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Abstract: Current case definitions of schizophrenia (DSM-5, ICD), made through a consensus
among experts, are not cross-validated and lack construct reliability validity. The aim of this paper
is to explain how to use bottom-up pattern recognition approaches to construct a reliable and
replicable nomothetic network reflecting the direct effects of risk resilience (RR) factors, and direct
and mediated effects of both RR and adverse outcome pathways (AOPs) on the schizophrenia
phenome. This study was conducted using data from 40 healthy controls and 80 patients with
schizophrenia. Using partial least squares (PLS) analysis, we found that 39.7% of the variance in
the phenomenome (lowered self-reported quality of life) was explained by the unified effects of
AOPs (IgA to tryptophan catabolites, LPS, and the paracellular pathway, cytokines, and oxidative
stress biomarkers), the cognitome (memory and executive deficits), and symptomatome (negative
symptoms, psychosis, hostility, excitation, mannerism, psychomotor retardation, formal thought
disorders); 55.8% of the variance in the symptomatome was explained by a single trait extracted from
AOPs and the cognitome; and 22.0% of the variance in the latter was explained by the RR (Q192R
polymorphism and CMPAase activity, natural IgM, and IgM levels to zonulin). There were significant
total effects (direct + mediated) of RR and AOPs on the symptomatome and the phenomenome. In the
current study, we built a reliable nomothetic network that reflects the associations between RR, AOPs,
and the phenome of schizophrenia and discovered new diagnostic subclasses of schizophrenia based
on unified RR, AOPs, and phenome scores.
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1. Introduction

Recently, we showed that the symptomatome of schizophrenia comprises psychosis, hostility,
excitation, mannerism (PHEM), negative symptoms, formal thought disorders (FTD), and psychomotor
retardation (PMR) and that these symptom domains are reflective manifestations of a single
underlying trait, namely overall severity of schizophrenia (OSOS) [1,2]. Furthermore, we have
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shown that when OSOS increases, negative symptoms and PMR become more prominent and shape a
distinct symptom profile, namely deficit schizophrenia [2]. The latter is delineated not only by negative
symptoms and PMR, but also by PHEM symptoms [1–5].

Other key parts of the phenome of schizophrenia and deficit schizophrenia are neurocognitive
impairments including executive functions, working memory, and semantic and episodic memory [2,3,5].
In addition, the impairments in these cognitive domains are reflective manifestations of an overall
deficit in cognitive functioning, reflecting impairments in prefronto-temporal, prefronto-parietal,
prefronto-striato-thalamic, and hippocampal and amygdalal neural circuits [1,3,5–7].

Furthermore, these impairments in the “cognitome” (the aggregate of cognitive dysfunctions) are
strongly related with the symptomatome of schizophrenia and, based on the available knowledge,
we concluded that these cognitome impairments may play a role in the development and maintenance
of the symptomatome [1,5]. Lowered self-rated, health-related quality of life (HR-QoL) is another
component of the phenome, namely the phenomenome, i.e., the description of the subjective experience
from the patient [3,8]. Lowered HR-QoL in schizophrenia is strongly predicted by the symptomatome
and impairments in the cognitome and is more pronounced in deficit schizophrenia than in non-deficit
schizophrenia [3,8].

Increases in multiple immune and oxidative toxicities (MITOTOX) predict the impairments
in the cognitome, symptomatome, and phenomenome [9]. These MITOTOX biomarkers include
increased levels of neurotoxic tryptophan catabolites (TRYCATs), tumor necrosis factor (TNF)-α,
a pro-inflammatory cytokine with neurotoxic effects; eotaxin (CCL11), an immune product with
neurotoxic and anti-neurogenic effects; lipid hydroperoxides (LOOH) and malondialdehyde (MDA)
indicating lipid peroxidation; advanced oxidation protein products (AOPPs), indicating increased
chlorinative stress which exerts multiple toxic effects; increased IgM levels to zonulin, a toxic compound
that leads to increased gut permeability; and increased bacterial translocation [1,9–11]. Furthermore,
indicants of breakdown of the paracellular gut and blood brain barriers may aggravate these neurotoxic
responses [10,11]. The combined effects of those toxic products of the immune-inflammatory response
system (IRS) may directly (TRYCATs, TNF-α, AOPP, LPS) or indirectly (zonulin, breakdown of the
paracellular barrier) lead to damaged neuronal functions in brain circuits, leading to impairments in
the cognitome and the symptomatome [1,4,5,9–11].

Furthermore, some schizophrenia phenotypes are accompanied by deficits in the compensatory
immune-regulatory system (CIRS), which upon activation may attenuate the IRS [12]. For example,
patients with first episode psychosis (FEP) show a relative deficit in immune regulatory CIRS functions
and increased IRS responses as compared to healthy controls [13]. Moreover, in deficit schizophrenia,
additional impairments are detected in natural IgM-mediated autoimmune responses to oxidative
specific epitopes (OSEs), which have strong anti-inflammatory, antioxidant, and antibacterial effects [9].
Finally, deficit schizophrenia is associated with the total paraoxonase 1 (PON1) status, namely a higher
frequency of the Q allele and QQ genotype of the Q192R polymorphism in association with lowered
activity of PON1 paraoxonase, an enzyme with anti-oxidative, anti-inflammatory, and antibacterial
properties [14].

Causal reasoning indicates that the increased levels of zonulin as well as lowered IgM to natural
OSEs and lowered PON1-gene associated paraoxonase activity may play a role in the breakdown
of gut and blood brain barriers, bacterial translocation, immune activation, and oxidative stress,
which together may induce neurocognitive toxicity and thus the phenome of schizophrenia [1–5,9–14].
Therefore, schizophrenia, and especially deficit schizophrenia, is accompanied by a disbalance in the
causome (increased zonulin) versus the protectome (lowered natural IgM and PON1 paraoxonase
activity) leading to lowered risk resilience (RR). Nevertheless, the direct effects of lowered RR on
the adverse outcome pathways (AOPs, namely breakdown of the barriers and increased levels of
neurotoxic products), the cognitome, symptomatome, and phenomenome of schizophrenia and the
mediated (indirect) effects of RR and AOPs on the phenome have not been examined using the novel
nomothetic network psychiatry (NNT) approach [9]. Furthermore, there is a lack of knowledge on
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how to construct nomothetic networks using Partial Least Squares (PLS) path modeling, which allows
to estimate cause–effect path models, thereby combining principal component analysis to construct
latent vectors coupled with multiple regression analysis.

Hence, this study aims to explain how (a) to construct a reliable and replicable nomothetic
network of schizophrenia based on a theoretical model that was pre-specified based on our previous
knowledge [1–5,9–14] (Figure 1) using feature sets extracted from RR, AOP, and phenome data; and
(b) to discover a new classification of schizophrenia based on the same feature sets. Toward this
end, we will explain how to use PLS path modeling as a bottom-up, pattern recognition approach
to construct a novel nomothetic network, which reflects the direct effects of the RR on the AOPs,
and the direct and mediated effects of both RR and AOPs on the different features of the phenome.
Subsequently, we will explain how latent variable scores may be computed from the feature sets
and be used in unsupervised clustering techniques to disclose new classes built based on RR, AOP,
and phenome features.
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combined with PON1 4 (chloromethyl) phenol acetate (CMPA) ase activity; Hp 2-2: haptoglobin
2-2 genotype; AOP: adverse outcome pathways; AOH: adverse health outcomes; PHEMN: psychosis,
hostility, excitation, mannerism, negative symptoms; SCZ: schizophrenia; HR-Qol: health-related
quality of life.

2. Subjects and Methods

2.1. Subjects

This study enrolled 80 schizophrenia patients and 40 healthy volunteers who were all Thai
nationals of both genders and aged 18–65 years old. The schizophrenia patients were admitted
to the outpatient OPD clinic of the Department of Psychiatry, Faculty of Medicine, Chulalongkorn
University, Bangkok, Thailand. The diagnosis of schizophrenia was made using criteria of the
Diagnostic and Statistical Manual of Mental Disorders (DSM), Fourth Edition Text Revision. They were
all in a stable phase of illness and did not show psychotic flare-ups for at least one year prior to
the study. Furthermore, we used the Schedule for Deficit Schizophrenia (SDS) [15] to make the
diagnosis of deficit schizophrenia. We excluded patients with a current or lifetime diagnosis of other
axis I disorders including bipolar disorder, a major depressive episode, autism spectrum disorders,
generalized anxiety disorder, schizoaffective disorder, and substance use disorders (except tobacco
use disorder). The healthy controls were family or friends of staff, or friends of patients, and they
were recruited by word of mouth from the same catchment area in Bangkok, Thailand. We excluded
controls with any current or lifetime axis-I diagnosis and controls with a positive family history of
psychosis. Moreover, we excluded participants with (a) neurodegenerative and neuroinflammatory



Brain Sci. 2020, 10, 645 4 of 17

disorders such as Alzheimer’s and Parkinson’s disease, stroke, and multiple sclerosis; (b) immune and
autoimmune disorders such as diabetes type I, chronic obstructive pulmonary disease, rheumatoid
arthritis, psoriasis, and inflammatory bowel disease; (c) lifetime use of immunosuppressive and
immunomodulatory drugs; (d) recent (6 months) use of antioxidants andω3-polyunsaturated fatty
acid supplements in therapeutic doses; and (e) pregnant and lactating women. All participants, as
well as the guardians of patients (parents or other close family members) provided written informed
consent to take part in the study. Approval for the study was obtained from the Institutional Review
Board of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand (No 298/57), which is
in compliance with the International Guideline for Human Research protection as required by the
Declaration of Helsinki, The Belmont Report, CIOMS Guideline and International Conference on
Harmonization on Good Clinical Practice (ICH-GCP).

2.2. Clinical Assessments

We used the Mini-International Neuropsychiatric Interview (M.I.N.I.) in a validated Thai
translation [16] to make the clinical diagnosis of schizophrenia. A semi-structured interview was used
to collect clinical and socio-demographic data, such as psychiatric and medical history, age at onset,
and duration of schizophrenia. We used different rating scales to score severity of negative symptoms,
namely the SDS scale [15], the Scale for the Assessment of Negative Symptoms (SANS), [17] and
the negative subscale of the Positive and Negative Syndrome Scale (PANSS) [18]. To score the
PHEM domains, we assessed the items of the Hamilton Depression Rating Scale [19] and the
Brief Psychiatric Rating Scale [20] and computed z unit-weighted composite scores as described
previously [1–5]. Impairments in the cognitome were assessed with two instruments, namely the
Cambridge Neuropsychological Test Automated Battery [21] and the Consortium to Establish a Registry
for Alzheimer’s Disease (CERAD)-Neuropsychological [22] battery. Three key tests of CANTAB were
used to compute an index of executive dysfunction [23]. In this study, we used three CERAD tests,
namely the Verbal Fluency Test (VFT), Word List Memory (WLM), and Word List Recall, True Recall.
The World Health Organization Quality of Life Instrument-Abbreviated version (WHO-QoL-BREF) [24]
was used to assess HR-QoL. This scale contains 4 subdomains: (1) physical health; (2) psychological
health; (3) social relationships; and (4) environment. Raw scores of the 4 domains were computed
according to the WHO-QoL-BREF criteria [24]. We used DSM-IV-TR criteria to make the diagnosis of
tobacco use disorder (TUD). Body mass index (BMI) was computed as body weight (kg)/length (m2).

2.3. Assays

The MITOTOX index was computed using the measurements of TNF-α, IL-6, CCL11, IgA to
TRYCATs, IgA to LPS of 6 Gram-negative bacteria, lipid hydroperoxides (LOOH), malondialdehyde
(MDA), and AOPP [9]. TNF-α, IL-6, and CCL11 were measured using the Bio-Plex®®® 200 System
(R&D Systems, Inc, Minneapolis, MN, USA) and IgA responses to TRYCATs and LPS were assayed
using an enzyme-linked immunosorbent assay (ELISA) as described previously [9]. AOPP was
assayed in a microplate reader (EnSpire, Perkin Elmer, Waltham, MA, USA) and LOOH was
assayed by chemiluminescence in a Glomax Luminometer (TD 20/20) [9]. MDA was assayed using
high-performance liquid chromatography (HPLC Alliance e2695, Waters’, Barueri, SP, Brazil) [9].
Breakdown of the (gut and BBB) paracellular barrier (IgA PARA) was measured and computed as
described previously [10,11], namely the ratio between the paracellular pathway (assessed as a z
unit-weighted composite score of occludin, claudin-5, E-cadherin, and β-catenin) and the transcellular
pathway (assessed as a z unit-weighted composite score of talin, actin, vinculin, and epithelial
intermediate filament [10]. Zonulin was purchased from Bio-Synthesis®®® (Lewisville, TX, USA)
and IgM to zonulin was assayed using an ELISA method [11]. IgM-mediated responses to the
conjugated OSEs, MDA, azelaic acid, and Pi were analyzed as described previously and the optical
densities were assayed at 492 nm using a multiscan spectrophotometer [9]. IgM levels were assayed
using an immunoturbidimetric procedure with a kit purchased from Abbott (Chicago, IL, USA)
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using the Architect, model C8000, Abbott (Chicago, IL, USA). Total PON1 status, namely the PON1
Q192R genotype in an additive model and PON1 chloromethyl phenol acetate (CMPA)ase activity
(PONgenozym) were analyzed using phenyl acetate (Sigma, St. Louis, MO, USA) under high salt
condition and CMPA (Sigma, St. Louis, MO, USA) as substrates [14].

2.4. Statistical Analysis

We employed univariate GLM analysis to assess the differences in AOP, cognitome, symptomatome,
and phenomenome data between subjects divided into those with a normal, lower, and very low RR.
Post-hoc differences between these three groups were assessed using protected pair-wise comparisons
among treatment means. In order to control for type 1 errors due to multiple comparisons, we used
the false-discovery rate (FDR) procedure [25]. Associations between those groups and other nominal
variables were assessed using contingency tables (χ2-tests) or Fisher’s exact test. Some (<0.05% of
all data) causome, AOP or phenome data were missing, completely at random (MCAR), and these
missing data were imputed using the series means method. All scale variables were standardized and
the z-scores were used in the analyses. We have carried our neural network analysis using multilayer
perceptron (MLP) models with diagnostic groups as output variables, an automated feedforward
model with two hidden layers with up to 8 nodes and 250 epochs and mini-batch training with gradient
descent and one consecutive step with no decrease in the error term as stopping criterion. Error, relative
error, the area under the ROC curve, the confusion matrices, and the importance of the explanatory
variables were computed, and the latter are shown in an importance chart. We used training (46.7%),
testing (20%), and holdout (33.3%) samples. The above-mentioned tests were carried out using IBM
SPSS 25 windows version.

We employed Partial Least Squares (PLS) path structural equation modeling (SmartPLS) [26] to
delineate the most reliable nomothetic network explaining the paths from the causome
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phenomenome. All these variables were entered as latent vectors (LV)
extracted from their reflective manifestations (see below), except PONgenozyme, which was entered
as a formative or reflective LV extracted from PON1 additive genetic model and PON1 CMPAase
activity (thus reflecting PON1-gene-associated paraoxonase activity). Moreover, age, sex, BMI, and
education were entered as single indicators. The phenomenome (HR Qol domains 1, 2, 3, and 4) was
the final target which was predicted by all other indicators. We also examined possible moderator
effects (interactions) among upstream LVs in predicting downstream LVs. We conducted complete
PLS analysis on 5000 bootstrap samples only when the inner and outer models complied with specific
quality data: (a) the model fit is adequate with SRMR <0.080; (b) all LVs have adequate composite
reliability (>0.7), Cronbach’s alpha (>0.7), and rho_A (>0.8) and average variance extracted (AVE >

0.500); (c) all loadings on all LVs are >0.500 at p < 0.001; (d) the construct cross-validated redundancies
and communalities are adequate as tested with Blindfolding; and (e) the discriminatory validity as
checked with the Monotrait-Heterotrait index is adequate. Using 5000 bootstrap samples, we then
computed the path coefficients with exact p-values and specific indirect, total indirect, and total direct
effects. We used Confirmatory Tetrad analysis (CTA) to check whether the reflective model of the LVs
is not mis-specified. Permutation and Multi-Group Analysis (MGA) were used to check whether there
are any differences in the pathways between men and women. The latent variable scores obtained
through PLS algorithms were used in subsequent analysis including clustering analysis.

We performed clustering analysis to classify the patients into relevant clusters based on the
latent variable scores reflecting causome, AOPs, and phenome variables, and we employed the
K-mean, K-median, and Forgy’s method using SPSS 25 and the Unscrambler (Camo, Oslo, Norway).
These cluster-analytic procedures were used to disclose a new typology of stable phase schizophrenia
based on all features of schizophrenia (bottom-up method). To further interpret the features of the
cluster analysis-generated classes, we conducted analyses of variance (ANOVA), analysis of contingency
tables (χ2-tests), and neural networks. The latent variable scores (all in z scores) were also displayed in
clustered bar charts, with summaries of the separate variables in the cluster-generated groups.
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3. Results

3.1. The Nomothetic Network Model to Be Tested

Based on our experience with pathway analysis and PLS path modeling [1–4,21], we will explain
how to construct a nomothetic network using the causome (increased zonulin, the IgM protectome,
and PONgenozyme), the AOPs (MITOTOX, IgA PARA, IgA TRYCATs, TNF-α), the cognitome
(CANTAB executive test index, WLM, VFT, True Recall), the symptomatome (PHEM symptoms,
SANS total score and PANSS negative subscale score) and the phenomenome (the 4 HR-QoL domains).
We will show how to test whether the models created have construct validity.

The a priori assumption is shown in Figure 1. The Q allele coupled with its protein enzymatic
activity (labeled as PONgenozyme), increased IgM to zonulin (labeled zonulin), and the natural IgM
protectome (as assessed with IgM levels to azelaic acid, MDA, and PI, and total IgM, labeled natural IgM)
may causally contribute to the phenome of schizophrenia. Increased zonulin is entered as a risk factor
while PONgenozyme and natural IgM are part of the protectome. The phenome consists of different
components, whereby the causome may induce a strain on the internal environmentome, which may
develop into neurotoxic AOPs. The latter may induce neurocognitive toxicity in specific brain areas
leading to deficits in the cognitome including in semantic and episodic memory, and executive
functions. The combined effects of the causome, AOPs, impairments in the cognitome as well as
socio-demographic data (sex, age, education) contribute to the clinical phenome of schizophrenia
consisting of the symptomatome and the phenomenome.

3.2. Construction of a Risk Resilience Index Reflecting the Impact of Causome and Protectome

Based on the different components of the causome and protectome, we computed a z unit-weighted
composite score reflecting the causome/protectome as: z (z IgM Pi + z azelaic acid + z MDA + IgM)
+ z (PC extracted from CMPAase activity + additive PON1 Q192R genetic model) − z IgM zonulin.
Subsequently, we have split the population into three groups based on a visual binning method using
z = −0.53 and z = 0.80 as cut-off-values. Table 1 shows the characteristics and demographic data of
three groups, namely those with a low risk/high protection (normal risk resilience, RR), increased
risk/lowered protection (lowered RR), and increased risk/very low protection (very low RR). There were
no significant differences in age, sex, BMI, and TUD between the three groups. Education and
employment rate were significantly lower in the very low RR group as compared with the other two
RR groups. There were no significant associations between the RR groups and a familial history of
psychosis. This table also lists the measurements of the biomarkers used to construct this RR index.

Table 1. Socio-demographic data of the participants in this study divided according to the risk resilience
(RR) index.

Variables Normal RR A n = 29 Lowered RR B n = 57 Very Low RR C n = 34 F/χ2 df p

Age (years) 37.0 (11.6) 39.5 (11.7) 42.9 (11.4) F = 2.10 2/117 0.127
Sex (F/M) 18/11 25/22 14/20 χ2 = 4.14 2 0.126

BMI (kg/m2) 24.2 (4.2) 24.0 (4.7) 25.0 (4.9) F = 0.37 2/114 0.690
Education (years) 14.3 (4.1) C 13.3 (4.3) C 11.2 (4.6) A,B F = 4.27 2/117 0.017

HC/NONDEF/DEFSCZ 15/11/3 C 22/20/15 C 3/9/22 A,B χ2 = 25.74 4 <0.001
TUD (No/Yes) 27/2 52/5 34/0 FET = 3.09 - 0.237

Employed (No/Yes) 9/20 C 20/37 C 21/13 A,B χ2 = 8.01 2 0.018
Q192R QQ/QR/RR 0/5/24 B,C 1/28/28 A,C 15/15/4 A,B FET = 52.15 - <0.001
CMPAase (U/mL) 48.7 (9.2) B,C 40.4 (8.1) A,C 26.9 (10.3) A,B F = 48.17 2/117 <0.001

IgM sum OSEs (z score) 0.778 (0.783) B,C
−0.059 (0.942) A,C

−0.570 (0.743) A,B F = 19.32 2/117 <0.001
Total IgM (mg/dL) 147.6 (66.5) B,C 101.0 (52.9) A 87.8 (45.1) A F = 10.24 2/115 <0.001

IgM zonulin (z score) −0.549 (1.053) B,C 0.010 (0.990) A 0.304 (0.791) A F = 6.82 2/117 0.002

Results are shown as mean (± SD); A,B,C post-hoc differences between the three categories. All results of
analysis of variance (F), analysis of contingency tables (χ2), or Fisher’s exact test (FET). BMI: body mass index.
HC/NONDEF/DEFSCZ: number of healthy controls (HC) and patients with (DEFSCZ) and without (NONDEF)
deficit schizophrenia. TUD: tobacco use disorder. Q192R QQ/QR/RR: paraoxonase 1 (PON1) genotypes. CMPAase:
PON1 CMPAase 4-(chloromethyl phenyl acetate-ase activity. OSEs: oxidative specific epitopes.
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3.3. Lower Risk Resilience Predicts the AOPs

We found that the RR index was significantly correlated with MITOTOX (r = −0.355, p < 0.001,
all n = 117), IgA PARA (r = −0.346, p < 0.001), CCL11 (r = −0.267, p = 0.003), IgA TRYCATs (r = −0.323,
p < 0.001), and TNF-α (r = −0.249, p = 0.007). Table 2 shows the measurements of the biomarkers in the
three RR groups indicating that MITOTOX, CCL11, and IgA PARA were significantly higher in the
very low RR group compared with the other two groups. IgA TRYCATs were significantly higher in
the very low RR groups as compared with the normal RR group. TNF-αwas significantly higher in
the low and very low RR groups as compared with the normal RR group. These group differences
remained significant after FDR p-correction.

Table 2. Measurements of the adverse outcome pathways (AOPs) and the cognitome in the participants
divided according to a risk resilience (RR) index.

Variables (All in
Z Scores) Normal RR A n = 29 Lowered RR B n = 57 Very Low RR C n = 34 F df p

MITOTOX −0.403 (0.175) C
−0.168 (0.122) C 0.565 (0.182) A,B 8.20 2/105 <0.001

TNF-α −0.466 (0.186) B,C 0.010 (0.129) A 0.367 (0.193) A 4.90 2/105 0.008

IgA TRYCATs −0.363 (0.183) C −0.106 (0.127) 0.342 (0.190) A 3.68 2/105 0.029

CCL11 −0.244 (0.182) C
−0.134 (0.126) C 0.526 (0.189) A,B 5.33 2/105 0.006

IgA PARA −0.322 (0.176) C
−0.138 (0.122) C 0.485 (0.183) A,B 5.74 2/105 0.004

Executive functions 0.288 (0.970) C 0.067 (0.122) C
−0.565 (0.182) A,B 3.65 2/116 0.029

WLM 0.270 (0.069) C 0.069 (0.126) −0.433 (0.162) A 4.75 2/116 0.010

WL Recall 0.190 (0.176) C 0.080 (0.126) C
−0.397 (0.162) A,B 3.65 2/116 0.029

VFT 0.230 (0.179) C 0.202 (0.129) C
−0.508 (0.165) A,B 6.63 2/116 0.002

Results are shown as mean (±SE) after covarying for age and sex (cognition) and age, sex, and body mass index
(AOPs); A,B,C post-hoc differences between the three categories. All results of analysis of variance. MITOTOX: index
of multiple immune and oxidative toxicities; TNF: tumor necrosis factor; IgA PARA: index of paracellular route
breakdown. WLM: world list memory; VFT: verbal fluency test.

3.4. Lower Risk Resilience Predicts Impairments in the Cognitome

We found that the RR index was significantly correlated with WLM (r = 0.351, p < 0.001),
VFT (r = 0.287, p = 0.002), True Recall (r = 0.316, p = 0.001), and executive functions (r = 0.292, p = 0.001).
Table 2 shows the results of GLM analysis with the significant associations between the three RR groups
and the cognitome measurements. The executive, WL Recall, and VFT scores were significantly lower
in the very low RR group as compared with the other two groups. WLM was lower in the very low RR
group as compared with the normal RR group. These group differences remained significant after
FDR p-correction.

3.5. Lower Risk Resilience Predicts the Symptomatome

We found that the RR index was significantly and inversely correlated with psychosis (r = −0.360,
p < 0.001), hostility (r = −0.316, p < 0.001), excitement (r = −0.426, p < 0.001), mannerism (r = −0.327,
p < 0.001), FTD (r = −0.277, p = 0.003), PMR (r = −0.553, p < 0.001), PANSSnegative (r = −0.518,
p < 0.001), and total SANS (r = −0.495, p < 0.001). Table 3 shows that all symptom domain scores
(except hostility) were significantly higher in the very low RR exposome group as compared with the
other 2 exposome groups. These group differences remained significant after FDR p-correction.
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Table 3. Measurements of the symptomatome and phenomenome in the participants divided according
to a risk resilience (RR) index.

Variables (All in
z Scores) Normal RR A n = 29 Lowered RR B n = 57 Very Low RR C n = 34 F/χ2 df p

SANS total −0.435 (0.647) C
−0.194 (0.792) C 0.691 (1.205) A,B 14.70 2/116 <0.001

PANSS negative −0.528 (0.533) C
−0.178 (0.831) C 0.744 (1.146) A,B 18.64 2/116 <0.001

Psychosis −0.316 (0.897) C
−0.121 (0.937) C 0.470 (1.040) A,B 6.11 2/116 0.003

Hostility −0.294 (0.736) C −0.029 (1.082) 0.298 (0.992) A 2.87 2/116 0.061

Excitement −0.409 (0.804) C
−0.123 (0.924) C 0.556 (1.065) A,B 9.23 2/116 <0.001

Mannerism −0.440 (1.049) C
−0.203 (1.365) C 0.709 (1.753) A,B 5.59 2/116 0.005

FTD −0.118 (1.200) C
−0.175 (0.860) C 0.389 (0.949) A,B 3.80 2/116 0.025

PMR −0.528 (0.470) C
−0.212 (0.755) C 0.799 (1.207) A,B 21.92 2/116 <0.001

WHO Qol Domain 1 0.256 (1.296) C 0.081 (0.820) C
−0.350 (0.908) A,B 3.34 2/115 0.039

WHO Qol Domain 2 0.104 (1.079) 0.104 (0.937) −0.257 (1.013) 1.60 2/115 0.207

WHO Qol Domain 3 0.036 (1.052) 0.066 (1.008) −0.138 (0.957) 0.46 2/155 0.630

WHO Qol Domain 4 0.171 (1.049) 0.101 (0.985) −0.309 (0.938) 2.39 2/155 0.096

Results of the symptomatome are shown as mean (± SE) after covarying for age and sex, or as mean (SD);
A,B,C post-hoc differences between the three categories. All results of analysis of variance. SANS: the Scale for the
Assessment of Negative Symptoms; PANSS negative: the negative subscale of the Positive and Negative Syndrome
Scale; FTD: formal thought disorders; PMR: psychomotor retardation. WHO QoL: World Health Organization
Quality of Life Instrument-Abbreviated version.

3.6. Lower Risk Resilience Predicts the Phenomenome (Lowered HR-QoL)

The RR index was significantly correlated with domain 1 (r = 0.276, p = 0.003), domain 2 (r = 0.249,
p = 0.007), and domain 4 (r = 0.26, p = 0.005). Table 3 shows significant differences in domain 1, but not
in domains 2, 3, and 4, between the three exposome groups. The domain 1 scores were significantly
lower in the very low RR group as compared with the two other groups.

3.7. Construction of a First PLS Path Model.

Figure 2. Shows a first PLS-SEM pathway model which examined the causal paths from RR
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phenomenome whereby each LV may predict one or
more of the downstream LVs. In addition, age, sex, and education were also added to the model.
RR was entered as three indicators, namely (a) zonulin as a single indicator, (b) a latent vector (LV)
extracted from IgM to azelaic acid, MDA and Pi, and total IgM in a reflective model (labeled natural
IgM protectome), and (c) a combination of PON1 CMPAase activity and the PON1 gene (additive
model with QQ being 0 and RR being (2) in a formative or reflective model (labeled PONgenozyme).
Nevertheless, in this PLS path model, zonulin was not significant and was thus deleted from the
model. AOPs were entered as a reflective LV extracted from the 5 biomarkers scores. Nevertheless,
CCL11 was not included as its loading was <0.5. The cognitome was entered as an LV extracted
from the CANTAB/CERAD probe results (higher LV scores indicate more severe impairments) and
the symptomatome was an LV extracted from all symptom domains used in this study. Finally, the
phenomenome was entered as an LV extracted from the 4 HR-QoL domains. The overall fit of this PLS
path model was adequate, with SRMR = 0.052. The construct reliability of the 4 reflective LVs was
excellent with Cronbach’s alpha >0.755, composite reliability >0.845, rho_A > 0.788, and AVE > 0.580.
All outer model loadings were >0.666 at p < 0.001 and the construct cross-validated redundancies and
communalities were adequate. In addition, the discriminant validity was also adequate. Complete
PLS pathway analysis with 5000 bootstraps showed that 40.9% of the variance in the phenomenome
was explained by the regression on the symptomatome and the cognitome. The other paths from
RR and AOPs to the phenomenome were non-significant. We found that 59.9% of the variance in
the symptomatome was explained by the cognitome and AOPs, while 52.5% of the variance in the
cognitome was explained by AOPs and 24.2% of the variance in the latter was explained by natural
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IgM and PONgenozyme. In this figure, we show a formative gene-enzyme activity model, however,
a reflective model showed a similar result with loadings on both variables > 0.7.
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Figure 2. The first Partial Least Squares (PLS) path model constructed in this study.PON1 Q192R:
paraoxonase 1 (PON1) genotypes combined with PON1 4(chloromethyl)phenyl acetate (CMPA)ase
activity.MDA: malondialdehyde; Pi: phosphatidylinositol; AOPs: adverse outcome pathways;
MITOTOX: index of multiple immune and oxidative toxicity; TNF: tumor necrosis factor; Paracell:
index of paracellular route breakdown; TRYCATs: IgA to tryptophan catabolites; SANS: the Scale
for the Assessment of Negative Symptoms; PANSSneg: the negative subscale of the Positive and
Negative Syndrome Scale; FTD: formal thought disorders; PMR: psychomotor retardation. HRQoL:
health-related quality of life; WHO 1-4: World Health Organization Quality of Life Instrument domains
(domains 1-4). The white figures in blue circles indicate the explained variance.

There were significant specific indirect effects of PONgenozyme on (a) the cognitome mediated
via AOPs (t = −2.41, p = 0.016); (b) the phenomenome mediated by the path from AOPs
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symptomatome (t = −2.21, p = 0.027); (c) symptomatome mediated via AOPs (t = −2.08, p = 0.037)
and the path from AOPs
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cognitome (t = 2.36, p = 0.018). There were significant total effects of the
PONgenozyme on (a) AOPs (t = −2.56, p = 0.010), cognitome (t = −2.41, p = 0.016), symptomatome
(t = −2.41, p = 0.016), and the phenomenome (t = 2.46, p = 0.014).

There were significant specific indirect effects of the natural IgM on (a) the cognitome mediated
via AOPs (t = −4.09, p < 0.001); (b) the symptomatome mediated by AOPs (t = 3.89, p < 0.001) and
mediated by the path from AOPs
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groups and other nominal variables were assessed using contingency tables (χ2-tests) or Fisher’s exact 

test. Some (<0.05% of all data) causome, AOP or phenome data were missing, completely at random 

(MCAR), and these missing data were imputed using the series means method. All scale variables 

were standardized and the z-scores were used in the analyses. We have carried our neural network 

analysis using multilayer perceptron (MLP) models with diagnostic groups as output variables, an 

automated feedforward model with two hidden layers with up to 8 nodes and 250 epochs and mini-

batch training with gradient descent and one consecutive step with no decrease in the error term as 

stopping criterion. Error, relative error, the area under the ROC curve, the confusion matrices, and 

the importance of the explanatory variables were computed, and the latter are shown in an 

importance chart. We used training (46.7%), testing (20%), and holdout (33.3%) samples. The above-

mentioned tests were carried out using IBM SPSS 25 windows version. 

We employed Partial Least Squares (PLS) path structural equation modeling (SmartPLS) [26] to 

delineate the most reliable nomothetic network explaining the paths from the causome  AOPs  

cognitome  symptomatome  phenomenome. All these variables were entered as latent vectors 

(LV) extracted from their reflective manifestations (see below), except PONgenozyme, which was 

entered as a formative or reflective LV extracted from PON1 additive genetic model and PON1 

CMPAase activity (thus reflecting PON1-gene-associated paraoxonase activity). Moreover, age, sex, 

BMI, and education were entered as single indicators. The phenomenome (HR Qol domains 1, 2, 3, 

and 4) was the final target which was predicted by all other indicators. We also examined possible 

moderator effects (interactions) among upstream LVs in predicting downstream LVs. We conducted 

complete PLS analysis on 5000 bootstrap samples only when the inner and outer models complied 

with specific quality data: (a) the model fit is adequate with SRMR < 0.080; (b) all LVs have adequate 

composite reliability (>0.7), Cronbach’s alpha (>0.7), and rho_A (>0.8) and average variance extracted 

(AVE > 0.500); (c) all loadings on all LVs are > 0.500 at p < 0.001; (d) the construct cross-validated 

redundancies and communalities are adequate as tested with Blindfolding; and (e) the discriminatory 

validity as checked with the Monotrait-Heterotrait index is adequate. Using 5000 bootstrap samples, 

we then computed the path coefficients with exact p-values and specific indirect, total indirect, and 

total direct effects. We used Confirmatory Tetrad analysis (CTA) to check whether the reflective 

model of the LVs is not mis-specified. Permutation and Multi-Group Analysis (MGA) were used to 

check whether there are any differences in the pathways between men and women. The latent 

variable scores obtained through PLS algorithms were used in subsequent analysis including 

clustering analysis.  

We performed clustering analysis to classify the patients into relevant clusters based on the 

latent variable scores reflecting causome, AOPs, and phenome variables, and we employed the K-

mean, K-median, and Forgy’s method using SPSS 25 and the Unscrambler (Camo, Oslo, Norway). 

These cluster-analytic procedures were used to disclose a new typology of stable phase schizophrenia 

based on all features of schizophrenia (bottom-up method). To further interpret the features of the 

cluster analysis-generated classes, we conducted analyses of variance (ANOVA), analysis of 

contingency tables (χ2-tests), and neural networks. The latent variable scores (all in z scores) were 

cognitome (t = −3.37, p = 0.001); (c) the phenomenome mediated
by the path from AOPs
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immunoturbidimetric procedure with a kit purchased from Abbott (Chicago, IL, USA) using the 

Architect, model C8000, Abbott (Chicago, IL, USA). Total PON1 status, namely the PON1 Q192R 

genotype in an additive model and PON1 chloromethyl phenol acetate (CMPA)ase activity 

(PONgenozym) were analyzed using phenyl acetate (Sigma, St. Louis, MO, USA) under high salt 

condition and CMPA (Sigma, St. Louis, MO, USA) as substrates [14].  

2.4. Statistical Analysis 

We employed univariate GLM analysis to assess the differences in AOP, cognitome, 

symptomatome, and phenomenome data between subjects divided into those with a normal, lower, 

and very low RR. Post-hoc differences between these three groups were assessed using protected 

pair-wise comparisons among treatment means. In order to control for type 1 errors due to multiple 

comparisons, we used the false-discovery rate (FDR) procedure [25]. Associations between those 

groups and other nominal variables were assessed using contingency tables (χ2-tests) or Fisher’s exact 

test. Some (<0.05% of all data) causome, AOP or phenome data were missing, completely at random 

(MCAR), and these missing data were imputed using the series means method. All scale variables 

were standardized and the z-scores were used in the analyses. We have carried our neural network 

analysis using multilayer perceptron (MLP) models with diagnostic groups as output variables, an 

automated feedforward model with two hidden layers with up to 8 nodes and 250 epochs and mini-

batch training with gradient descent and one consecutive step with no decrease in the error term as 

stopping criterion. Error, relative error, the area under the ROC curve, the confusion matrices, and 

the importance of the explanatory variables were computed, and the latter are shown in an 

importance chart. We used training (46.7%), testing (20%), and holdout (33.3%) samples. The above-

mentioned tests were carried out using IBM SPSS 25 windows version. 

We employed Partial Least Squares (PLS) path structural equation modeling (SmartPLS) [26] to 

delineate the most reliable nomothetic network explaining the paths from the causome  AOPs  

cognitome  symptomatome  phenomenome. All these variables were entered as latent vectors 

(LV) extracted from their reflective manifestations (see below), except PONgenozyme, which was 

entered as a formative or reflective LV extracted from PON1 additive genetic model and PON1 

CMPAase activity (thus reflecting PON1-gene-associated paraoxonase activity). Moreover, age, sex, 

BMI, and education were entered as single indicators. The phenomenome (HR Qol domains 1, 2, 3, 

and 4) was the final target which was predicted by all other indicators. We also examined possible 

moderator effects (interactions) among upstream LVs in predicting downstream LVs. We conducted 

complete PLS analysis on 5000 bootstrap samples only when the inner and outer models complied 

with specific quality data: (a) the model fit is adequate with SRMR < 0.080; (b) all LVs have adequate 

composite reliability (>0.7), Cronbach’s alpha (>0.7), and rho_A (>0.8) and average variance extracted 

(AVE > 0.500); (c) all loadings on all LVs are > 0.500 at p < 0.001; (d) the construct cross-validated 

redundancies and communalities are adequate as tested with Blindfolding; and (e) the discriminatory 

validity as checked with the Monotrait-Heterotrait index is adequate. Using 5000 bootstrap samples, 

we then computed the path coefficients with exact p-values and specific indirect, total indirect, and 

total direct effects. We used Confirmatory Tetrad analysis (CTA) to check whether the reflective 

model of the LVs is not mis-specified. Permutation and Multi-Group Analysis (MGA) were used to 

check whether there are any differences in the pathways between men and women. The latent 

variable scores obtained through PLS algorithms were used in subsequent analysis including 

clustering analysis.  

We performed clustering analysis to classify the patients into relevant clusters based on the 

latent variable scores reflecting causome, AOPs, and phenome variables, and we employed the K-

mean, K-median, and Forgy’s method using SPSS 25 and the Unscrambler (Camo, Oslo, Norway). 

These cluster-analytic procedures were used to disclose a new typology of stable phase schizophrenia 

based on all features of schizophrenia (bottom-up method). To further interpret the features of the 

cluster analysis-generated classes, we conducted analyses of variance (ANOVA), analysis of 

contingency tables (χ2-tests), and neural networks. The latent variable scores (all in z scores) were 

cognitome (t = 2.17, p = 0030), AOPs
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immunoturbidimetric procedure with a kit purchased from Abbott (Chicago, IL, USA) using the 

Architect, model C8000, Abbott (Chicago, IL, USA). Total PON1 status, namely the PON1 Q192R 

genotype in an additive model and PON1 chloromethyl phenol acetate (CMPA)ase activity 

(PONgenozym) were analyzed using phenyl acetate (Sigma, St. Louis, MO, USA) under high salt 

condition and CMPA (Sigma, St. Louis, MO, USA) as substrates [14].  

2.4. Statistical Analysis 

We employed univariate GLM analysis to assess the differences in AOP, cognitome, 

symptomatome, and phenomenome data between subjects divided into those with a normal, lower, 

and very low RR. Post-hoc differences between these three groups were assessed using protected 

pair-wise comparisons among treatment means. In order to control for type 1 errors due to multiple 

comparisons, we used the false-discovery rate (FDR) procedure [25]. Associations between those 

groups and other nominal variables were assessed using contingency tables (χ2-tests) or Fisher’s exact 

test. Some (<0.05% of all data) causome, AOP or phenome data were missing, completely at random 

(MCAR), and these missing data were imputed using the series means method. All scale variables 

were standardized and the z-scores were used in the analyses. We have carried our neural network 

analysis using multilayer perceptron (MLP) models with diagnostic groups as output variables, an 

automated feedforward model with two hidden layers with up to 8 nodes and 250 epochs and mini-

batch training with gradient descent and one consecutive step with no decrease in the error term as 

stopping criterion. Error, relative error, the area under the ROC curve, the confusion matrices, and 

the importance of the explanatory variables were computed, and the latter are shown in an 

importance chart. We used training (46.7%), testing (20%), and holdout (33.3%) samples. The above-

mentioned tests were carried out using IBM SPSS 25 windows version. 

We employed Partial Least Squares (PLS) path structural equation modeling (SmartPLS) [26] to 

delineate the most reliable nomothetic network explaining the paths from the causome  AOPs  

cognitome  symptomatome  phenomenome. All these variables were entered as latent vectors 

(LV) extracted from their reflective manifestations (see below), except PONgenozyme, which was 

entered as a formative or reflective LV extracted from PON1 additive genetic model and PON1 

CMPAase activity (thus reflecting PON1-gene-associated paraoxonase activity). Moreover, age, sex, 

BMI, and education were entered as single indicators. The phenomenome (HR Qol domains 1, 2, 3, 

and 4) was the final target which was predicted by all other indicators. We also examined possible 

moderator effects (interactions) among upstream LVs in predicting downstream LVs. We conducted 

complete PLS analysis on 5000 bootstrap samples only when the inner and outer models complied 

with specific quality data: (a) the model fit is adequate with SRMR < 0.080; (b) all LVs have adequate 

composite reliability (>0.7), Cronbach’s alpha (>0.7), and rho_A (>0.8) and average variance extracted 

(AVE > 0.500); (c) all loadings on all LVs are > 0.500 at p < 0.001; (d) the construct cross-validated 

redundancies and communalities are adequate as tested with Blindfolding; and (e) the discriminatory 

validity as checked with the Monotrait-Heterotrait index is adequate. Using 5000 bootstrap samples, 

we then computed the path coefficients with exact p-values and specific indirect, total indirect, and 

total direct effects. We used Confirmatory Tetrad analysis (CTA) to check whether the reflective 

model of the LVs is not mis-specified. Permutation and Multi-Group Analysis (MGA) were used to 

check whether there are any differences in the pathways between men and women. The latent 

variable scores obtained through PLS algorithms were used in subsequent analysis including 

clustering analysis.  

We performed clustering analysis to classify the patients into relevant clusters based on the 

latent variable scores reflecting causome, AOPs, and phenome variables, and we employed the K-

mean, K-median, and Forgy’s method using SPSS 25 and the Unscrambler (Camo, Oslo, Norway). 

These cluster-analytic procedures were used to disclose a new typology of stable phase schizophrenia 

based on all features of schizophrenia (bottom-up method). To further interpret the features of the 

cluster analysis-generated classes, we conducted analyses of variance (ANOVA), analysis of 

contingency tables (χ2-tests), and neural networks. The latent variable scores (all in z scores) were 

symptomatome (t = 2.82, p = 0.005),
and AOPs
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immunoturbidimetric procedure with a kit purchased from Abbott (Chicago, IL, USA) using the 

Architect, model C8000, Abbott (Chicago, IL, USA). Total PON1 status, namely the PON1 Q192R 

genotype in an additive model and PON1 chloromethyl phenol acetate (CMPA)ase activity 

(PONgenozym) were analyzed using phenyl acetate (Sigma, St. Louis, MO, USA) under high salt 

condition and CMPA (Sigma, St. Louis, MO, USA) as substrates [14].  

2.4. Statistical Analysis 

We employed univariate GLM analysis to assess the differences in AOP, cognitome, 

symptomatome, and phenomenome data between subjects divided into those with a normal, lower, 

and very low RR. Post-hoc differences between these three groups were assessed using protected 

pair-wise comparisons among treatment means. In order to control for type 1 errors due to multiple 

comparisons, we used the false-discovery rate (FDR) procedure [25]. Associations between those 

groups and other nominal variables were assessed using contingency tables (χ2-tests) or Fisher’s exact 

test. Some (<0.05% of all data) causome, AOP or phenome data were missing, completely at random 

(MCAR), and these missing data were imputed using the series means method. All scale variables 

were standardized and the z-scores were used in the analyses. We have carried our neural network 

analysis using multilayer perceptron (MLP) models with diagnostic groups as output variables, an 

automated feedforward model with two hidden layers with up to 8 nodes and 250 epochs and mini-

batch training with gradient descent and one consecutive step with no decrease in the error term as 

stopping criterion. Error, relative error, the area under the ROC curve, the confusion matrices, and 

the importance of the explanatory variables were computed, and the latter are shown in an 

importance chart. We used training (46.7%), testing (20%), and holdout (33.3%) samples. The above-

mentioned tests were carried out using IBM SPSS 25 windows version. 

We employed Partial Least Squares (PLS) path structural equation modeling (SmartPLS) [26] to 

delineate the most reliable nomothetic network explaining the paths from the causome  AOPs  

cognitome  symptomatome  phenomenome. All these variables were entered as latent vectors 

(LV) extracted from their reflective manifestations (see below), except PONgenozyme, which was 

entered as a formative or reflective LV extracted from PON1 additive genetic model and PON1 

CMPAase activity (thus reflecting PON1-gene-associated paraoxonase activity). Moreover, age, sex, 

BMI, and education were entered as single indicators. The phenomenome (HR Qol domains 1, 2, 3, 

and 4) was the final target which was predicted by all other indicators. We also examined possible 

moderator effects (interactions) among upstream LVs in predicting downstream LVs. We conducted 

complete PLS analysis on 5000 bootstrap samples only when the inner and outer models complied 

with specific quality data: (a) the model fit is adequate with SRMR < 0.080; (b) all LVs have adequate 

composite reliability (>0.7), Cronbach’s alpha (>0.7), and rho_A (>0.8) and average variance extracted 

(AVE > 0.500); (c) all loadings on all LVs are > 0.500 at p < 0.001; (d) the construct cross-validated 

redundancies and communalities are adequate as tested with Blindfolding; and (e) the discriminatory 

validity as checked with the Monotrait-Heterotrait index is adequate. Using 5000 bootstrap samples, 

we then computed the path coefficients with exact p-values and specific indirect, total indirect, and 

total direct effects. We used Confirmatory Tetrad analysis (CTA) to check whether the reflective 

model of the LVs is not mis-specified. Permutation and Multi-Group Analysis (MGA) were used to 

check whether there are any differences in the pathways between men and women. The latent 

variable scores obtained through PLS algorithms were used in subsequent analysis including 

clustering analysis.  

We performed clustering analysis to classify the patients into relevant clusters based on the 

latent variable scores reflecting causome, AOPs, and phenome variables, and we employed the K-

mean, K-median, and Forgy’s method using SPSS 25 and the Unscrambler (Camo, Oslo, Norway). 

These cluster-analytic procedures were used to disclose a new typology of stable phase schizophrenia 

based on all features of schizophrenia (bottom-up method). To further interpret the features of the 

cluster analysis-generated classes, we conducted analyses of variance (ANOVA), analysis of 

contingency tables (χ2-tests), and neural networks. The latent variable scores (all in z scores) were 

cognitome
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immunoturbidimetric procedure with a kit purchased from Abbott (Chicago, IL, USA) using the 

Architect, model C8000, Abbott (Chicago, IL, USA). Total PON1 status, namely the PON1 Q192R 

genotype in an additive model and PON1 chloromethyl phenol acetate (CMPA)ase activity 

(PONgenozym) were analyzed using phenyl acetate (Sigma, St. Louis, MO, USA) under high salt 

condition and CMPA (Sigma, St. Louis, MO, USA) as substrates [14].  

2.4. Statistical Analysis 

We employed univariate GLM analysis to assess the differences in AOP, cognitome, 

symptomatome, and phenomenome data between subjects divided into those with a normal, lower, 

and very low RR. Post-hoc differences between these three groups were assessed using protected 

pair-wise comparisons among treatment means. In order to control for type 1 errors due to multiple 

comparisons, we used the false-discovery rate (FDR) procedure [25]. Associations between those 

groups and other nominal variables were assessed using contingency tables (χ2-tests) or Fisher’s exact 

test. Some (<0.05% of all data) causome, AOP or phenome data were missing, completely at random 

(MCAR), and these missing data were imputed using the series means method. All scale variables 

were standardized and the z-scores were used in the analyses. We have carried our neural network 

analysis using multilayer perceptron (MLP) models with diagnostic groups as output variables, an 

automated feedforward model with two hidden layers with up to 8 nodes and 250 epochs and mini-

batch training with gradient descent and one consecutive step with no decrease in the error term as 

stopping criterion. Error, relative error, the area under the ROC curve, the confusion matrices, and 

the importance of the explanatory variables were computed, and the latter are shown in an 

importance chart. We used training (46.7%), testing (20%), and holdout (33.3%) samples. The above-

mentioned tests were carried out using IBM SPSS 25 windows version. 

We employed Partial Least Squares (PLS) path structural equation modeling (SmartPLS) [26] to 

delineate the most reliable nomothetic network explaining the paths from the causome  AOPs  

cognitome  symptomatome  phenomenome. All these variables were entered as latent vectors 

(LV) extracted from their reflective manifestations (see below), except PONgenozyme, which was 

entered as a formative or reflective LV extracted from PON1 additive genetic model and PON1 

CMPAase activity (thus reflecting PON1-gene-associated paraoxonase activity). Moreover, age, sex, 

BMI, and education were entered as single indicators. The phenomenome (HR Qol domains 1, 2, 3, 

and 4) was the final target which was predicted by all other indicators. We also examined possible 

moderator effects (interactions) among upstream LVs in predicting downstream LVs. We conducted 

complete PLS analysis on 5000 bootstrap samples only when the inner and outer models complied 

with specific quality data: (a) the model fit is adequate with SRMR < 0.080; (b) all LVs have adequate 

composite reliability (>0.7), Cronbach’s alpha (>0.7), and rho_A (>0.8) and average variance extracted 

(AVE > 0.500); (c) all loadings on all LVs are > 0.500 at p < 0.001; (d) the construct cross-validated 

redundancies and communalities are adequate as tested with Blindfolding; and (e) the discriminatory 

validity as checked with the Monotrait-Heterotrait index is adequate. Using 5000 bootstrap samples, 

we then computed the path coefficients with exact p-values and specific indirect, total indirect, and 

total direct effects. We used Confirmatory Tetrad analysis (CTA) to check whether the reflective 

model of the LVs is not mis-specified. Permutation and Multi-Group Analysis (MGA) were used to 

check whether there are any differences in the pathways between men and women. The latent 

variable scores obtained through PLS algorithms were used in subsequent analysis including 

clustering analysis.  

We performed clustering analysis to classify the patients into relevant clusters based on the 

latent variable scores reflecting causome, AOPs, and phenome variables, and we employed the K-

mean, K-median, and Forgy’s method using SPSS 25 and the Unscrambler (Camo, Oslo, Norway). 

These cluster-analytic procedures were used to disclose a new typology of stable phase schizophrenia 

based on all features of schizophrenia (bottom-up method). To further interpret the features of the 

cluster analysis-generated classes, we conducted analyses of variance (ANOVA), analysis of 

contingency tables (χ2-tests), and neural networks. The latent variable scores (all in z scores) were 

symptomatome (t = 2.90, p = 0.004). There were significant total effects of
the natural IgM on AOPs (t = 5.23, p < 0.001), cognitome (t = 4.09, p < 0.001), symptomatome (t = 4.70,
p < 0.001), and phenomenome (t = 4.66, p < 0.001).

There were significant specific indirect effects of AOPs on (a) the symptomatome mediated by
the cognitome (t = 5.36, p < 0.001); and (b) phenomenome mediated by the cognitome (t = 2.54,
p = 0.011), the symptomatome (t = 3.13, p = 0.002), and the path from cognitome
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immunoturbidimetric procedure with a kit purchased from Abbott (Chicago, IL, USA) using the 

Architect, model C8000, Abbott (Chicago, IL, USA). Total PON1 status, namely the PON1 Q192R 

genotype in an additive model and PON1 chloromethyl phenol acetate (CMPA)ase activity 

(PONgenozym) were analyzed using phenyl acetate (Sigma, St. Louis, MO, USA) under high salt 

condition and CMPA (Sigma, St. Louis, MO, USA) as substrates [14].  

2.4. Statistical Analysis 

We employed univariate GLM analysis to assess the differences in AOP, cognitome, 

symptomatome, and phenomenome data between subjects divided into those with a normal, lower, 

and very low RR. Post-hoc differences between these three groups were assessed using protected 

pair-wise comparisons among treatment means. In order to control for type 1 errors due to multiple 

comparisons, we used the false-discovery rate (FDR) procedure [25]. Associations between those 

groups and other nominal variables were assessed using contingency tables (χ2-tests) or Fisher’s exact 

test. Some (<0.05% of all data) causome, AOP or phenome data were missing, completely at random 

(MCAR), and these missing data were imputed using the series means method. All scale variables 

were standardized and the z-scores were used in the analyses. We have carried our neural network 

analysis using multilayer perceptron (MLP) models with diagnostic groups as output variables, an 

automated feedforward model with two hidden layers with up to 8 nodes and 250 epochs and mini-

batch training with gradient descent and one consecutive step with no decrease in the error term as 

stopping criterion. Error, relative error, the area under the ROC curve, the confusion matrices, and 

the importance of the explanatory variables were computed, and the latter are shown in an 

importance chart. We used training (46.7%), testing (20%), and holdout (33.3%) samples. The above-

mentioned tests were carried out using IBM SPSS 25 windows version. 

We employed Partial Least Squares (PLS) path structural equation modeling (SmartPLS) [26] to 

delineate the most reliable nomothetic network explaining the paths from the causome  AOPs  

cognitome  symptomatome  phenomenome. All these variables were entered as latent vectors 

(LV) extracted from their reflective manifestations (see below), except PONgenozyme, which was 

entered as a formative or reflective LV extracted from PON1 additive genetic model and PON1 

CMPAase activity (thus reflecting PON1-gene-associated paraoxonase activity). Moreover, age, sex, 

BMI, and education were entered as single indicators. The phenomenome (HR Qol domains 1, 2, 3, 

and 4) was the final target which was predicted by all other indicators. We also examined possible 

moderator effects (interactions) among upstream LVs in predicting downstream LVs. We conducted 

complete PLS analysis on 5000 bootstrap samples only when the inner and outer models complied 

with specific quality data: (a) the model fit is adequate with SRMR < 0.080; (b) all LVs have adequate 

composite reliability (>0.7), Cronbach’s alpha (>0.7), and rho_A (>0.8) and average variance extracted 

(AVE > 0.500); (c) all loadings on all LVs are > 0.500 at p < 0.001; (d) the construct cross-validated 

redundancies and communalities are adequate as tested with Blindfolding; and (e) the discriminatory 

validity as checked with the Monotrait-Heterotrait index is adequate. Using 5000 bootstrap samples, 

we then computed the path coefficients with exact p-values and specific indirect, total indirect, and 

total direct effects. We used Confirmatory Tetrad analysis (CTA) to check whether the reflective 

model of the LVs is not mis-specified. Permutation and Multi-Group Analysis (MGA) were used to 

check whether there are any differences in the pathways between men and women. The latent 

variable scores obtained through PLS algorithms were used in subsequent analysis including 

clustering analysis.  

We performed clustering analysis to classify the patients into relevant clusters based on the 

latent variable scores reflecting causome, AOPs, and phenome variables, and we employed the K-

mean, K-median, and Forgy’s method using SPSS 25 and the Unscrambler (Camo, Oslo, Norway). 

These cluster-analytic procedures were used to disclose a new typology of stable phase schizophrenia 

based on all features of schizophrenia (bottom-up method). To further interpret the features of the 

cluster analysis-generated classes, we conducted analyses of variance (ANOVA), analysis of 

contingency tables (χ2-tests), and neural networks. The latent variable scores (all in z scores) were 

symptomatome
(t = 3.77, p < 0.001). There were significant total effects of AOPs on the cognitome (t = 8.65, p < 0.001),
symptomatome (t = 10.78, p < 0.001), and the phenomenome (t = 9.12, p < 0.001). There was also a
significant total effect of the cognitome on the phenomenome (t = 6.94, p < 0.001). Education had a
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significant direct effect on impairments in the cognitome (t = 7.81, p < 0.001), symptomatome (t = −4.99,
p < 0.001), and the phenomenome (t = 5.21, p = <0.001), while age had a significant total effect on the
cognitome (t = 2.21, p = 0.027).

3.8. Construction of a Second PLS Path Model

In the second PLS path analysis (Figure 3), we have combined the AOPs and the cognitome into
one construct extracted from 9 indicators (4 cognitive and the 5 AOPs) of an underlying single trait
(the AOP-cognitome). In this model, zonulin was significant and thus included in the final model.
The overall fit of this model was adequate with SRMR = 0.055 and the construct reliability of the
AOP-cognitome LV was good with Cronbach’s alpha = 0.853, composite reliability = 0.886, rho A = 0.869,
and AVE = 0.496. All loadings on this LV were >0.500 at p < 0.001. Blindfolding showed that the
construct cross-validated redundancy (0.291) was sufficient and also the discriminant validity was
adequate as ascertained with the Heterotrait-Monotrait ratio. Complete PLS path analysis with 5000
bootstraps showed that 39.7% of the variance in the HR-QoL phenomenome could be explained by the
cumulative effects of the AOP-cognitome and symptomatome; 55.8% of the variance in the latter was
explained by the AOP-cognitome and 22.0% of the variance in the latter by the cumulative effects of the
RR components. There were significant indirect effects of (a) zonulin (t = 2.31, p = 0.021), PONgenozyme
(t = 2.39, p = 0.017) and natural IgM (t = 4.91, p < 0.001) on the symptomatome, all mediated by AOPs;
(b) zonulin on the phenomenome mediated by the path from AOP
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immunoturbidimetric procedure with a kit purchased from Abbott (Chicago, IL, USA) using the 

Architect, model C8000, Abbott (Chicago, IL, USA). Total PON1 status, namely the PON1 Q192R 

genotype in an additive model and PON1 chloromethyl phenol acetate (CMPA)ase activity 

(PONgenozym) were analyzed using phenyl acetate (Sigma, St. Louis, MO, USA) under high salt 

condition and CMPA (Sigma, St. Louis, MO, USA) as substrates [14].  

2.4. Statistical Analysis 

We employed univariate GLM analysis to assess the differences in AOP, cognitome, 

symptomatome, and phenomenome data between subjects divided into those with a normal, lower, 

and very low RR. Post-hoc differences between these three groups were assessed using protected 

pair-wise comparisons among treatment means. In order to control for type 1 errors due to multiple 

comparisons, we used the false-discovery rate (FDR) procedure [25]. Associations between those 

groups and other nominal variables were assessed using contingency tables (χ2-tests) or Fisher’s exact 

test. Some (<0.05% of all data) causome, AOP or phenome data were missing, completely at random 

(MCAR), and these missing data were imputed using the series means method. All scale variables 

were standardized and the z-scores were used in the analyses. We have carried our neural network 

analysis using multilayer perceptron (MLP) models with diagnostic groups as output variables, an 

automated feedforward model with two hidden layers with up to 8 nodes and 250 epochs and mini-

batch training with gradient descent and one consecutive step with no decrease in the error term as 

stopping criterion. Error, relative error, the area under the ROC curve, the confusion matrices, and 

the importance of the explanatory variables were computed, and the latter are shown in an 

importance chart. We used training (46.7%), testing (20%), and holdout (33.3%) samples. The above-

mentioned tests were carried out using IBM SPSS 25 windows version. 

We employed Partial Least Squares (PLS) path structural equation modeling (SmartPLS) [26] to 

delineate the most reliable nomothetic network explaining the paths from the causome  AOPs  

cognitome  symptomatome  phenomenome. All these variables were entered as latent vectors 

(LV) extracted from their reflective manifestations (see below), except PONgenozyme, which was 

entered as a formative or reflective LV extracted from PON1 additive genetic model and PON1 

CMPAase activity (thus reflecting PON1-gene-associated paraoxonase activity). Moreover, age, sex, 

BMI, and education were entered as single indicators. The phenomenome (HR Qol domains 1, 2, 3, 

and 4) was the final target which was predicted by all other indicators. We also examined possible 

moderator effects (interactions) among upstream LVs in predicting downstream LVs. We conducted 

complete PLS analysis on 5000 bootstrap samples only when the inner and outer models complied 

with specific quality data: (a) the model fit is adequate with SRMR < 0.080; (b) all LVs have adequate 

composite reliability (>0.7), Cronbach’s alpha (>0.7), and rho_A (>0.8) and average variance extracted 

(AVE > 0.500); (c) all loadings on all LVs are > 0.500 at p < 0.001; (d) the construct cross-validated 

redundancies and communalities are adequate as tested with Blindfolding; and (e) the discriminatory 

validity as checked with the Monotrait-Heterotrait index is adequate. Using 5000 bootstrap samples, 

we then computed the path coefficients with exact p-values and specific indirect, total indirect, and 

total direct effects. We used Confirmatory Tetrad analysis (CTA) to check whether the reflective 

model of the LVs is not mis-specified. Permutation and Multi-Group Analysis (MGA) were used to 

check whether there are any differences in the pathways between men and women. The latent 

variable scores obtained through PLS algorithms were used in subsequent analysis including 

clustering analysis.  

We performed clustering analysis to classify the patients into relevant clusters based on the 

latent variable scores reflecting causome, AOPs, and phenome variables, and we employed the K-

mean, K-median, and Forgy’s method using SPSS 25 and the Unscrambler (Camo, Oslo, Norway). 

These cluster-analytic procedures were used to disclose a new typology of stable phase schizophrenia 

based on all features of schizophrenia (bottom-up method). To further interpret the features of the 

cluster analysis-generated classes, we conducted analyses of variance (ANOVA), analysis of 

contingency tables (χ2-tests), and neural networks. The latent variable scores (all in z scores) were 

symptomatome (t = 1.99,
p = 0.047); (c) PONgenozyme on the phenomenome mediated by the path from AOP-cognitome
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symptomatome (t = 2.08, p = 0.038); and (d) natural IgM on the phenomenome mediated by the
AOP-cognitome (t = 2.13, p = 0.033) and the path from the AOP-cognitome
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mean, K-median, and Forgy’s method using SPSS 25 and the Unscrambler (Camo, Oslo, Norway). 
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symptomatome (t = 3.33,
p = 0.001). There were significant total effects of the three RR factors on the phenomenome (all p < 0.05)
and on the symptomatome (all p < 0.05). In this model, we have also examined whether there are
sex-related differences in this nomothetic network using MGA and permutations. We found that
there were significant differences in the total effects (p = 0.002) and the path from AOP-cognitome
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phenomenome with a significant impact in women (path coefficient = −0.475, p < 0001), but not in men
(path coefficient = 0.021, non-significant).
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Figure 3. The second Partial Least Squares (PLS) path model constructed in this study. PON1 Q192R:
paraoxonase 1 (PON1) genotypes with PON1 4 (chloromethyl) phenyl acetate (CMPA) ase activity. MDA:
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malondialdehyde; Pi: phosphatidylinositol. AOPs: adverse outcome pathways; MITOTOX: index of
multiple immune and oxidative toxicities; TNF: tumor necrosis factor; Para cell: index of paracellular
route breakdown; TRYCATs: IgA to tryptophan catabolites; WLM: Word List Memory; VFT: Verbal
Fluency Test; SANS: the Scale for the Assessment of Negative Symptoms; PANSSneg: the negative
subscale of the Positive and Negative Syndrome Scale; FTD: formal thought disorders; PMR:
psychomotor retardation. HRQoL: health-related quality of life; WHO: World Health Organization
Quality of Life Instrument. The white figures in blue circles indicate the explained variance.

3.9. Computation of Latent Variable Severity Scores

To compute scores reflecting the severity of RR, AOPs, cognitome, symptomatome, and
phenomenome, we have conducted PLS analyses and calculated latent variable scores. In order
to obtain an objective OSOS index, we computed a latent variable score of an LV extracted from
all AOPs, cognitive test results, and all symptom domains. The latter LV showed adequate reliability
validity with Cronbach alpha = 0.942, composite reliability of 0.951, rho_A = 0.954, and AVE =

0.569. Moreover, blindfolding showed that the construct cross-validated redundancy of this LV was
adequate (0.231).

3.10. A New Bottom-Up Classification of Schizophrenia

Based on the different latent scores reflecting the severity of RR, AOPs, cognitome, symptomatome,
OSOS, and phenomenome, we have performed different cluster analyses (K means, K-median,
Forgy’s method), which yielded comparable results with a solution whereby patients are divided into
two groups, a first cluster with 46 patients, and a second with 34 patients. There is a strong association
between this new classification and the classification into deficit and non-deficit schizophrenia (χ2 = 40.1,
df = 1, p < 0.001), although 9 patients with deficit schizophrenia were allocated to cluster 1 and 3 with
nondeficit schizophrenia to cluster 2.

Figure 4. Shows a bar graph with the latent scores in healthy controls and the 2 clusters
of schizophrenia patients. We analyzed the differences in latent scores between the three groups
using univariate GLM analyses with age, sex, education, and BMI as covariates. Cluster 1 patients
are differentiated from healthy controls by increased zonulin, AOPs, cognitome, symptomatome,
and phenomenome scores (all p < 0.001). Cluster 2 patients are significantly differentiated from healthy
controls by increased zonulin, lowered PONgenozyme and natural IgM, and increased cognitome,
symptomatome, and phenomenome scores. Cluster 2 patients are also differentiated from cluster 1
patients by lowered PONgenozyme and natural IgM, and increased AOP, cognitome, symptomatome,
and phenomenome scores. Univariate GLM analysis with sex, age, education, and BMI as covariates
showed that OSOS is significantly different (F = 132.16, df = 2/108, p < 0.001; partial-eta squared = 0.710)
between the three groups and increases from controls
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(LV) extracted from their reflective manifestations (see below), except PONgenozyme, which was 
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CMPAase activity (thus reflecting PON1-gene-associated paraoxonase activity). Moreover, age, sex, 
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and 4) was the final target which was predicted by all other indicators. We also examined possible 

moderator effects (interactions) among upstream LVs in predicting downstream LVs. We conducted 
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composite reliability (>0.7), Cronbach’s alpha (>0.7), and rho_A (>0.8) and average variance extracted 

(AVE > 0.500); (c) all loadings on all LVs are > 0.500 at p < 0.001; (d) the construct cross-validated 

redundancies and communalities are adequate as tested with Blindfolding; and (e) the discriminatory 

validity as checked with the Monotrait-Heterotrait index is adequate. Using 5000 bootstrap samples, 

we then computed the path coefficients with exact p-values and specific indirect, total indirect, and 

total direct effects. We used Confirmatory Tetrad analysis (CTA) to check whether the reflective 
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redundancies and communalities are adequate as tested with Blindfolding; and (e) the discriminatory 

validity as checked with the Monotrait-Heterotrait index is adequate. Using 5000 bootstrap samples, 

we then computed the path coefficients with exact p-values and specific indirect, total indirect, and 

total direct effects. We used Confirmatory Tetrad analysis (CTA) to check whether the reflective 

model of the LVs is not mis-specified. Permutation and Multi-Group Analysis (MGA) were used to 

check whether there are any differences in the pathways between men and women. The latent 

variable scores obtained through PLS algorithms were used in subsequent analysis including 

clustering analysis.  

We performed clustering analysis to classify the patients into relevant clusters based on the 

latent variable scores reflecting causome, AOPs, and phenome variables, and we employed the K-

mean, K-median, and Forgy’s method using SPSS 25 and the Unscrambler (Camo, Oslo, Norway). 

These cluster-analytic procedures were used to disclose a new typology of stable phase schizophrenia 

based on all features of schizophrenia (bottom-up method). To further interpret the features of the 

cluster analysis-generated classes, we conducted analyses of variance (ANOVA), analysis of 

contingency tables (χ2-tests), and neural networks. The latent variable scores (all in z scores) were 

cluster 2 (all different at p < 0.001).
A neural network analysis with controls and both cluster analysis-generated groups as output

variables and the RR, AOP, phenome, OSOS, and phenomenome scores as input variables showed
an adequate discrimination between the three groups. A feedforward network with 8 input units,
2 hidden layers with 4 units in layer 1, and 3 units in layer 2 was conducted with 250 epochs and
the activation function in the hidden layer was a hyperbolic tangent and in the output layer identity.
The network information showed that the error term (sum of squares) and the percentage of incorrect
classifications were lower in the testing (3.453 and 12.9%) than in the training (6.999 and 16.1%) sample,
indicating that the model learned to generalize from the trend and is not over-trained. The AUC
ROC was 0.947 for normal controls, 0.926 for cluster 2, and 0.999 for cluster 3. The confusion matrix
showed an accuracy of 90.9% in the holdout sample. Figure 5 shows the importance chart and that
the symptomatome, OSOS and AOP had the highest predictive power of the model, followed at a
distance by PONgenozyme and the phenomenome, and again followed at distance by the cognitome,
natural IgM, and zonulin.
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4. Discussion

In the present paper, we explained how to construct a reliable and replicable nomothetic network
that unifies the different building blocks of a major mental illness, namely a disbalance between
risk and protective factors, the AOPs, cognitive impairments, clinical phenome, and phenomenology
(namely lowered self-reported HR-QoL). Furthermore, this bottom-up model of schizophrenia was
built based on inductive and causal reasoning through identification of the RR, AOPs, and phenome
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and ensembling data drawn from those observations into a unified causal model. This contrasts with
the current gold standard use of case definitions of schizophrenia proposed by the APA (DSM-5) and
the WHO (ICD). The latter diagnostic classifications are based on consensus criteria, which consider
descriptive aspects of the disorder and narratives derived from observer-based interviews or self-reports
by the patient [27]. Moreover, the DSM and ICD taxonomies have insufficient reliability and validity
as indicated by differences in diagnoses using the DSM-III-R, DSM-IV, and ICD-8, ICD-9, ICD-10
classifications [27,28]. Using these diagnostic classifications, schizophrenia may be under-diagnosed
or over-diagnosed [28] and there is variability in clinical diagnosis with inter-departmental diagnostic
differences when using the ICD-8 and ICD-10 taxonomies [29]. This insufficient unification and
harmonization of DSM and ICD diagnoses did not improve in recent DSM and ICD versions [27].
Therefore, it is suggested that these taxonomies lack validity and may even be counterproductive
for research purposes [27,30–32]. Importantly, using machine learning techniques, we observed that
schizophrenia comprises qualitatively distinct symptomatic entities, which were externally validated
by biomarkers [3]. This underscores the poor description of clinical and biological heterogeneity of
schizophrenia by the DSM [33]. Last but not least, the DSM and ICD taxonomies are not based on
domain knowledge of a theoretical model underpinning the illness, which would allow a deductive,
top-down-driven approach.

These non-validated taxonomies are then employed in top-down experiments [27] whereby the
diagnostic groups (schizophrenia versus controls) are entered as input variables in t-tests, ANOVAs,
or GLM analyses to detect changes in biomarkers, which are entered as output or dependent variables.
Nevertheless, causal and inductive reasoning indicates that these RR and AOPs may explain the
onset of cognitive disorders and psychosis and thus that those biomarkers should be used as input
variables in, for example, logistic regression analysis, support vector machine, or neural networks
predicting the target diagnosis. Because the DSM and ICD case definitions of schizophrenia are not
reliable and do not account for the existing clinical and biological heterogeneity, it is not surprising
that decades of biomarker research did not provide external validating biomarker criteria.

To overcome these problems, we have used a bottom-up, data-driven approach to examine how
the RR indices may affect the AOPs and the phenome and additionally we assembled and integrated
all these feature sets of schizophrenia to reify the diagnosis into a novel explicit data model. As such,
the RR and AOPs are integrated and incorporated into a new, unified cause-to-outcome model of
schizophrenia. This approach not only offers a more comprehensive picture of a disorder, but also
objectivates the phenome of schizophrenia, thereby translating the RR and AOP features sets and
cognitive features to psychiatric scores, and vice versa [27]. Our new explanatory modeling approach
constructing nomothetic networks, therefore, not only allows to create new models using computer
science (a method called reification), but also represents the learned information in a model that now
treats a descriptive concept (the DSM and ICD diagnoses) as a material concept (this is also reification).

Moreover, it is also important to stress that the input RR and AOP features were re-engineered and
pre-processed, including scaling and normalizing and that the standardized RR data were employed
to compute z unit-weighted composite scores, which reflect the interactions between the causome and
protectome, yielding a new risk resilience (RR) score. Likewise, we computed a z unit-based composite
score on eight different biomarker systems which have shared neurotoxic activity (MITOTOX). As such,
the latter score reflects the combined and interactive effects of multiple immune and oxidative stress
pathways, which are known to cause neuronal dysfunctions including in neuroplasticity, neurogenesis,
and cell death and apoptotic pathways [9]. Furthermore, this MITOTOX index was then combined
with impairments in the paracellular gut and blood brain barriers, yielding a latent variable score
that reflects their interactions. As such, we have reduced a larger number of biomarkers (n = 25) into
one LV, which reflects the interactions among all pathways into one meaningful concept, namely AOPs.
Moreover, our findings that one latent trait may be extracted from these biomarkers indicate that the
latter are manifestations of a common trait, namely from “leaky barriers-to-neurotoxicity”. Furthermore,
the AOP index is strongly predicted by the RR, indicating that increased zonulin coupled with lowered
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CMPAase and natural IgM protection may lead to increased leaky barriers-associated neurotoxicity.
As explained previously, zonulin or pre-haptoglobin-2 (Hp2), a product of the Hp 2-2 gene, may loosen
the tight junctions of the gut paracellular pathway leading to increased translocation of Gram-negative
bacteria via the paracellular route [11,34,35]. This process is, subsequently, accompanied by increased
activation of immune and oxidative (including the TRYCAT) pathways, for example via the Toll-Like
Receptor (TLR)-4 complex [36]. There is evidence that LPS, TRYCATs, CCL11, and IL-6, may cause BBB
permeabilization by disrupting the tight junctions of the paracellular BBB pathway [10,11]. Therefore,
our results indicate that, in schizophrenia, peripheral immune activation via lowered RR and gut
hyperpermeability is directly associated with BBB permeability and increased neurocognitive toxicity
and that this may be a core axis in schizophrenia.

Even more important is that AOPs, the neurocognitive deficits, PHEM and negative symptoms,
PMR and FTD are manifestations of a single trait, indicating that loosening of the barriers and increased
neurotoxicity are directly associated with the substrate of the impairments in cognitive tests and the
symptoms as well. As discussed previously, this indicates that a multitude of neurotoxic processes
have damaged brain circuits including the prefrontal cortex, prefronto-temporal, prefronto-parietal,
prefronto-striato-thalamic, hippocampal, and amygdalal neural circuits, the pre-supplementary motor
area, and the supplementary motor area [1,37].

It is also important to note that PLS models permit to examine mediation as well as group
differences in the PLS pathway model. As such, we discovered that the effects of the RR features on the
HR-QoL were in fact mediated by AOPs, cognitive disturbances, and the symptomatome. GMA and
permutations did now show major differences in the PLS model between men and women, although
there was a significant difference in the path from the AOP-cognitome to the phenomenome, which was
more pronounced in women than in men.

Finally, we have also explained how to disclose new classifications of schizophrenia by translating
all feature sets (including RR, AOPs, and the phenome components) into latent variable scores and
conducting unsupervised learning. Doing so, we successfully classified the patients into two classes
whereby the first cluster (cluster 2) was characterized by lowered resilience (lowered IgM to OSEs
and PON1 enzymatic activity) as well as significant higher AOP and phenome feature scores as
compared with cluster 1, while both patient clusters were differentiated from controls by changes
in IgM to zonulin, AOPs, cognitome, symptomatome, and phenomenome scores. Our clustering
technique provided a class (cluster 2), which broadly agreed with deficit schizophrenia although our
model was more restrictive than the SDS diagnosis. Neural networks showed that using the RR, AOP,
and phenome feature scores as input variables allowed to predict membership to both clusters and
controls with a 90.9% accuracy, thereby confirming that both schizophrenia subclasses are different
nosological entities. Nevertheless, future research should include a larger number of patients to conduct
predictive modeling and delineate the accuracy of optimized versions of our cluster classification.

The inductive reasoning and data-driven, nomothetic model built in the current study suggests
that previous names given to the illness are not adequate. First, we showed that the DSM (and
related ICD) diagnosis of schizophrenia comprises two qualitatively distinct classes and, therefore, it
is not accurate to use one label such as schizophrenia to describe two different classes. Second, the
dichotomy of “type 1” (positive) and “type 2” (negative) schizophrenia [38] is not adequate because
our cluster 2 is associated with increased scores on all symptom features (PHEM, negative, PMR, FTD),
AOPs, and cognitive disorders, indicating that these feature sets are mere manifestations of the same
single trait, namely “the illness” and “overall severity of illness”. As discussed before, when there are
increases in OSOS, all symptoms, but especially negative symptoms and PMR, become more prominent
and shape a distinct clinical phenotype [2].

Moreover, the names given to delineate the illness are also not very adequate. First, Pick’s label
“dementia praecox” is not useful because the phenome of cluster 2 contains many more features than
a deficit in neurocognitive functions, and the latter does not even point towards dementia. Second,
Bleuler’s label “schizophrenia” [39] is not accurate as it points towards a splitting of the mind-brain,
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while in fact there is no splitting, but aberrations in RR, AOPs, and the phenome. Third, the label
“deficit schizophrenia” is also not adequate because cluster 2 is shaped by all features of the disorder
and not merely negative symptoms as conceptualized by the SDS criteria [15]. The nomothetic network
constructed here provides a new taxonomy of schizophrenia and, therefore, may be used to rename
the illness [9]. This new name should stress the associations between increased neurotoxicity, cognitive
impairments, and the symptomatome, and in addition should make a distinction between both
cluster-derived classes. Thus, the clusters built herein could, for example, be described as Pervasive
Psychosis due to NeuroCognitive Toxicity (PP-NCT) for cluster 2 and Simple Psychosis due to NCT
(SP-NCT) for cluster 1.

The results of the present study should be discussed with respect to its limitations. First, this is a case
control study and, therefore, one must be careful with causal interpretations. Nevertheless, the paths
from the causome/protectome to the phenome (including AOPs, cognitome, and symptomatome)
can be validated because it comprises genes and gene products (including CMPAase and zonulin) as
well as deficits in natural IgM, which predispose to the AOPs, which are known to cause cognitive
deficits and behavioral responses (see Introduction). Second, our results were obtained in stabilized
patients and, therefore, cannot be extrapolated to patients in the acute phase of illness. A study
is underway to create nomothetic models of the acute phase of psychosis. Third, future research
should add magnetic resonance along with structural, functional, and spectroscopic assessments of
the brainome to enrich our nomothetic model and to examine which brainome features belong to the
AOP-cognitome-symptomatome phenotype [27]. Fourth, although we included 32 biomarkers and
16 clinical indicators in our model, larger samples with a wider array of genome, epigenome, and
metabolome data as well as environmental and lifestyle factors should be added to build a more final
model that should be cross-validated in larger, independent samples. We now employ our nomothetic
model as a template to create larger mechanistic models that identify gene patterns and molecular
signatures using curated databases coupled with pathway/network data analysis.

In conclusion, here we explained how to build a bottom-up, nomothetic model that integrates the
features of psychosis (from cause-to-phenomenology) indicating that neurocognitive toxicity is a key
component of the illness. This reification of a clinical diagnosis, the construction of new causal models
containing all features, which are reduced to a fewer number of targeted feature sets, and the addition
of curated research data projected into this new model, are awaited achievements that may radically
change the way mental illnesses including psychosis are conceived.
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