSC A challenge 4305.33 ± 634.05 * 2471.33 ± 547.58 *,+ 2496.00 ± 544.72 *,+

KCSC B challenge 4483.50 ± 446.57 * 1986.00 ± 376.23 * 1693.33 ± 293.24 *,+

Groups B. Rearing Activity

P1 (0–20 Min) P2 (20–40 Min) P3 (40–60 Min)

Vehicle challenge 254.00 ± 80.47 23.67 ± 20.16 12.00 ± 6.91
Nicotine challenge 1003.50 ± 190.27 # 486.50 ± 107.50# 291.83 ± 74.58
KCSC A challenge 1069.67 ± 136.39 * 879.33 ± 154.75*,+ 828.00 ± 162.69 *,+

KCSC B challenge 1051.17 ± 148.83 * 626.67 ± 133.66* 532.67 ± 101.85 *,+

Groups C. Rotational Activity

P1 (0–20 Min) P2 (20–40 Min) P3 (40–60 Min)

Vehicle challenge 22.33 ± 3.71 4.00 ± 2.25 2.83 ± 0.70
Nicotine challenge 89.83 ± 6.72 # 51.83 ± 11.03 # 34.67 ± 9.44
KCSC A challenge 109.50 ± 10.92 * 73.83 ± 9.78 *,+ 74.83 ± 11.48 *,+

KCSC B challenge 123.17 ± 8.60 * 66.17 ± 10.20 * 51.17 ± 6.58 *,+

Statistical significance was determined by two-way RM-ANOVA and multiple comparison test with Bonferroni’s
post-hoc test. # p < 0.05, vehicle challenge group vs. nicotine challenge group; * p < 0.05, vehicle challenge group
vs. KCSC challenge groups; + p < 0.05, nicotine challenge group vs. KCSC challenge groups. n = 6 per group.

3.8. Challenge Administration of KCSCs Induced Prolonged Increases in Ambulatory and
Stereotypy Times, and a Prolonged Decrease in Resting Time in Behavioral States

The results showed that challenge administration of KCSC A produced a prolonged
increase in ambulatory time (two-way RM-ANOVA, Time: F(12, 60) = 35.77, p < 0.05; Treat-
ment: F(2, 10) = 25.75, p < 0.05; Time × Treatment: F(24, 120) = 5.08, p < 0.05; Figure 4H)
(multiple comparison test, P1: F(2, 15) = 77.57, p < 0.05; P2: F(2, 15) = 15.11, p < 0.05; P3:
F(2, 15) = 15.97, p < 0.05; Supplementary Table S2A) and a prolonged decrease in resting
time (two-way RM-ANOVA, Time: F(12, 60) = 25.97, p < 0.05; Treatment: F(2, 10) = 36.82,
p < 0.05; Time × Treatment: F(24, 120) = 4.54, p < 0.05; Figure 4L) (multiple comparison
test, P1: F(2, 15) = 57.74, p < 0.05; P2: F(2, 15) = 32.66, p < 0.05; P3: F(2, 15) = 23.45, p < 0.05;
Supplementary Table S2C) compared to the vehicle and nicotine control groups. However,
there was no significant difference in stereotypy time between challenge administration of
nicotine and KCSC B groups (Figure 4J and Supplementary Table S2B).

Similarly, challenge administration of KCSC B also induced a prolonged increase
in ambulatory time (two-way RM-ANOVA, Time: F(12, 60) = 37.52, p < 0.05; Treatment:
F(2, 10) = 32.48, p < 0.05; Time × Treatment: F(24, 120) = 6.70, p < 0.05; Figure 4I) (multiple
comparison test, P1: F(2, 15) = 77.73, p < 0.05; P2: F(2, 15) = 10.84, p < 0.05; P3: F(2, 15) = 13.16,
p < 0.05; Supplementary Table S2A) compared to the vehicle and nicotine control groups.
However, challenge administration of KCSC B induced a prolonged increase in stereotypy
time (two-way RM-ANOVA, Time: F(12, 60) = 4.15, p < 0.05; Treatment: F(2, 10) = 28.11,
p < 0.05; Time × Treatment: F(24, 120) = 6.29, p < 0.05; Figure 4K) (multiple comparison
test, P1: F(2, 15) = 5.91, p < 0.05; P2: F(2, 15) = 44.88, p < 0.05; P3: F(2, 15) = 15.13, p < 0.05;
Supplementary Table S2B) and a prolonged decrease in resting time (two-way RM-ANOVA,
Time: F(12, 60) = 17.13, p < 0.05; Treatment: F(2, 10) = 33.50, p < 0.05; Time × Treatment:
F(24, 120) = 3.33, p < 0.05; Figure 4M) (multiple comparison test, P1: F(2, 15) = 63.17, p < 0.05;
P2: F(2, 15) = 23.62, p < 0.05; P3: F(2, 15) = 18.81, p < 0.05; Supplementary Table S2C) compared
to the vehicle control group, but not nicotine group. Accumulative changes in ambulatory,
stereotypy, and resting time at P1, P2, and P3 after challenge administration of vehicle,
nicotine, KCSC A, and KCSC B are listed in Supplementary Table S2.
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3.9. In Vitro Calibration of Real-Time Glutamate Biosensing

Glutamate biosensors were calibrated and control experiments were conducted before
and after real-time glutamate biosensing. The mean of sensitivity of glutamate biosen-
sors before measurements was 0.711 ± 0.045 nA/µM, and an approximate two-fold de-
crease (0.424 ± 0.043 nA/µM) in glutamate sensitivity was observed after measurements
(Supplementary Figure S5A). Linear calibration plots were obtained using steady-state
currents and glutamate concentrations from 0 to 4 µM (Supplementary Figure S5B). In
in vitro calibration, there were no changes in currents and glutamate concentrations in
response to the addition of glutamate standard solutions within the glutamate null sen-
sors (before biosensing 0.021 ± 0.004 nA/µM; after biosensing 0.009 ± 0.001 nA/µM)
(Supplementary Figure S5B).

3.10. Repeated Administration of KCSCs Increased Glutamate Concentration in the Dorsal
Striatum

Since repeated administration of nicotine or 3R4F CSC induced behavioral sensitiza-
tion via increased glutamate response in the dorsal striatum [8,29], extracellular glutamate
concentrations in the dorsal striatum was measured to investigate the effect of gluta-
mate response on psychomotor sensitization after repeated administration of KCSCs. The
results showed that repeated administration of KCSC A increased currents (two-way
RM-ANOVA, Time: F(60, 300) = 13.60, p < 0.05; Treatment: F(2, 10) = 36.92, p < 0.05; Time
× Treatment: F(120, 600) = 6.65, p < 0.05) (Figure 5A) and glutamate concentrations ([Glu])
(two-way RM-ANOVA, Time: F(60, 300) = 9.91, p < 0.05; Treatment: F(2, 10) = 39.91, p < 0.05;
Time × Treatment: F(120, 600) = 7.73, p < 0.05) (Figure 5C) compared to the vehicle and
nicotine control groups. In additional analysis, changes in [Glu] was divided into three
different time periods (P1: 0–20 min, P2: 20–40 min, P3: 40–60 min), repeated adminis-
tration of KCSC A increased mean [Glu] at P1, P2, and P3 (multiple comparison test, P1:
F(2, 15) = 46.10, p < 0.05; P2: F(2, 15) = 38.20, p < 0.05; P3: F(2, 15) = 17.55, p < 0.05) (Figure 5E).
Rates of [Glu] change after repeated KCSC A administration were also increased at P1 and
P2 (multiple comparison test, P1: F(2, 15) = 46.10, p < 0.05; P2: F(2, 15) = 8.18, p < 0.05), but
not at P3 compared to the vehicle and nicotine control groups (Figure 5F).

Similarly, repeated administration of KCSC B also increased currents (two-way RM-
ANOVA, Time: F(60, 300) = 10.45, p < 0.05; Treatment: F(2, 10) = 33.99, p < 0.05;
Time × Treatment: F(120, 600) = 7.03, p < 0.05) (Figure 5B), and [Glu] (two-way RM-ANOVA,
Time: F(60, 300) = 7.99, p < 0.05; Treatment: F(2, 10) = 39.24, p < 0.05; Time × Treatment:
F(120, 600) = 7.58, p < 0.05) (Figure 5D) compared to the vehicle and nicotine control groups.
Repeated administration of KCSC B also increased mean [Glu] at P1, P2, and P3 periods
(multiple comparison test, P1: F(2, 15) = 31.44, p < 0.05; P2: F(2, 15) = 34.20, p < 0.05; P3:
F(2, 15) = 15.81, p < 0.05) (Figure 5G), and rates of [Glu] change at P1 and P2 (multiple
comparison test, P1: F(2, 15) = 31.44, p < 0.05; P2: F(2, 15) = 8.69, p < 0.05), but not at P3
(Figure 5H) compared to the vehicle and nicotine control groups. Absolute [Glu] means
and rates of [Glu] change at P1, P2, and P3 periods after 14 days of repeated administration
of KCSC A and KCSC B are listed in Table 4.
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3.11. Relations between Rates of Change in [Glu] in the Dorsal Striatum and Psychomotor
Sensitization Following Repeated Administration of KCSCs

To investigate the relationship between the repeated KCSC-induced increases in glu-
tamate response in the dorsal striatum and psychomotor sensitization, we performed
Pearson’s correlation analysis [8,29,41]. The repeated nicotine group showed strong cor-
relations between rate of [Glu] change and ambulatory activity (R2 = 0.8323, p = 0.001)
(Figure 6A), rearing activity (R2 = 0.7819, p = 0.001) (Figure 6D), and rotational activity
(R2 = 0.7616, p = 0.002) (Figure 6G). Similarly, the rates of [Glu] change after repeated
administration of KCSC A were strongly correlated with ambulatory activity (R2 = 0.7173,
p = 0.001) (Figure 6B), rearing activity (R2 = 0.5531, p = 0.006) (Figure 6E), and rotational
activity (R2 = 0.8305, p = 0.001) (Figure 6H). In the repeated KCSC B group, the result
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showed that rates of [Glu] change were strongly correlated with ambulatory activity
(R2 = 0.8249, p = 0.001) (Figure 6C), rearing activity (R2 = 0.8449, p = 0.001) (Figure 6F), and
rotational activity (R2 = 0.8856, p = 0.001) (Figure 6I).

Table 4. Mean glutamate concentrations ([Glu]) and rate of changes in these concentrations (∆[Glu])
in the dorsal striatum at three different time periods after 14 days repeated administrations of vehicle,
nicotine, KCSC A, and KCSC B.

Groups Mean Of [Glu] (Nm)

0–20 Min 20–40 Min 40–60 Min

14 days of repeated
vehicle −38.76 ± 30.12 −208.02 ± 56.44 −311.49 ± 110.71

14 days of repeated
nicotine 153.70 ± 39.56 # −35.41 ± 52.93 −317.70 ± 113.70

14 days of repeated
KCSC A 470.13 ± 42.72 *,+ 608.43 ± 92.48 *,+ 455.21 ± 92.60 *,+

14 days of repeated
KCSC B 346.11 ± 32.57 *,+ 485.59 ± 73.82 * 414.44 ± 91.82 *,+

Groups ∆[Glu] (Nm)

0–20 Min 20–40 Min 40–60 Min

14 days of repeated
vehicle −38.76 ± 30.12 −169.25 ± 67.53 −103.47 ± 55.11

14 days of repeated
nicotine 153.70 ± 39.56 # −189.11 ± 71.60 −282.30 ± 80.12

14 days of repeated
KCSC A 470.13 ± 42.72 *,+ 133.30 ± 51.65 *,+ −153.22 ± 38.52

14 days of repeated
KCSC B 346.11 ± 32.57 *,+ 139.47 ± 45.10 *,+ −71.15 ± 48.66

Statistical significance was determined by two-way RM-ANOVA and multiple comparison test with Bonferroni’s
post-hoc test. # p < 0.05, repeated vehicle group vs. repeated nicotine group; * p < 0.05, repeated vehicle group vs.
repeated KCSC groups; + p < 0.05, repeated nicotine group vs. repeated KCSC groups. n = 6 per group.Brain Sci. 2020, 10, x FOR PEER REVIEW 18 of 23 
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4. Discussion

Tobacco plants and products, such as cigarettes and chewing tobacco, contain a
psychoactive compound, nicotine as well as non-nicotine alkaloids, such as nornicotine,
cotinine, anabasine, anatabine, and etc. [10–13]. Previous studies demonstrated that the
content and ratio of nicotine and non-nicotine alkaloids in cigarette products differ signifi-
cantly from brand to brand, but in general, most cigarette products consist of high amount
of nicotine (more than 90%) and also contain non-nicotine alkaloids including nornicoitne,
anatabine, and anabasine [12,13]. Consistently, results from this study demonstrated that
KCSC A and KCSC B included more than 95% of nicotine as well as non-nicotine alkaloids,
such as nornicotine (KCSC A: 0.49%, KCSC B: 0.47%), cotinine (KCSC A: 0.12%, KCSC B:
0.15%), anatabine (KCSC A: 3.40%, KCSC B: 3.46%), anabasine (KCSC A: 0.10%, KCSC
B: 0.08%), myosmine (KCSC A: 0.02%, KCSC B: 0.02%), norharmane (KCSC A: 0.01%,
KCSC B: 0.01%), and harmane (KCSC A: 0.01%, KCSC B: 0.01%). Taken together, these
findings suggest that the two different commercial cigarette products in South Korea also
contained psychoactive components, such as nicotine and non-nicotine alkaloids like other
cigarette products.

It is well-known that non-nicotine tobacco constituents act on nAChRs in the reward
system as well as nicotine due to their structural similarities to nicotine, resulting in induc-
ing nicotine-like behavioral effects in rodents [14,15,17]. Previous studies demonstrated
that each of these non-nicotine alkaloids differentially regulates reinforcing properties and
discriminative-stimulus effects of nicotine in self-administration and drug-discrimination
paradigms, respectively [17–19]. Furthermore, exposure to cigarette smoke enhances
discriminative-stimulus effects more than exposure to nicotine alone [42]. Our previous
study also demonstrated that repeated exposure to cigarette smoke produced hypersen-
sitization of psychomotor behaviors more than nicotine alone, and these increases in
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psychomotor activities were more prolonged than nicotine alone [29]. Consistent with
these findings, we observed that repeated exposure to KCSC A and KCSC B significantly in-
creased ambulatory, rearing, and rotational activities compared to repeated nicotine alone,
and these increases in psychomotor activities were significantly sustained compared to
nicotine alone. These findings suggest that cigarette smoke of commercial cigarette brands
also has stronger psychoactive properties on psychomotor behaviors compared to those
of nicotine alone. Furthermore, repeated exposure to KCSC A and KCSC B also increased
time spent in ambulatory and stereotypy behaviors compared to repeated exposure to
nicotine alone. Based on these findings, it is possible to consider the stronger psychoactive
effects of cigarette smoke on psychomotor behaviors are due to long-lasting synergistic
actions of nicotine and non-nicotine alkaloids on nAChRs in the dorsal striatum.

Re-exposure to drugs after drug abstinence is one of the major factors causing the
recurrence of psychoactive behavioral changes, such as behavioral sensitization through
drug-induced physiological changes in the reward system [26,43]. In our previous study,
re-exposure to nicotine after nicotine withdrawal period induces a relapse of psychomotor
sensitization, which is similar degree of sensitized behaviors by repeated nicotine expo-
sure [8]. Consistently, our results demonstrated that challenge administration of KCSC A
and KCSC B produced psychomotor sensitization in ambulatory, rearing, and rotational
activities and time spent in ambulatory and stereotypy behaviors similar to those of re-
peated KCSC A and KCSC B administration. Additionally, the increases in psychomotor
behaviors by challenge administration of KCSC A and KCSC B were higher than challenge
nicotine administration. Taken together, these findings suggest that re-exposure to cigarette
smoke is crucial to reinstate psychomotor sensitization and has a higher relapse potential
to tobacco dependence compared to re-exposure to nicotine alone. The present data show
that administration of KCSC A produced a slight increase in ambulatory activity, while
administration of KCSC B produced a significant increase in stereotypy time at the sixth
withdrawal day compared to the vehicle and nicotine control groups, suggesting that
different pharmacokinetics of the two KCSCs in psychomotor sensitization, even though
we do not have any supporting evidence.

It is well-known that glutamatergic neurotransmission is involved in the development
of drug dependence through the mediation of synaptic plasticity [44,45]. The dorsal stria-
tum is a forebrain structure that integrates nigrostriatal dopaminergic and corticostriatal
glutamatergic neurotransmissions and is crucial in drug-mediated dependence, motivated
behavior, and habitual behaviors [8,30,46,47]. Exposure to psychoactive drugs, such as
nicotine or cocaine, increases glutamatergic response in the dorsal striatum and increases
addictive behaviors including behavioral sensitization [8,30,48–50]. In a previous study,
repeated administration of CSC extracted from 3R4F Kentucky reference cigarette caused
more prolonged increase in glutamate concentration in the dorsal striatum compared to
nicotine alone [29]. Similarly, in this study, it was found that repeated exposure to KCSC A
and KCSC B increased extracellular glutamate concentrations in the dorsal striatum more
than nicotine alone. Considering that both of KCSC A and KCSC B contained non-nicotine
alkaloids as well as nicotine, it is possible to conclude that the prolonged potentiation of
glutamate response in the dorsal striatum by repeated exposure to cigarette smoke was
due to hyperstimulation of nAChRs by synergistic actions of nicotine and non-nicotine
alkaloids in cigarette smoke. However, there is a possibility that potentiation of dopamin-
ergic response contributes to elevate glutamatergic response via trans-synaptic activation
of forebrain basal ganglia [44]. Additionally, the glutamate response in other brain regions,
such as the NAc, amygdala, and hippocampus is also closely related to the development of
drug-dependent behaviors [24,51,52]. For this reason, the relationship between changes in
glutamate release in these brain regions and cigarette smoke-induced hypersensitization of
behavior should be determined in further studies.

Drug-induced psychomotor sensitization has been shown to be related to hyper-
activation of glutamatergic neurotransmission in the dorsal striatum and NAc [8,29,53].
Consistent with these findings, the present study showed that the increases in psychomo-
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tor behaviors (ambulatory, rearing, and rotational activities) were highly correlated with
changes in glutamate concentrations in the dorsal striatum following the repeated exposure
to KCSC A and KCSC B. Taken together, these findings suggest that the long-lasting gluta-
matergic response in the dorsal striatum may contribute to prolonged hypersensitization
of psychomotor behaviors following exposure to commercial cigarette smoke.

Individual administration of each non-nicotine alkaloid, such as cotinine, myosmine,
and anatabine produced distinctive patterns of effects on ambulatory activity that were
time and dose-dependent [54]. Additionally, treatment of anatabine, cotinine, or myosmine
increases nicotine-induced general activity [18]. In self-administration paradigm, rats
receiving nicotine with minor alkaloids produced a higher number of reinforcing effects
and hypersensitization of ambulatory activity than those of nicotine alone [18]. Taken
together, these findings suggest that the type of the compound exposed with the nicotine
and the amount of nicotine exposed are important to alter the psychoactive properties of
nicotine. Consistently, the present results showed that the relative ratio of nicotine and
non-nicotine alkaloids in the KCSC A and KCSC B was slightly different. Additionally, the
changes in hyperactivation of glutamate response and hypersensitization of psychomotor
behaviors (frequency and duration) by exposure to KCSC A and KCSC B showed a similar
pattern, but slightly different in degree. Taken together, these findings suggest that the onset
of tobacco-associated glutamate response and behavioral changes depends on the levels and
composition ratio of psychoactive compounds contained in commercial cigarette products.

5. Conclusions

Repeated and challenge administration of KCSCs prepared from two commercial
cigarettes caused more sustained increases in psychomotor behaviors and ambulatory
times than the repeated and challenge administration of nicotine alone. In real-time
glutamate biosensing, the repeated administration of KCSCs induced prolonged increases
in extracellular glutamate concentration in the dorsal striatum. These prolonged increases
in psychomotor behaviors and glutamate response by repeated administration of KCSCs
are strongly and positively correlated. Taken together, these data suggest that the prolonged
increases in glutamate response of the dorsal striatum and ambulatory times in behavioral
states result in hypersensitization of psychomotor behaviors, which are induced by the
synergistic effects of nicotine and non-nicotine alkaloids in commercial cigarette smoke. In
addition, the changes in glutamate response in the dorsal striatum by repeated exposure to
commercial cigarettes may contribute to neuroadaptation during withdrawal period, which
is closely related to behavioral sensitization in relapse. In-depth approaches in exploring
the glutamate receptor-mediated neurotransmission in psychomotor sensitization after
repeated and challenge exposure to commercial cigarette smoke or withdrawal are needed
in further study.
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ure S5, In vitro current-time and calibration plots; Supplementary; Table S1, Accumulative changes
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Accumulative changes in ambulatory, stereotypy, and resting time after the challenge administration
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