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Abstract: Central nervous system (CNS) hyperexcitability is a clinically significant feature of acute 

ethanol withdrawal. There is evidence for a genetic contribution to withdrawal severity, but specific 

genetic risk factors have not been identified. The gene glyoxalase 1 (Glo1) has been previously 

implicated in ethanol consumption in mice, and GLO1 inhibition can attenuate drinking in mice and 

rats. Here, we investigated whether genetic and pharmacological manipulations of GLO1 activity 

can also mediate ethanol withdrawal seizure severity in mice. Mice from two transgenic lines 

overexpressing Glo1 on different genetic backgrounds (C57BL/6J (B6) and FVB/NJ (FVB)) were 

tested for handling-induced convulsions (HICs) as a measure of acute ethanol withdrawal. 

Following an injection of 4 g/kg alcohol, both B6 and FVB mice overexpressing Glo1 showed 

increases in HICs compared to wild-type littermates, though only the FVB line showed a statistically 

significant difference. We also administered daily ethanol injections (2 g/kg + 9 mg/kg 4-

methylpyrazole) to wild-type B6 mice for 10 days and tested them for HICs on the 10th day 

following treatment with either a vehicle or a GLO1 inhibitor (S-bromobenzylglutathione 

cyclopentyl diester (pBBG)). Treatment with pBBG reduced HICs, although this effect was only 

statistically significant following two 10-day cycles of ethanol exposure and withdrawal. These 

results provide converging genetic and pharmacological evidence that GLO1 can mediate ethanol 

withdrawal seizure susceptibility. 
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1. Introduction 

Alcohol (ethanol) withdrawal is a key feature of alcohol dependence and includes 

physiological and affective symptoms, such as tremors, nausea, vomiting, irritability, 

insomnia, and anxiety. Withdrawal symptoms are included in the diagnostic criteria for 

an alcohol use disorder [1], and withdrawal may be related to relapse risk, e.g., [2–4]. In 

severe cases, acute withdrawal can lead to serious consequences, such as delirium, 

seizures, or even death [5–7]. The determinants of ethanol withdrawal severity are not 

fully known, but there are likely multiple contributing factors, including drinking history, 

past withdrawal experience, co-occurring use of other drugs, structural brain lesions, and 

genetics [5,8]. Understanding the biological factors that confer risk for severe ethanol 

withdrawal may therefore lead to improved prevention and treatment options. 

There is considerable evidence from both human and model organism studies for 

genetic contributions to ethanol withdrawal severity [9–13]. In humans, gene 

polymorphisms associated with many neurotransmitter systems have been explored in 

relation to ethanol withdrawal (for a review, see [8]). Several of these candidate genes and 

association studies have identified relationships between specific genetic variants and 

ethanol withdrawal severity [14–18]. However, large-scale human genetics studies have 
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predominately focused on alcohol consumption and alcohol use disorder diagnoses rather 

than withdrawal severity. Animal models are a useful complementary tool for studying 

novel genetic contributions to ethanol-related traits, since animal models can isolate 

specific aspects of ethanol withdrawal, such as seizure susceptibility. The heritability of 

susceptibility to ethanol withdrawal seizures has been well-established in mouse models: 

inbred mouse strains and recombinant inbred panels show a high degree of phenotypic 

variation for this trait [11,19–21], and selective breeding has produced withdrawal-

seizure-prone and resistant lines of mice [10,22]. 

Here, we used a mouse model of ethanol withdrawal to investigate the role of 

glyoxalase 1 (GLO1) in withdrawal seizure severity. GLO1 is a ubiquitously expressed 

enzyme that metabolizes the glycolytic byproduct methylglyoxal (MG). We have 

previously shown that MG can act as a partial agonist at GABAA receptors and that the 

inhibition of GLO1 leads to increased levels of MG [23]. Genetic and pharmacological 

manipulations of the GLO1 system, as well as direct administration of MG, have been 

associated with changes in anxiety- and depression-like behaviors, ethanol consumption, 

and the seizure threshold. Specifically, decreased anxiety-like behavior [23,24], decreased 

depression-like behavior [25,26], decreased ethanol consumption [27,28], and decreased 

susceptibility to pilocarpine- and picrotoxin-induced seizures [29] have all been seen 

following GLO1 inhibitor treatment. Some of these effects are also produced by the genetic 

knockdown of Glo1 or direct MG administration. In contrast, Glo1 overexpression 

produces the opposite effects (i.e., increased anxiety-like behavior and ethanol 

consumption) [23,25,27]. Furthermore, Glo1-overexpressing mice show increased GLO1 

enzymatic activity and decreased whole-brain MG levels, whereas wild-type mice treated 

with a GLO1 inhibitor show the opposite effects [23]. 

We hypothesize that modulating GLO1 activity could impact ethanol withdrawal, 

potentially through downstream effects on MG levels and subsequent GABAergic 

activation. Significant changes in GABAergic signaling following chronic ethanol use are 

believed to underlie, in part, the central nervous system hyperexcitability seen in ethanol 

withdrawal (e.g., [30–32]). In the present studies, we examined whether the 

overexpression of Glo1 could potentiate ethanol withdrawal seizure severity and whether 

the pharmacological manipulation of GLO1 activity by treatment with a GLO1 inhibitor 

could attenuate ethanol withdrawal seizure severity in mice. 

2. Materials and Methods 

2.1. Animals and Husbandry 

All Glo1 transgenic mice used in experiments 1 and 2 were bred in-house. Generation 

of the Glo1 transgenic mice via the insertion of a BAC transgene has been previously 

described [23]. The Glo1 transgenic lines were maintained by breeding male mice that 

were heterozygous for the Glo1 overexpression with wild-type female mice (B6 or FVB 

depending on the line). The resulting heterozygous and wild-type littermates were used 

as experimental animals. For experiment 3, wild-type B6 mice were purchased from the 

Jackson Laboratory (Bar Harbor, ME, USA). For all experiments, mice were housed 2–5 

per cage on wood chip bedding and food (Envigo 8604, Indianapolis, IN, USA) and water 

were provided ad libitum. Mice were maintained on a 12 h/12 h light/dark cycle with 

lights on at 06:00. Behavioral testing was conducted during the light phase. All procedures 

were approved by the University of California San Diego Institutional Animal Care and 

Use Committee (#S15226) and were conducted in accordance with the NIH Guidelines for 

the Care and Use of Laboratory Animals. 

2.2. Handling-Induced Convulsions 

Handling-induced convulsions (HICs) are used to assess the susceptibility to ethanol 

withdrawal seizures and serve as a measure of central nervous system (CNS) 

hyperexcitability. We used the seven-point scale developed by Crabbe and colleagues 
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(e.g., [33]) based on the original procedure by Goldstein and Pal [34]. Briefly, mice were 

lifted by the tail and observed for convulsion signs. If lifting alone did not produce a 

convulsion, the mouse was gently spun in a 360-degree arc. Scores ranged from 0 (no 

convulsion) to 7 (severe and sometimes lethal seizure due to environmental stimuli). 

Baseline HIC assessments were made prior to ethanol administration. In experiments 1 

and 3, HICs were assessed hourly from 2–10 h after the final ethanol injection. In 

experiment 2, HICs were assessed only during peak withdrawal (6–8 h after the final 

ethanol injection). In all experiments, a final HIC measurement was taken 24 h into the 

withdrawal. Experimenters were blinded to the genotype and treatment for all HIC 

assessments, and the same experimenter performed all HIC assessments within a given 

experiment. A withdrawal severity score was calculated by summing the total post-

ethanol HIC scores to find the area under the curve (AUC) of the HIC time course in 

experiments 1 and 2, and the HIC scores from hours 4–10 in experiment 3 [35,36]. The 

peak HIC score was determined by averaging the highest HIC score recorded for each 

animal with the HIC scores from the hourly assessments immediately preceding and 

following the time of the maximum score [21]. In instances where there were multiple 

time points with the same maximum score, the earliest occurrence was used. Latency to 

the peak HIC score was the time at which the highest score first occurred. Animals that 

did not show any HICs were excluded from the latency analyses. 

2.3. Drugs 

The GLO1 inhibitor S-bromobenzylglutathione cyclopentyl diester (pBBG) was 

synthesized in the laboratory of Alexander Arnold at the University of Wisconsin-

Milwaukee, as previously described [27]. The dose of 25 mg/kg was chosen because it was 

believed to be an intermediate dose in the behaviorally active range; 12.5 mg/kg and 50 

mg/kg doses were shown to reduce ethanol drinking and anxiety-like behavior, 

respectively, in previous studies [23,27], and 25 mg/kg can attenuate withdrawal-

associated escalation of ethanol drinking in dependent rats [28]. pBBG was dissolved in a 

vehicle (8% DMSO/18% Tween80/saline [Sigma-Aldrich, St. Louis, MO, USA]) and 

administered via intraperitoneal injection (i.p.;injection volume 0.01 mL/g). Ethanol 

(Deacon Laboratories Inc., King of Prussia, PA, USA) was mixed in saline (20% v/v) and 

administered i.p. at a dose of 4 g/kg in experiments 1 and 2. In experiment 3, the alcohol 

dehydrogenase inhibitor 4-methylpyrazole (9 mg/kg; Sigma-Aldrich, St. Louis, MO, USA) 

was dissolved in 20% ethanol solution or physiological saline such that animals received 

only a single injection for both the ethanol or saline and pyrazole administration.  

2.4. Experiment 1: Acute Ethanol Withdrawal in Glo1 Transgenic Mice on a B6 Background 

Male and female mice from the B6 background Glo1 transgenic line were used in this 

experiment (n = 4/sex/genotype). All animals were between 59–153 days at the start of 

testing. Mice were weighed, assessed for a baseline HIC score, and then injected i.p. with 

4 g/kg ethanol and returned to the home cage. Starting two hours after the ethanol 

injection, mice were assessed hourly for HICs with the final HIC assessment made at 10 h 

after the injection. The following morning, 24 h after the previous injection, the final HIC 

assessment was made. 

2.5. Experiment 2: Acute Ethanol Withdrawal in Glo1 Transgenic Mice on an FVB Background 

Because the B6 background mice in experiment 1 showed limited ethanol withdrawal 

seizure susceptibility, we sought to extend our studies to include FVB Glo1 transgenic 

mice because FVB mice have higher HIC scores during ethanol withdrawal than B6 mice 

[21]. Peak withdrawal scores were seen from 6–8 h after the injection in experiment 1; 

therefore, in experiment 2, we limited HIC assessments to this peak withdrawal window. 

Only females were used for experiment 2 due to animal availability (n = 9–12/genotype); 

all mice were 241–287 days of age at testing. As in experiment 1, mice were weighed, given 



Brain Sci. 2021, 11, 127 4 of 11 
 

 

a baseline HIC assessment, and then injected with 4 g/kg ethanol and returned to their 

home cages. HICs were assessed at 6, 7, and 8 h after the injection and again the next 

morning at 24 h after the injection. 

2.6. Experiment 3: GLO1 Inhibitor Effects on Chronic Ethanol Withdrawal 

To assess whether pharmacological manipulations of GLO1 activity could also 

influence ethanol withdrawal, we tested whether the GLO1 inhibitor pBBG could 

attenuate withdrawal seizure severity following chronic ethanol exposure. Importantly, 

GLO1 inhibition should produce effects that are opposite to those produced by Glo1 

overexpression. Male B6 mice were used for this experiment (n = 11–13/treatment group); 

all animals were 75–77 days of age at the start of testing. Male B6 animals were chosen 

because the majority of our studies examining GLO1 inhibitor effects on behavior and 

effective dose ranges have used male B6 mice. Because wild-type B6 animals showed 

limited withdrawal seizure susceptibility following acute ethanol injection in experiment 

1, we used a chronic ethanol dosing model in this experiment to induce dependence. 

Specifically, we used a 10-day ethanol injection paradigm adapted from Perez and De 

Biasi [37] that has been previously shown to produce somatic and affective signs of 

withdrawal in male B6 mice. The mice received a daily injection of either 2 g/kg ethanol 

(withdrawal group) or 0.9% saline (non-withdrawal control group) with 9 mg/kg 4-

methylpyrazole for 10 days.  

Baseline HICs were assessed before the first injection was given. On day 10, the HIC 

time course was assessed starting 2 hr after the final injection and again hourly until 10 h 

post injection. At 3.5 h after the final ethanol injection, mice received an i.p. injection of 

either 25 mg/kg pBBG or a vehicle. This pretreatment time was chosen to give sufficient 

time for GLO1 inhibition to lead to increased MG levels during peak withdrawal. A final 

HIC assessment was made the next day at 24 h after the final ethanol injection. 

To determine whether the effectiveness of pBBG changed with increased ethanol 

exposure, and due to the low levels of withdrawal seizure susceptibility seen following 

the initial ethanol exposure, we repeated the same procedure for a second cycle of ethanol 

exposure and withdrawal. Following the first 10-day ethanol withdrawal cycle, mice were 

allowed to remain undisturbed for 6 weeks in their home cages before we repeated the 

10-day procedure described above. All mice received the same drug treatment and the 

same experimental procedures were used in both ethanol withdrawal cycles, including a 

re-baselining HIC assessment before the start of the second ethanol exposure period. 

2.7. Statistical Analyses 

Data are expressed as mean ± SEM. All statistical analyses were performed using 

SPSS (version 27; IBM Corp, Armonk, NY, USA). The HIC time course data were analyzed 

using mixed-model analysis of variance (ANOVA) with a repeated measure of time-point 

and between-subject factors of genotype, treatment group, and/or sex, as relevant for the 

given experiment. A Huynh–Feldt correction for violations of sphericity was used for 

repeated measures analyses. The HIC AUC, peak HIC score, and latency to peak HIC 

score data were analyzed using one- or two-way ANOVA. Significance was set at α = 0.05 

for all tests. Individual-level data can be found in the supplement in Table S1 (total 

number of mice per maximum HIC score in each experiment). 

3. Results 

3.1. Experiment 1: Acute Ethanol Withdrawal in Glo1 Transgenic Mice on a B6 Background 

The withdrawal HIC time course (Figure 1a) was analyzed using a mixed-model 

ANOVA with a repeated measure of time and between-subject factors of genotype and 

sex. There were statistical trends toward the main effects of time (F5.83,70 = 1.95, p = 0.086) 

and genotype (F1,12 = 4.2, p = 0.063), and a main effect of sex (F1,14 = 4.2, p = 0.022, males > 

females). There were no significant interactions between any factors (p > 0.1 for all). The 
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HIC time course, AUC, and peak HIC scores for males and females (collapsed on 

genotype) are shown in Supplemental Figure S1. The data in Figure 1 are shown broken 

down by genotype to allow for comparison with the results of experiment 2. 

Figure 1. Acute ethanol withdrawal as assessed using handling-induced convulsions (HICs) in wild-type (WT) and 

Glo1-overexpressing (TG) mice on a C57BL/6J (B6) genetic background. Panel (a) shows the time course of the 

withdrawal, with baseline HIC measurements made immediately before the ethanol injection. There was a statistical 

trend of overexpressing mice trending toward higher HIC scores across the time course. Panel (b) shows the cumulative 

HIC scores (area under the curve (AUC)) for each genotype. Panel (c) shows the peak HIC score for each genotype. 

Genotype differences for both the AUC and peak HIC scores were not statistically significant. n = 8/genotype. 

To determine the differences in overall withdrawal severity, we analyzed the area 

under the HIC curve. The HIC AUC did not differ significantly between the genotypes 

(F1,12 = 2.35, p = 0.151; Figure 1b), though there was a statistical trend toward a main effect 

of sex (F1,12 = 4.17, p = 0.064; Figure S1b). There were no main effects of either genotype 

(F1,12 = 1.26, p = 0.283; Figure 1c) or sex (F1,12 = 2.84, p = 0.118; Figure S1c) for the peak HIC 

score (Figure 1c). The latency to peak HIC also showed no main effects of sex or genotype 

(F1,5 ≤ 0.091, p ≥ 0.771, data not shown). There were no significant genotype × sex 

interactions for any measure (p > 0.1 for all). 

3.2. Experiment 2: Acute Ethanol Withdrawal in Glo1 Transgenic Mice on an FVB Background 

The withdrawal HIC time course (Figure 2a) was analyzed using a mixed-model 

ANOVA with a repeated measure of time and a between-subjects factor of genotype. 

There were main effects of time (F3.88,73.68 = 37.02, p < 0.001) and genotype (F1,19 = 6.32, p = 

0.021), but no significant time × genotype interaction. Analysis of the HIC AUC (Figure 

2b) and peak HIC score (Figure 2c) showed that transgenic mice displayed significantly 

greater withdrawal severity (F1,19 = 5.24, p = 0.034) and higher peak HIC scores (F1,19 = 4.99, 

p = 0.038) than wild-type mice. The latency to peak HIC did not differ between the 

genotypes (F1,18 = 0.015, p = 0.903, data not shown). 
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Figure 2. Acute ethanol withdrawal as assessed using HICs in wild-type (WT) and Glo1-overexpressing (TG) mice on 

an FVB/NJ (FVB) genetic background. Panel (a) shows Table 1. overexpressing mice having higher HIC scores across 

Table 1. overexpressing mice also showed greater cumulative seizure susceptibility (area under the curve (AUC), panel 

(b)), and higher peak HIC scores than WT littermates (panel (c)). * indicates p < 0.05. n = 9–12/genotype. 

3.3. Experiment 3: GLO1 Inhibitor Effects on Chronic Ethanol Withdrawal 

Figure 3 shows the withdrawal HIC measures after one or two cycles of chronic 

ethanol treatment. No animals in the non-withdrawal control groups (saline-vehicle and 

saline-pBBG) showed any seizure activity (0 scores for all animals at all time points); 

therefore, only the data from the withdrawal group are reported here. Analysis with 

mixed-model ANOVA of the HIC time course found a main effect of time following a 

single ethanol cycle (Figure 3a: F3.19,70.06 = 3.24, p = 0.025) and a trend toward a main effect 

of genotype (F1,22 = 3.28, p = 0.084), but it did not reach the level of statistical significance. 

There was also no significant treatment × time interaction (p > 0.1). After two cycles of 

ethanol exposure, there were main effects of both time and treatment (Figure 3b: F2.77,61.02 

= 4.44, p = 0.008 and F1,22 = 5.38, p = 0.03, respectively). The time × treatment interaction was 

not statistically significant (F2.77,61.02 = 2.28, p = 0.093). 

The AUC was calculated for hours 4–10, as this was the time range when the GLO1 

inhibitor treatment was expected to have an effect. Analysis of the area under the HIC 

curve showed that following one cycle of ethanol, there was a trend toward a lower HIC 

AUC in the inhibitor-treated group compared to the vehicle group (Figure 3c: F1,22 = 3.38, 

p = 0.079), but it was not statistically significant. There was also no significant main effect 

of the treatment on the peak HIC score (Figure 3d; F1,22 = 3.28, p = 0.084) or latency to peak 

HIC (F1,6 = 0.19, p = 0.68, data not shown) after one cycle of ethanol. In contrast, after two 

cycles of ethanol exposure, there were significant effects of the treatment on both the HIC 

AUC (Figure 3e) and peak HIC score (Figure 3f), with GLO1 inhibition significantly 

reducing both measures (F1,22 = 5.38, p = 0.03 for both). The latency to peak HIC again did 

not differ between the groups (F1,6 = 0.56, p = 0.482, data not shown). 

Because of the low overall withdrawal scores in the vehicle-treated animals (HIC 

scores ranged from 0–1) and the potential of a floor effect, one-sample t-tests (two-tailed) 

were used to determine whether the HIC AUC in each cycle was significantly different 

from 0 (AUC for non-withdrawal control groups). The HIC AUC was significantly 

different from 0 following both one and two cycles of ethanol treatment (cycle 1: t(12) = 

2.84, p = 0.015; cycle 2: t(12) = 2.99, p = 0.011; Bonferroni corrected α = 0.025), indicating that 

there was a measurable withdrawal in the vehicle-treated group from which reductions 

due to the pBBG treatment could be assessed. 
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Figure 3. HIC time courses (a,b), area under the HIC curve (AUC) from hours 4–10 (c,d), and peak HIC scores (e,f) after 

one (left column) and two (right column) withdrawal cycles. Baseline HIC measurements were made before the start of 

each 10-day ethanol exposure period. Injections of GLO1 inhibitor (pBBG, 25 mg/kg) or the vehicle (veh) were given 3.5 h 

after the final ethanol injection (indicated by arrows). * indicates a statistically significant difference from the vehicle-

treated mice (p < 0.05). n = 11–13/treatment group. 
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4. Discussion 

In these experiments, we showed that the overexpression of the gene Glo1 can 

produce increased ethanol withdrawal severity, as assessed using HICs. Furthermore, the 

treatment of wild-type animals with a GLO1 inhibitor had the opposite effect, namely, 

attenuating ethanol withdrawal seizure severity in mice undergoing a chronic ethanol 

exposure procedure. Taken together, these results provide evidence that GLO1 activity 

modulated CNS hyperexcitability during ethanol withdrawal in mice. 

Analysis of the HIC time course in experiment 1 showed a weak trend toward 

increased HIC scores in mice overexpressing Glo1 on a B6 background, but this difference 

did not reach the threshold for statistical significance. In experiment 2, however, 

overexpression of Glo1 on an FVB background was found to significantly increase both 

the HIC AUC and peak HIC score. B6 mice have been previously shown to be largely 

resistant to ethanol withdrawal seizures [20,38–40] and this is consistent with our findings 

here. Most animals in experiment 1 had low or no seizure activity and the observed HIC 

scores only ranged from 0–2, meaning that the most severe seizure observed was a tonic 

convulsion after spinning (Table S1). In contrast, mice in experiment 2 showed much 

greater seizure activity, with HIC scores ranging from 0–4 (a score of 4 corresponds to a 

tonic convulsion when the mouse is lifted by the tail, with no spin required to elicit the 

convulsion). This difference in withdrawal severity between the two transgenic lines 

suggests that the genetic background may be an important mediator of Glo1′s effects on 

ethanol withdrawal. The two transgenic lines also differed in their number of copies of 

Glo1 (the B6 line has 17 copies, whereas the FVB line has 48 copies), and this could have 

also contributed to the differences in withdrawal potentiation between the lines. 

In experiment 3, we found that pharmacological inhibition of GLO1 produced the 

opposite effects to the genetic overexpression of Glo1 (i.e., reduced HICs during ethanol 

withdrawal). Interestingly, treatment with the GLO1 inhibitor pBBG only produced a 

trend toward an effect following one cycle of ethanol exposure but led to significant 

decreases in HIC severity after two cycles. This suggests that GLO1 inhibition may be 

more effective in animals with a greater dependence history. This is consistent with 

previous findings, where pBBG was more effective at reducing ethanol drinking in 

dependent rats compared to non-dependent rats [28]. In the present study, there was no 

significant ethanol cycle × treatment group interaction for either the AUC or peak HIC 

score (data not shown); therefore, we cannot state conclusively what may be driving the 

increased efficacy seen with two ethanol withdrawal cycles. There is considerable 

evidence that ethanol withdrawal severity increases with repeated withdrawal experience 

(“kindling” effect) (e.g., [41–43]). It could be that withdrawal severity increased modestly 

with the repeated ethanol cycles, thereby eliminating any floor effect and making it easier 

to see a statistically significant reduction in seizure activity following the pBBG treatment. 

Alternatively, it is possible that pBBG is more effective in animals with a greater ethanol 

history due to the subsequent neuroadaptations or a combination of these factors. 

To our knowledge, these studies are the first examination of GLO1 activity as a 

potential mediator of ethanol withdrawal severity. Previous work in the lab has 

demonstrated that naïve Glo1 transgenic mice have increased GLO1 enzymatic activity 

and decreased brain MG levels compared to wild-type littermates[23], though it is 

unknown whether this genotypic difference persists in ethanol-treated animals. MG 

treatment can reduce both the severity and duration of pharmacologically induced 

seizures, as well as electroencephalogram measures of seizure activity in mice [29]. 

Electrophysiological studies have also shown that MG can act as an agonist at GABAA 

receptors [23]. Chronic ethanol produces significant neuroadaptations, particularly in the 

GABA and glutamate systems, which underlie some of the symptoms of ethanol 

withdrawal (e.g., [30,44–46]). Therefore, one possible explanation for the effects of GLO1 

manipulations on ethanol withdrawal seizures may be subsequent downstream changes 

in MG levels and activity at GABAA receptors. However, it should be noted that we did 

not directly measure MG levels during withdrawal in these studies, and therefore these 
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possibilities are speculative. The direct measurement of MG brain levels during 

withdrawal will be an important step for determining how the glyoxalase system may 

specifically be altered by ethanol treatment and subsequent withdrawal. GLO1′s effects 

on negative affective changes during protracted abstinence should also be examined, since 

many of these changes (e.g., increased anxiety- and depression-like behavior) have been 

seen with genetic and pharmacological manipulation of GLO1 activity in non-dependent 

mice [23–25]. 

There are some limitations of the present studies that should be noted. First, potential 

sex differences were only directly examined in experiment 1, and the number of animals 

per sex per genotype likely provided limited power for identifying interactions with sex. 

However, we did see significant and consistent effects of GLO1 manipulations in both 

male and female animals in experiments 2 and 3, even though the sexes were not directly 

compared in these experiments. Mice in experiment 2 were also older on average than 

mice in the other two experiments, and potential age effects cannot be ruled out with the 

current experimental design. However, the parallel effects seen with the genetic 

overexpression of Glo1 and pharmacological inhibition in two different inbred strains, as 

well as the consistency in findings in both acute and chronic withdrawal models, suggest 

that the role of GLO1 in ethanol withdrawal severity generalizes across multiple 

populations and conditions. Additionally, although GLO1 inhibition reduced HICs, it did 

not return animals completely to the baseline levels. Testing a wider range of pBBG doses 

could help to determine whether there is an optimal dose that can fully eliminate 

withdrawal seizures. Finally, the overall level of withdrawal severity seen in experiments 

1 and 3 was low, likely due to the use of B6 mice, and future studies in this genotype might 

benefit from a more extensive ethanol exposure method to induce greater dependence 

(e.g., chronic-intermittent ethanol vapor exposure). 

In conclusion, we provided converging genetic and pharmacological evidence that 

GLO1 activity mediates ethanol withdrawal seizure susceptibility. In mice, the 

overexpression of Glo1 contributes to increased withdrawal seizure severity and the 

inhibition of GLO1 attenuates withdrawal seizure severity. GLO1 inhibition could 

therefore potentially be a useful strategy for the treatment of neural hyperexcitability 

during acute withdrawal. Further studies will be needed to determine how the glyoxalase 

system is altered by chronic ethanol exposure and whether GLO1 inhibitors may have 

utility for treating the negative affective changes seen during protracted abstinence. 

Supplementary Materials: The following are available online at www.mdpi.com/2076-

3425/11/1/127/s1, Table S1: Number of animals per maximum handling-induced convulsion (HIC) 

score for each experiment, Figure S1: Acute ethanol withdrawal measures for male and female mice 

from experiment 1 collapsed on genotype. 
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