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Abstract: (1) Background: Cognitive aspects and complexity in modern manual mixed model
assembly are increasing. To reduce mental workload (MWL), informational assistance systems are
introduced. The influence of complexity and used assistance system on MWL should be investigated
to further improve the implementation of such assistance systems. (2) Methods: Using a simulated
close to real-life assembly task a 2 × 3 design was chosen, with two levels of assembly complexity
(within subjects) and three different assistance systems (paper, Augmented Reality (AR)-glasses,
tablet–between subjects). MWL was measured using either physiological response (electrocardiogram
(ECG) and eye-tracking) or performance indicators. (3) Results: An influence of task complexity on
MWL can be shown. Additionally, usability based differences between the used assistance systems
become more evident with reference to the results of area of interest analysis. (4) Conclusions: Using
a multi-modal measurement approach, it is possible to detect complexity-based differences in MWL.
Additional research on validity and alignment is needed to further use these for (neuro-) ergonomic
considerations and recommendations.

Keywords: mental workload; human–machine interaction; manual assembly; task complexity; ECG;
eye-tracking

1. Introduction
1.1. Modern Assembly Implies Increase of Complexity

Increasing mass customization in assembly processes leads to a higher overall work
complexity. Where assembly workers formerly had to repeatedly and routinely assemble
homogeneous products, nowadays, so called mixed model assembly is taking place result-
ing in heterogeneous product variants. As a consequence, the mental aspects of assembly
work have gained importance through higher entropy in the assembly line connected to
higher choice density during the assembly process. The overall complexity of a specific
assembly work process results from the sum of choices to be made over all steps across the
variants in a limited time.

Every single choice is based on an episode of information processing including as-
pects of attention, interference control, inhibition, and behavioral execution. The more
information is available in the assembly system, the more cognitive activity is needed in
order to cope with the uncertainty of the worker associated with each choice and each
behavioral execution. Operator choice complexity is defined as the mean uncertainty or
randomness (of the product) in a series of different product variants that require changing
choice processes and behavioral adaptations over a certain period of time, thus leading
to higher mental workload [1]. It is the aim of the present study to show that higher
operator choice complexity in concrete manual assembly tasks leads to increased mental
workload. Additionally, the relationship of different informational assistance systems on
mental workload will be shown.
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1.2. Information Processing Is Associated with Mental Workload

Research on choice behavior has a long tradition in cognitive psychology. There are
some parallels to reaction time studies [2]. As empirically shown, the response times
of correct responses to a stimulus increase either with an increasing number of stimuli
or reaction alternatives to be considered. The more choices are required and the more
alternatives have to be taken into account, the greater the complexity becomes and more
time is required for the correct completion of the task.

Further confirmation comes from perception research. Using eye tracking to gain
insight into gaze behavior (fixations and saccades), it is possible to make assumptions over
the perceptive and cognitive base of choice processes [3,4]. With higher task complexity
and an increasing number of choices, there is a necessity for repeated and longer fixation of
instructions. Through those longer and repeated fixation processes, informational noise is
reduced, stress on the working memory is relieved, and new capacities are made available.
Both lines of research show that the structure and number of cognitive processes are
determined by the interplay of task features, operator resources, and work conditions.

1.3. Mental Workload as a Theoretical Construct

Mental workload (MWL) can be seen as the ratio between environmental and task
relevant demands and the internal supply of mental resources. MWL is related to cognitive
processes, starting from information intake and processing and ending with motor response
initialization and motor pattern monitoring [5]. It is bottlenecked by limited capacities,
especially in working memory [6,7]. Each choice process can be seen as a cognitive
operation characterized by resource usage in specific, connected brain areas [8]. With
increasing task demands, resource usage also increases and more available capacity is used.
Thus, MWL describes “how hard the brain is working to meet task demands” [9]. This
implies the question about individual, absolute, or relative capacity limits.

It is assumed that a task is mentally more demanding if there is no cognitive automa-
tism available to master it. Thus, the demand–supply ratio will become unbalanced (more
demand than supply) and a state of mental overload can occur. During work tasks, demand
and supply are constantly changing through allostatic and adaption processes. If the point
of mental overload is reached, an adaption is no longer possible, resulting in a stressful
state and decreasing performance. Young et al. [10] discussed the dynamically changing re-
lationship between demand, supply, and performance in their ergonomically characterized
red-lines-model of mental workload, which has similarities to the maximal-adaptability-
model presented by Hancock and Warm [11]. Modern medical-neurological approaches try
to give detailed references about the cortical structures and neurophysiological processes
underlying information processing [12,13].

From a more practical ergonomic point of view, the main task is to identify when
mental workload becomes suboptimal and will lead to errors and incidents as well as to
recommend appropriate relief measures. The central aim of these measures is a reduction
of information access costs [14], for example, when information presentation is diversified
by using different resource modalities [5]. Promising attempts have been made in the field
of human–machine interaction to automatically detect mental overload using machine
learning algorithms and to relieve strain by emitting specific tasks to the machine and
release tied-up resources [15].

1.4. Informational Assistance Systems in Mixed Model Assembly

In mixed model assembly systems, there is a trend to integrate informational assistance
systems to reduce mental load during processes with high choice density by either offering
an informational guidance (e.g., pick-by-light or put-to-light systems for part picking [16])
or stepwise, and even individually oriented, assembly instructions. Thus, informational
assistance systems can be seen as “cognitive amplifiers” [17]. In parallel to exoskeletons
that strengthen physical action, they enhance cognitive abilities to process information by
easing the information access and keep working memory capacity free to use. Matthews
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et al. [18] called this approach augmented cognition. A similar effect can be obtained if the
structure of information presentation is compatible with the inherent mental model of the
worker [19,20]. An abstract construction plan might fit the engineer’s mental model, but
can put additional strain on the assembly worker who only needs a few details or some
handling advices. Compatibility helps to avoid time consuming interpretation difficulties.
Overall, the usage of informational assistance systems should not cause an increase in
information processing connected to additional (mental) strain.

Modern informational assistance systems are usually digitally supported, often using
picture-text combinations on tablets or AR-glasses [21]. However, traditional paper based
approaches can lead to comparable reductions in workload. Content and structure of
information are decisive, and the medium itself is less important. Both aspects should be
separated. When content and structure of instructions are identical for different assistance
systems like paper, tablets, or AR-glasses, no differences in mental workload should occur.
However, possible noticeable differences should be caused through the assistance system’s
individual usability (for a negative example using head-mounted displays, see [22]). Aside
from the ease of use, the workers’ familiarity with the used device and the integration of
the assistance system into the working place are important parts of usability [23,24].

1.5. Mental Workload and the Problem of Robust Quantification

For a better understanding of a theoretical concept like MWL, it is necessary to find
ways to operationalize it. Using physiological and neurophysiological indicators like
changes in brain activity, patterns of oxygenated and deoxygenated blood in different brain
areas or pupillary response will make MWL a construct with a close real world connection
([12] for a deeper view). This operationalization will help to understand “how the brain
carries out the complex tasks of everyday life” or “how the brain processes visual, auditory
and tactile information” [25]. Understanding such processes is the necessary base to derive
specific work place related recommendations to improve (neuro-) ergonomics. In addition
to Parasuraman’s overall approach of cognitive neuroergonomics under the slogan “the
brain in action and at work” [25], Benarroch [26] proposed a central autonomous network,
which is seen as a component of an internal regulation system through which the brain
controls visceromotor, neuroendocrine, and behavioral responses. This approach focuses on
the close connection between the central nervous system (CNS) and autonomous nervous
system (ANS) not only for controlling motoric responses, but also bio-physiological changes
due to changing situations and the overall process of allostasis [27].

There are several possible methods and even more indicators to quantify MWL during
work processes [18,28,29]. Indicators vary in their spatial and temporal resolution and
are only able to show a specific part of mental workload, which lowers their overall
validity. Measuring MWL in a multimodal manner seems to be an appropriate solution for
this problem [18,30–32]. Methods for MWL assessment can be categorized in subjective,
performance based, and physiological measurements with an increasing tendency for
wearable, mobile, and non-invasive neurophysiological methods like eye-tracking, EEG, or
fNIRS [33–35]. Compared to performance based data and subjective ratings, physiological
methods offer a continuous data stream and thus offer chances for live analysis using
machine learning algorithms and a direct approach to identify task related changes in
MWL (for example, using heart rate (HR), see [36]).

1.6. Mental Workload Indicators Used in this Study

To quantify MWL two different physiological measurement methods were chosen:
electrocardiography (ECG, heart rate (HR), and heart rate variability (HRV)) and eye move-
ment assessment (pupillary response, fixation duration, saccadic peak velocity, and area of
interest analysis). In addition, performance related indicators (time, failure) are used.

Cognitive functions like selective attention, response selection, inhibition of prepotent
responses, and executive control are all thought to be dependent on working memory, the
neurological basis of which are neural network connections between autonomic (ANS) and
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central nervous system (CNS), especially during the regulation of deliberate, purposeful
behavior, mental load, and allostatic reactions [27,36,37]. The inhibitory characterized
connection can also be called the central autonomic network [26]. It influences HR and
HRV via various cortical and subcortical levels using the stellate ganglion and vagus
nerve [38]. This network is associated with the processes of response organization and
selection and serves to control psychophysiological resources in attention, working memory,
and behavioral adaptation. It allows for maximal organism flexibility in rapid adaption
to changing environmental demands. If this circuit is blocked, the ability to recruit and
utilize neural support to meet a particular demand is hampered and the organism is thus
less adaptive. Increased cognitive activity leads to changes in the homeostatic balance
and therefore allostatic adjustments, which will change the distance between R-peaks and
therefore the HR and HRV parameters. HRV is not only seen as an indicator for ANS
balance, but also for central–peripheral neural feedback and CNS-ANS integration [39].

For this study, all relevant electrocardiographic measures are based on temporally dis-
tances between consecutive heartbeats. HR is chosen as an overall indicator for arousal [40],
RMSSD (root mean sum of squared distance) as a time-based HRV parameter with focus
on parasympathetic activity [39], and rrHRV (relative RR intervals) as an additional HRV
parameter that is more robust against changes in overall HR and movement artifacts [41].

Eye tracking seems to have a closer connection to CNS activity, being cited as the
window to the soul by Kahneman [42], or eye movements as a window to perception
and cognition by McCarley and Kramer [43]. Using eye and gaze related parameters, it
seems to be possible to gain insight into information intake and processing. Eye movement
regulation, as a deliberate and not spontaneous act, is situated in the dorsolateral prefrontal
cortex, which is closely connected to working memory, attention, and interference con-
trol [13,44,45]. Therefore, measurement of oculomotor data is a useful complement to ECG
related parameters, which focus more on executive functions of response selection and the
performance of complex tasks.

Various physiological indicators for eye and gaze movements are available with
different findings regarding their relationship to MWL. This study will focus on the most
important indicators: pupillary response (PR), fixation duration (FD), and saccadic peak
velocity (SPV) (for an overview, see [43]). With increasing cognitive or emotional load, pupil
size (measured as PR) will increase [46–49]. Normal eye movements are a consecutive
sequence of fixations and short volatile saccades. Fixation duration can be seen as an
indicator for information intake (longer fixations–more informational load) [50,51] while
indicators based on saccades (like amplitude, direction, duration, and peak velocity [52])
have a closer connection to the overall mental load (for an overview, see [4]).

Particularly in stressful situations, fixation duration behavior for stress inducing
objects can change toward shorter fixations [51]. This more avoidance orientated behavior
can be analyzed using area of interest (AOI) analysis. AOI analysis offers insight into
individual gaze behavior which has a close connection to the operator’s mental model
of a given task [53]. Using the absolute or relative number of fixations for all given
areas can show which ones are more or less used to perform a specific task [54]. Further
used parameters are the gaze or dwell time (summed up time of all fixations in a specific
area) [55], number of revisits (returns to the specific area), and the average fixation duration.

1.7. Principal Conclusions and Aim of the Study

The main aim of this study was to show the connection between the complexity
of different manual assembly tasks and MWL under time pressure in a natural setting.
Additionally, it was intended to demonstrate that the usage of the same instructional
material on different informational assistance systems will create equal mental workload.
This should demonstrate that the used instructions are more important than the used system.
Potentially occurring differences in MWL will be a result of differences in system usability
(like hands-free solutions or having information always available in the field of view).
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To do so, it is necessary to use objective physiological measures of MWL to detect
changes with a higher granularity. A neurological consideration of the “brain at work”
as Parasuraman [25] proposed can change the way risk and workload assessments will
be performed in the future. This is only possible as long as experimental studies can
corroborate these assumptions. The following hypotheses will be tested:

H1: Complexity in mixed model assembly tasks comes along with increased information processing
activities and various choice situations. An increase of complexity implies an increase of choices.
The more choices there are, the more MWL will occur. Thus, between levels of complexity there are
differences in MWL to be predicted (performance and physiologically based indicators).

H2: Informational assistance systems can help to reduce MWL. To do so, it is important to show
just the necessary information at the right space, at the right time [17,56]. Under the assumption of
equal usability, the presentation of identical instructions for each tested informational assistance
system will not result in significant differences in task performance and MWL.

H3: Increasing assembly complexity stimulates a need for more information integration. This implies
a changing gaze behavior. Object-related gaze behavior will change to more interactions with the
assistance system and the assembly object, accompanying an increase in fixation durations. Simulta-
neously, learning processes and experience will lead to reduced dwell times on assembly parts and
tools. Potential differences between the used information assistance systems will be usability based.

2. Materials and Methods
2.1. Experimental Design

To gain insights into the relationship between complexity, used assistance systems,
and mental workload, a 2 × 3 design with repeated measures on the complexity factor was
chosen. Subjects were randomly assigned to one of the three assistance systems (AR-glasses,
tablet, and paper) and had to assemble four different models of two different complexity
levels (low/high). For mental workload operationalization, HR, HRV (rrHRV, RMSSD), PR,
FD, SPV, assembly time, and assembly failures were selected. In addition, an AOI analysis
was conducted to show potential differences in gaze behavior when assistance systems are
integrated in the assembly situation.

2.2. Stimulus Material

During the experiment, subjects had to assemble four pneumatic modules taken
from the production line of an edge bending machine manufacturer. Models were chosen
to represent two levels of complexity based on the number of parts, needed tools, and
mounting operations and therefore their individual operator choice complexity [1] as
well as the rating of two employees of the edge bending machine manufacturer. For low
complexity models, three (M1) or six parts (M2) need to be assembled with two and three
degrees of freedom for part orientation (possible failures were classified in wrong parts
and wrong orientation). High complexity models had to be built using 16 (M3) or 19 parts
(M4) with three or eight parts that had to be in the right orientation.

Assembly instructions were given to the subjects using either a paper, tablet or AR-
glasses based approach. The paper instruction needed manual handling to flip pages
while the tablet and AR systems were voice controlled. Voice control offered a hands-free
solution. While most participants expected that an AI reacted to their commands during the
experiment, an investigator was placed in the room next to the working station changing
the shown instructional pictures manually.

The assembly process was split in two parts: (a) searching and deciding which parts
need to be assembled, and (b) a manual procedure of assembling. Instructions were given
using the same scheme. In Figure 1, exemplary instructions can be seen for the assembly
of a single part to an already existing model. Search parts were marked with a red frame
including part code and number of parts while the assembly instruction was based on two



Brain Sci. 2021, 11, 102 6 of 19

pictures, one showing the loose component and the next the assembled result. In addition,
the tools to use are shown in the bottom left corner.
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Figure 1. Exemplary assembly instruction (search and assembly parts).

2.3. Procedure

Subjects were randomly assigned to the assistance system before arrival so the labora-
tory was prepared for the special circumstances each assistance system needed. Afterward,
the arrival of necessary equipment (Holter ECG system, eye-tracking glasses, AR-glasses if
necessary) was applied. The main part of the experiment took place in a separate laboratory
room without windows and steady light conditions to not influence the pupillary response
through lighting changes.

The assembly working station was an exact replica from a real industrial working
place with a reduced number of parts and tools. A corner assembly table with two work
areas and three rows for parts (all in orange boxes with a unique identification code based
on a ten-digit numerical code) were chosen for the setup. The experiment started with
an introduction into the assistance system. Participants had to use the system to pick a
part and add it to an already preassembled test-model (Figure 1). When they successfully
completed this task, they started with the assembly of four models of increasing complexity
starting with the low complexity models (M1 and M2) and ending with high complexity
ones (M3 and M4) (Figure 2).
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All instructions were very detailed in step-by-step instructions. Between the four
models, repeatedly used parts, tools, and assembly strategies had to be utilized, but
each model also covered new parts and mounting options (like the use of a new tool,
introduction of new parts, and therefore a higher decision density).

Based on the experience that complexity has its full detrimental potential on mental
workload under time pressure, a gamification approach was chosen to create time-pressure
and social competition. On a separate assembly tablet (no assistance system, just for general
instructions and gamification), they were always able to see how fast they were at the
moment and which place on the leaderboard they had. Higher places on the leaderboard
led to an increased chance of winning a gift voucher. Each time they lost a place, an acoustic
signal was presented.

After all models were assembled, subjects had to perform a HR baseline measurement
sitting still and upright on a chair for five minutes straight.

2.4. Participants

Participants (n = 65) were between 18 and 30 years old (mean = 23.48, SD = 3.36) and
mainly students. Thirty-nine participants were female (60%). Participants with known
cardiovascular diseases, diabetes, and/or epilepsy were excluded from the study. If
necessary, participants had to wear contact lenses to correct their sight as the chosen
equipment was not able to support glasses.

All participants were informed about the study and gave written informed consent for
their participation. The experiment was approved by the ethics committee of the University
of Greifswald (Identifier: BB 171/17).

2.5. Methods and Apparatus for Mental Workload Assessment
2.5.1. Assistance Systems

The technology behind the used assistance systems were an Apple iPad Air 2 for the tablet
and a Vuzix M300 with XpertEye software solution for AR-glasses. The chosen mounting
option for the Vuzix M300 supported the parallel usage of AR- and eye-tracking glasses.

2.5.2. Mental Workload Assessment

The assessment of mental workload was based on three indicator groups: performance
data, ECG, and eye-tracking. Performance data were recorded in two ways: assembly time
was tracked using the assembly tablet where subjects had to acknowledge the start and end
of each model and assembly failures were recorded after the experiment using a protocol
to check for missing or wrong parts and part orientation.

In accordance to the guidelines for HR and HRV measurement in occupational sci-
ence [57] for ECG measurement, a 1-channel Faros eMotion 180◦ Holter ECG with 1000 Hz
sampling frequency was used. Eye-tracking data were recorded using SensoMotoric Instru-
ments (SMI) Eye-Tracking Glasses 2 Wireless. Sampling frequency for binocular recording
was 60 Hz using the inbuilt infrared sensors.

2.5.3. Data Analysis and Statistics

Data preparation and analysis were performed using Mathworks MATLAB 2019a and
the HRV Tool [58] for ECG data and SMIs BeGaze for eye-tracking data. IBM SPSS 25 was
used for statistical analysis.

Using the raw EDF-ECG file export of the Holter ECG device and the HRV Tool in-
house R-peak detection algorithm based on dynamic thresholds and moving windows [59],
the first R-peak detection was performed. Afterward, a manual correction of missing or
misplaced R-peaks as well as the deletion of R-peaks detected in highly noisy parts of
each ECG dataset was applied. Due to those missing beats, the probability of over- or
underestimating the frequency domain HRV parameters increases [60]. Thus, only time
domain HRV calculations were chosen using RMSSD and rrHRV [41]. Pupillary response
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data from both eyes were checked for missing data and outliers and linear interpolation was
performed. For further analysis, data from both eyes were averaged to a single indicator.

For all model based analyses, parameter calculations were performed over the total
assembly time of each participant and model. To derivate an estimation of MWL, over-
and underload reference values over the whole assembly time were determined (mean and
standard deviation). For each model, the total percentage of time HR, and PR one SD over
or under the mean was calculated. For HR analysis, a continuous calculation approach was
chosen (calculating HR over the last 20 heart beats with a 75% temporal overlap).

3. Results

To test hypothesis 1 to 3, repeated measures ANOVAs were performed (with complex-
ity as a within and use of assistance system as a between subjects factor). For a further
understanding of the achieved results, a manipulation check on subjective complexity
perception and gender influence on assembly time was performed.

3.1. Manipulation Check

Every two assembled models (two of low and two of high complexity) subjects
were asked to rate the perceived complexity on a scale from 1 to 100. There was a
significant difference of perceived complexity between the conditions (26.59 vs. 53.52,
F(1,60) = 126.762, p-value < 0.001, partial η2 = 0.679) with no influence of the used assis-
tance system (F(2,60) = 0.216, p-value = 0.807).

Due to the randomized assignment of subjects to assistance systems, there was no
balanced gender proportion (AR: 12:10, tablet: 15:7, paper: 12:9). Additionally, a repeated
measures ANOVA showed no significant differences between female and male participants
in assembly times over all models (F(1,63) = 0.001, p-value = 0.971) (Table 1).

Table 1. Gender based differences in assembly time over all models.

Model 1 Model 2 Model 3 Model 4

Female Mean 126.46 164.64 561.33 686.97
(n = 39) SD 24.74 40.93 115.48 143.09

Male Mean 129.89 165.48 567.22 675.15
(n = 27) SD 30.21 49.97 190.12 165.73
overall Mean 127.86 164.98 563.74 682.14
(n = 66) SD 26.94 44.48 149.21 151.63

To further check if there were group specific conspicuities or differences in ECG
related parameters, a group comparison of baseline values for HR, rrHRV, and RMSSD was
performed. There were no significant differences during baseline measurement between
the assistance systems (p-values ANOVA HR = 0.215, rrHRV = 0.932, RMSSD = 0.328).

3.2. Performance Measurements: Time and Failure

Assembly times and number of failures differed between models with a strong in-
crease from M2 to M3 and smaller differences between models of each complexity level
(1 and 2; 3 and 4). While no significant effects could be observed for assembly for the
used assistance systems’ time, there was an effect for assembly failures (F(2,62) = 4.683,
p-value = 0.013, partial η2 = 0.131). Planned comparisons revealed that differences between
assistance systems did not exist for low complexity (models 1 and 2), but for those with
high complexity. The use of a paper based assistance system led to the fewest mistakes,
followed by tablet and AR. When differentiated in failures resulting from wrongly used
parts and wrong part orientation, no significant differences could be found for used parts
but for orientation, which can be seen as an indicator of careful task execution.
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3.3. Physiological Reactions: Heart Rate and Heart Rate Variability

Mental workload based changes in physiological parameters were analyzed using
ECG related parameters (HR, rrHRV, RMSSD) and eye-tracking related ones (PR, FD, SPV).
Additionally, the more gaze related approach of AOI analysis was conducted to gain better
insight into the usage of various areas at the assembly station.

All chosen mental workload parameters derived from ECG were able to show differ-
ences between the different models (Table 2). While they differed in effect size (with the
strongest effect size for rrHRV with partial η2 = 0.368), they all indicated that subjects in
either group were the least stressed during the assembly of M2. While rrHRV was able to
differentiate between models in more detail (especially for AR and paper), only RMSSD
showed differences between M2 and the remaining models.

Table 2. Electrocardiogram related mental workload parameters.

Low Complexity High Complexity
Model 1 Model 2 Model 3 Model 4 Models Assistance System Interaction

HR
AR 93.71 92.52 95.16 96.17

0.158 *** n.s. n.s.Tablet 97.50 95.34 96.98 97.29
Paper 93.02 91.22 93.69 93.73

rrHRV
AR 3.71 3.95 3.47 3.19

0.368 *** n.s. n.s.Tablet 2.83 3.07 2.89 2.78
Paper 3.67 4.06 3.64 3.46

RMSSD
AR 28.79 30.39 27.95 25.17

0.100 ** n.s. n.s.Tablet 20.87 22.62 21.02 21.95
Paper 28.73 33.75 28.78 27.61

α-level ** = 0.01, *** = 0.001; n.s. = non-significant.

In an attempt to quantify limits for individual mental over- and underload, all HR
values greater than one SD over the mean (over all models) were defined as overload and
one SD below the mean as underload. Using this working definition, it is possible to get a
better understanding of the dynamical nature of mental workload. To classify those changes
in MWL, the percentage of time in each state was used as an indicator (Table 3). Overall,
the decrease in underload over all models was stronger than the increase of overload. M2
again showed the least percentage of working time in the overload area and the most time
in the underload area. While AR was the assistance system with the least amount of mental
overload during M1 (10.45%), the amount of time in the zone of overload increased to
21.62% for M4, making it the assistance system connected with the highest percentage of
overload time.

Table 3. Quantification of over- and underload using heart rate (% of time one SD over/under mean).

Model 1 Model 2 Model 3 Model 4

AR Underload 20.04 28.02 11.26 9.45
Overload 10.45 12.30 14.21 21.62

Tablet Underload 9.97 21.06 9.79 11.73
Overload 20.21 14.52 15.38 17.21

Paper Underload 16.37 23.27 10.27 12.21
Overload 16.08 11.47 16.11 19.97

Overall Underload 15.44 24.13 10.44 11.11
Overload 15.57 12.79 15.22 19.59

3.4. Physiological Reactions: Pupillary Response, Fixation Duration, and Saccadic Peak Velocity

Eye and gaze related parameters showed a less stringent picture compared to the ECG
ones. PR, FD, and SPV were all able to differentiate between models and showed significant
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interaction effects between complexity and used assistance system. Furthermore, SPV was
able to detect a significant effect between the used systems (Table 4).

PR showed similar courses for tablet and paper with an increase from M1 to M2
followed by a decrease for the models with higher complexity. Thus, PR indicates a
different reaction pattern than the ECG related parameters. For subjects using AR-glasses,
the PR increase continued to M3 and showed a strong decrease for M4. For FD, similar
reaction patterns could be seen for AR and tablet following an increase, decrease, increase
pattern between models with a strong increase for AR between M3 and 4. For paper, a
constant increase up to M3 could be seen followed by a decrease.

For SPV subjects, using the paper based assistance system showed a mirrored course
in comparison to the AR and tablet group so the detected differences appeared between
paper and AR/tablet with greater differences between M1, and 2, 4, and close to zero
differences during M3.

Table 4. Eye and gaze related mental workload parameters.

Low Complexity High Complexity

Model 1 Model 2 Model 3 Model 4 Model Assistance
System Interaction

PR
AR 3.29 3.46 3.58 3.41

0.113 *** n.s. 0.095 **Tablet 3.43 3.52 3.44 3.42
Paper 3.54 3.66 3.58 3.53

FD
AR 224.01 240.03 217.38 258.64

0.166 *** n.s. 0.184 ***Tablet 212.03 233.22 223.08 234.52
Paper 213.89 217.79 234.00 221.79

SPV
AR 167.66 166.91 180.89 151.90

0.053 ** 0.203 ** 0.080 ***Tablet 182.63 167.19 182.09 165.04
Paper 212.08 209.43 188.87 198.35

α-level ** = 0.01, *** = 0.001; n.s. = non-significant.

Using the percentage of PR over and under one SD in correspondence to the mean
similar results to HR can be seen. Overload decreased from M1 to M2, followed by a
steady increase until it reached M4 (Table 5). There was a large difference between the used
assistance systems for M1 with AR being the system with over 1/3 of the time, causing
subjects to be in a state of overload. For M4, AR still reached the highest values, but it was
closer to the tablet and paper solution. For underload, a similar course was observable:
there was an increase for underload from M1 to M2 followed by a decrease to M4. This
can be assumed that, especially for AR, the first time use of the assistance systems caused
additional mental workload and that there was an increase in workload through increasing
complexity over Models 2, 3, and 4.

Table 5. Quantification of over- and underload using pupillary response (% of time one SD
over/under mean).

Model 1 Model 2 Model 3 Model 4

AR Underload 10.57 18.20 11.15 13.68
Overload 34.53 6.16 9.57 17.46

Tablet Underload 19.74 25.03 14.33 12.53
Overload 10.05 6.34 8.62 12.49

Paper Underload 16.78 24.52 16.65 9.03
Overload 13.19 4.83 8.07 15.82

Overall Underload 15.48 22.43 13.98 11.75
Overload 19.80 5.76 8.77 15.38



Brain Sci. 2021, 11, 102 11 of 19

3.5. Area of Interest Analysis

Manual assembly is characterized through constant changes between more physical and
more mental process parts. Gaze analysis can be used to better understand these dynamics.
Figure 3 shows the working space used in the experiment. For the AOI analysis, relevant
areas were the used assistance system, assembly parts, and the assembly object as well as the
used tools and the assembly tablet (showing assembly time and general information).
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Figure 3. Overview of areas of interest.

Taking a look at the gaze behavior of one participant over the construction time of one
model, the dynamic changes can be easily spotted. There was a constant change between
fixations of the assistance system, the assembly parts, and the assembly object (Figure 4).
The assembly tablet was the least fixated AOI, and is normally only fixated during the
start and ending phases of each model. Mentally more demanding process parts are
closely connected to fixations of the assistance systems. Participants obtained all necessary
assembly information using this system. Depending on the difficulty of the mounting
option of a specific assembly part, there is either a longer fixation of the assembly object or
shorter revisits of the assistance system to check the information. Longer times fixating
the assembly parts usually indicate problems in finding specific parts. Participants used a
mixture of object-based search strategies (if assembly objects had a specific form/surface)
and searching for the identification number (mainly if the necessary part had many similar
looking alternatives).
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Using data from 59 participants (six participants had to be excluded due to insufficient
tracking rates), an AOI analysis was conducted comparing M1 of low and M4 of high
complexity as well as the different assistance systems (Table 6). View distribution was as
expected with most views on assistance system (25.85% of dwell time), assembly object
(23.93% of dwell time), and assembly parts (19.81% of dwell time) for M1. Due to an
overall shorter assembly time and the novelty of the situation, there was a high dwell time
percentage for the assembly tablet of 4.83% compared to M4 with only 0.17%. Between M1
and M4, a shift toward the assembly object was observable. Participants spent less time
searching for parts (9.85%) and looking up information (assistance system 20.46%), and
mostly fixating the assembly object (48.63%).

There was a significant difference between the average fixation duration between
the different AOIs (exemplary for M1 F(4,56) = 104.29, p-value < 0.001, partial η2 = 0.651)
with the longest fixations for the assembly object (387.98 ms) and shortest for the tools
(177.02 ms) and assembly parts (199.08 ms). The overall scheme did not change between
M1 and M4, but there was a slight (close to significant) increase of the average fixation
duration for the assistance system (F(1,56) = 3.98, p-value = 0.051, partial η2 = 0.066) and a
slight decrease for the assembly object (F(1,56) = 2.46, p-value = 0.122, partial η2 = 0.042).
For the remaining AOIs, there were no noticeable differences in average fixation time.

To gain further insights into the possible differences in the usage of the assistance
systems’ average fixation duration, the fixation percentage per AOI, and number of re-
visits were compared for both models using a repeated measures ANOVA with the used
assistance system as a between subjects factor. There was a significant effect for the used
assistance systems on the average fixation duration (F(2,56) = 7.92, p-value = 0.001, partial
η2 = 0.220), fixation percentage (F(2,56) = 3.60, p-value = 0.034, partial η2 = 0.114), but
not for the number of revisits (F(2,56) = 2.78, p-value = 0.071, partial η2 = 0.090). Planned
comparison shows that the main difference was between AR/paper and tablet/paper (av.
fixation duration) and AR/tablet (fixation percentage). Both indicated that participants
looked longer, but overall less often, at the information presented using the AR-glasses
(even revisits differed from 74.81 for AR to 88.74 for paper during M4.).
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Table 6. Areas of interest comparison of Model 1 and Model 4 (mean values).

Assistance System Assembly Object Assembly Parts Tools Assembly Tablet
AR Tablet Paper AR Tablet Paper AR Tablet Paper AR Tablet Paper AR Tablet Paper

M1

Dwell Time (s) 34.93 33.07 34.43 29.82 28.94 36.33 28.65 26.80 25.58 3.68 2.37 2.54 8.58 7.00 6.13
Dwell Time (%) 25.05 26.26 26.32 20.76 23.32 28.05 19.57 21.05 18.84 2.14 1.32 1.58 4.95 5.21 4.32

Av. Fixation Duration (ms) 248.05 238.37 208.79 387.67 393.32 383.00 189.52 203.11 205.63 178.05 189.47 163.42 236.43 247.42 246.37
Fixations 112.57 112.47 125.47 67.43 66.16 84.47 108.62 91.95 86.16 14.24 8.74 10.37 28.86 23.42 20.42

Fixations (%) 32.41 37.56 38.60 22.96 22.05 26.00 31.31 29.64 25.55 4.42 2.86 3.21 8.43 7.74 6.26
Revisits 15.86 17.05 17.89 8.19 10.47 11.53 7.29 6.11 5.74 2.71 1.58 1.63 3.38 3.11 2.63

M4

Dwell Time (s) 61.93 65.54 65.54 65.54 65.54 65.54 59.53 55.87 56.05 11.27 9.42 10.33 4.16 5.57 3.94
Dwell Time (%) 19.86 20.63 20.95 46.67 48.16 51.26 10.19 10.37 8.95 1.24 1.11 0.95 0.10 0.37 0.05

Av. Fixation Duration (ms) 262.57 249.84 214.16 374.29 373.47 372.63 193.52 203.26 204.00 188.19 193.84 187.21 235.33 293.42 301.53
Fixations 437.24 420.68 536.89 815.19 702.05 879.53 269.10 225.84 232.32 42.62 36.00 39.21 14.90 17.58 11.89

Fixations (%) 27.75 30.17 32.19 50.86 49.24 50.76 17.33 16.42 13.70 2.74 2.65 2.31 0.94 1.22 0.73
Revisits 74.81 77.42 88.74 64.14 65.11 78.00 28.05 20.53 22.53 10.43 8.21 8.89 3.38 3.21 2.79

Sample size: AR = 21, tablet = 19, paper = 19.
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4. Discussion
4.1. General Discussion

The overall findings largely confirm the hypotheses. The assumption of significantly
increasing mental workload with high complexity was confirmed, although the factual
increases and decreases in the ECG indicators were not particularly pronounced. At the
same time, HRV indicators dropped significantly. The increase of choices and correspond-
ing information input not only led to relatively more physical activity and longer assembly
times, but also to increased cognitive activity, which in theory contributes to increased
sympathetic activity via CNS–ANS integration and its disinhibitory effect. This finding,
which has been shown in numerous other research projects [30,31,36], has also received fur-
ther confirmation and clarification via the eye-tracking indicators. There was an expected
increase of fixation duration, which describes the temporal extension of specific information
extractions during working on a task. This is also indicated by an additional interaction
effect with the assistance system, which is primarily due to the opposite tendencies in the
processing of M3 and M4. Only pupil dilation in AR-glasses showed a slight linear increase
from M1 to M3 followed by a decrease. Paper and tablet, however, remained at a relatively
constant level with no clear trends. This means that the information content and thus the
MWL initially increased slightly, but then remained relatively constant at one level in the
following models. Subjects have presumably become familiar with the type of task and
the associated choice making, search, and assembly activities over the first two models,
which reduces the need for additional information extraction. A comparably ambiguous
finding can be seen with regard to SPV. There were no significant changes with increasing
complexity, whereby interaction effects with the assistance system were evident again.

The examination of AOIs provides additional information on the cognitive activi-
ties when subjects concentrate (e.g., on an aspect of the instruction or the object to be
assembled). Each gaze activity has the aim to extract information and to initiate manual
assembly activities. In this sense, McCarley and Kramer [43] refer to a close coupling of
eye movements and object-related actions that bring the targeted action closer to the goal
with the smallest steps. The eye and corresponding hand movements that occur during
assembly are not random, but follow very different strategies for integrating information
acquisition and behavioral performance [61]. For example, it seems strategically sensible
to first take note of the instructions, then search for parts to be installed, remove them from
the container, and finally assemble it, then turn back to the instruction, check the progress,
and prepare the next step. The eye movements thus support forward-facing mounting,
and backward-looking fixations (in this study revisits to the assistance system) primarily
serve as self-confirmations.

The used assistance systems had no independent beneficial or reducing effect on
MWL. They do not affect the execution of tasks with low or high complexity. Performance
results are solely determined by the quality of the instructions. Thus, it is the content but
not the form of presentation that is decisive for efficient working. This finding should not
hide the fact that in practice, instruction maintenance is often neglected [56], probably due
to a widespread mindset that assembly work is largely based on routine and cognitive
automation. Only when tasks become more demanding and ask for specific voluntary
choices during the assembly process–Ballard et al. [61] speak of so-called what/where
modules–should support by assistance systems be offered. Individual interaction effects
of the model and the assistance system are presumably due to special features of the
AR-glasses, which necessitate a higher adjustment effort.

4.2. Limitations

Cognitive neuroergonomics has two goals: first, to use existing and emerging knowl-
edge of brain function to design technologies and work conditions for safer and more
efficient operation, and second, to advance understanding of brain function in relation
to real-world tasks and everyday work [25]. Thus, a major aim of this approach was to
validly identify conditions of high cognitive load or mental overload at the real work
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places and thus to indicate starting points for ergonomic countermeasures. Although our
findings support the assumption that more complex tasks lead to higher MWL, we have to
realize various inconsistencies in the data. Thus, doubts concerning the view of the MWL
construct and its operationalization via different indicators in relation to the fulfillment of
natural tasks outside the laboratory have arisen. Many natural tasks used in the laboratory
are still close to very narrow experimental paradigms of cognitive psychology [62], to
the simulation of greatly reduced driving situations [63], or to the detection of situation
embedded, salient stimuli on a monitor [18]. Three central limitations of this study at hand
but also of the general approach should be discussed: the relation to the everyday work
tasks, the concept of complexity, and MWL measurement using various-related-indicators,
leading to the question whether MWL is a unitary or a multidimensional construct [18,64].

In the present study, the intention was to reproduce a real-life assembly activity as a
natural task in the laboratory. However, associated boundary conditions of an operational
assembly activity could not be optimally transferred to a laboratory task. This applies,
in particular, to aspects of the qualification and assembly experience of the employees
(respectively subjects), but also to the organization of work and commitment to the task.
From a cognitive ergonomic point of view, our subjects did not have a sufficient mental
model of the assembly work imposed on them [17]. For example, an attempt was made to
operationalize temporal restrictions of real tasks by using a gamification arrangement, but
could not actually be enforced stringently.

This missing of effective time limits made subjects rather free to choose their own
speed to exert their task. At the same time, this jeopardizes a central assumption of the
study. Complexity cannot be conceptualized by solely increasing the number of choices
but only in connection with a specified time pressure. Both the number of choices and
time pressure are necessary conditions to increase the MWL. If subjects have as much
time as they want to select and search parts, complexity disappears. Those who can
take any amount of time during assembly do not experience uncertainty or an acute
burden. In addition, the lack of experience with assembly activities implies the need to
process instructions more intensively, especially at the beginning. This may result in an
unexpectedly high MWL during the assembly of M1. After completion of M1, phases of
information extraction became shorter due to practice and learning effects over the repeated
assembly tasks. This in turn counteracts the assumption that increasing complexity in
models 3 and 4 leads to more information extraction and more MWL. Supplementary, for
paper- and tablet-based systems, mental models already exist whereas AR-glasses are still
new and therefore presumably require more effort and longer familiarization time.

Taking these considerations into account, our operationalization of complexity alone
via the number of choices in restricted time showed a further shortcoming. It does not con-
sider the fact that there are dependencies between sequences of choices, which ultimately—
and this is shown by the AOI protocols–lead to a different interaction with the information
presenting assistance system. From model to model, subjects concentrated their attention
more and more on the assembly object. In the course of a concrete assembly, complexity
and uncertainty decrease with the reduction of degrees of freedom due to the restricted
possibilities to add further parts and give room for more intuitive actions [65]. In addition,
learning processes reduce search times for parts and facilitate the selection of tools. All of
these aspects of a natural task contribute to the fact that the complexity of the task was
continuously reduced by repetition [66]. Taken together, natural tasks such as assembly or
other manual work should not be seen as static individual action but as a dynamic variable
over a period of time. The question arises whether and to what extent natural tasks fulfill
the experimental presumptions of a stable and interindividual invariant entity.

A final aspect concerns the measurement of varying MWL that was carried out using
ECG and eye-tracking indicators. This combination corresponds to recommendations to not
focus on a single indicator solution of an assumed multimodal construct like MWL [30,32].
Both groups of indicators we used relate to very different organismic systems which,
however, experience central control prefrontal areas of the cortex [37]. This might support



Brain Sci. 2021, 11, 102 16 of 19

a more unitary view of MWL. In contrast, the group of ECG indicators describes relatively
slowly developing changes while the eye related ones showed quicker adaption processes,
although both were initialized via the same autonomic nervous system. Thus, there
probably is no simultaneously organized activity to be measured. This might favor a view
of a more multidimensional approach. Due to improved measurement technology, we are
able to measure rather precisely the fixation times or pupil dilations as well as R-peaks
and HRV data. However, it is difficult to relate these data to one another for a defined
point or period in which mental stress and overload could have occurred. An important
prerequisite for a multidimensional measurement of MWL could be to coordinate the
spatio-temporal sensitivity of both measures and to show that there is some common
variance. Our discrepancies between ECG and eye-tracking data raise doubts about the
idea of a unitary concept.

The dimensionality debate is primarily theoretical. For the practical ergonomist, the
main question is how to calculate a person’s MWL with regard to a task. For practical
purposes, it is not enough to theoretically accept a redline you have to be able to determine
how pronounced the MWL is and where there are lower and upper limits that should not
be exceeded. There is a lack of possibilities to determine such absolute extents of MWL
and normative limits [10]. For this reason, comparisons between conditions or groups of
people predominate in research. This is an important field of work for the future. In a
multidimensional perspective, this indicates determining the several limits of different
measurement techniques and indicators. At the same time, standards would have to be
developed for each measurement procedure, particularly if it is used in the context of
natural tasks.

A more practical concern might be the influence of the surrounding on pupil size
during the experiment. Even though pupillary response has shown to be sensitive for
changes in MWL, this reactivity to changing states of workload and arousal is only one
of three underlying mechanisms that induce changes of pupil size [48]. The remaining
two are the pupil light reflex and the pupil near or accommodation reflex, of which both
could have an influence on this study. More research has been done on the pupil light
reflex focusing on changes of pupil size due to changing light conditions, resulting in a
pupillary constriction for increases in brightness and vice versa, a dilation for increasing
darkness [67]. During the experiment, we focused on keeping lighting conditions constant.
Therefore, three sources of light were applied on the assembly station, two directly above
each working area (see assembly object in Figure 3) and one central over the assembly
station at the ceiling. Thus, the room should have been evenly illuminated. Even with
promising approaches to eliminate the influence of light on pupillary response during
mental workload, further research and additional light sensors are needed to use them [68].
While lighting and brightness should not be an issue for the used assistance systems (tablet
was set to a medium brightness for good visibility, but no disturbing brightness), the pupil
near reflex could have an influence on the comparison due to decreased distance for the
information available on the AR-glasses. The pupil near reflex “is certainly the least studied,
and perhaps the least understood of all pupil responses” [48] (p. 10). It describes the dilation
of the pupil focusing on distant objects and the constriction focusing on near ones. During
the experiment, most visual cues were presented in a range of 1.5 m. For AR-glasses, an
optical see-through version was chosen with a small projection area in the top right corner
that did not interfere too much with the user’s natural field of view [69]. Thus users of the
AR-glasses could have an overall smaller pupil size due to the shorter fixation distance for
the presented instructions. Noticeable differences only occurred during M1 with 3.29 mm
against 3.43 mm (Tablet) and 3.54 mm (Paper) (Table 4). Still, the participants in this group
showed the highest amount of overload during M1 (34.53%, Table 5), therefore the pupil
near reflex seems to be a negotiable issue for this study.

Including EEG and neuroimaging techniques might be a way to obtain a closer look
at the brain at work, but will also be more intrusive and lead to additional questions like
how to handle latency between different techniques, which signals refer to task specific
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changes and which ones to wandering thoughts, and how to handle the comparatively low
number of task repetitions in a more field-like environment.

5. Conclusions

The program of cognitive neuroergonomics is strongly directed toward providing
recommendations for ergonomics based on neurological principles. For Parasuraman [25],
this was a dream of the future. As he saw it, the brain interacts with the world via a
physical body, which is why neuroergonomics should be concerned with the neural basis
of each kind of physical activity at work and in even more complex contexts of everyday
life. Thus, the neurocognitive approach allows us to ask different questions and develop
new explanatory frameworks about work, which traditional ergonomic approaches based
primarily on the measurement of overt performance and subjective impressions cannot ask.
Aside from serious voices that generally cast doubt on the approach [15], such a position
faces many challenges. As we wanted to show, there are still considerable theoretical and
practical measurement problems, especially when it takes place outside the laboratory
in the natural environment. Followers of cognitive neuroergonomics are optimistic that
there are opportunities in the future to identify cortical stress conditions in real time with
algorithmic support and to combine them with ergonomic countermeasures. This is still a
long way to go, especially if it should be shown that the functional processes running in
the person’s brain are generally dynamic and of higher interpersonal variability.
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